Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2010 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Support : mark.langsdorf@amd.com
8  *
9  *  Based on the powernow-k7.c module written by Dave Jones.
10  *  (C) 2003 Dave Jones on behalf of SuSE Labs
11  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12  *  (C) 2004 Pavel Machek <pavel@suse.cz>
13  *  Licensed under the terms of the GNU GPL License version 2.
14  *  Based upon datasheets & sample CPUs kindly provided by AMD.
15  *
16  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17  *  Dominik Brodowski, Jacob Shin, and others.
18  *  Originally developed by Paul Devriendt.
19  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21  *  Opteron Processors" available for download from www.amd.com
22  *
23  *  Tables for specific CPUs can be inferred from
24  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h>        /* for current / set_cpus_allowed() */
36 #include <linux/io.h>
37 #include <linux/delay.h>
38
39 #include <asm/msr.h>
40
41 #include <linux/acpi.h>
42 #include <linux/mutex.h>
43 #include <acpi/processor.h>
44
45 #define PFX "powernow-k8: "
46 #define VERSION "version 2.20.00"
47 #include "powernow-k8.h"
48 #include "mperf.h"
49
50 /* serialize freq changes  */
51 static DEFINE_MUTEX(fidvid_mutex);
52
53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
54
55 static int cpu_family = CPU_OPTERON;
56
57 /* core performance boost */
58 static bool cpb_capable, cpb_enabled;
59 static struct msr __percpu *msrs;
60
61 static struct cpufreq_driver cpufreq_amd64_driver;
62
63 #ifndef CONFIG_SMP
64 static inline const struct cpumask *cpu_core_mask(int cpu)
65 {
66         return cpumask_of(0);
67 }
68 #endif
69
70 /* Return a frequency in MHz, given an input fid */
71 static u32 find_freq_from_fid(u32 fid)
72 {
73         return 800 + (fid * 100);
74 }
75
76 /* Return a frequency in KHz, given an input fid */
77 static u32 find_khz_freq_from_fid(u32 fid)
78 {
79         return 1000 * find_freq_from_fid(fid);
80 }
81
82 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
83                 u32 pstate)
84 {
85         return data[pstate].frequency;
86 }
87
88 /* Return the vco fid for an input fid
89  *
90  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
91  * only from corresponding high fids. This returns "high" fid corresponding to
92  * "low" one.
93  */
94 static u32 convert_fid_to_vco_fid(u32 fid)
95 {
96         if (fid < HI_FID_TABLE_BOTTOM)
97                 return 8 + (2 * fid);
98         else
99                 return fid;
100 }
101
102 /*
103  * Return 1 if the pending bit is set. Unless we just instructed the processor
104  * to transition to a new state, seeing this bit set is really bad news.
105  */
106 static int pending_bit_stuck(void)
107 {
108         u32 lo, hi;
109
110         if (cpu_family == CPU_HW_PSTATE)
111                 return 0;
112
113         rdmsr(MSR_FIDVID_STATUS, lo, hi);
114         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
115 }
116
117 /*
118  * Update the global current fid / vid values from the status msr.
119  * Returns 1 on error.
120  */
121 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
122 {
123         u32 lo, hi;
124         u32 i = 0;
125
126         if (cpu_family == CPU_HW_PSTATE) {
127                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
128                 i = lo & HW_PSTATE_MASK;
129                 data->currpstate = i;
130
131                 /*
132                  * a workaround for family 11h erratum 311 might cause
133                  * an "out-of-range Pstate if the core is in Pstate-0
134                  */
135                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
136                         data->currpstate = HW_PSTATE_0;
137
138                 return 0;
139         }
140         do {
141                 if (i++ > 10000) {
142                         dprintk("detected change pending stuck\n");
143                         return 1;
144                 }
145                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
146         } while (lo & MSR_S_LO_CHANGE_PENDING);
147
148         data->currvid = hi & MSR_S_HI_CURRENT_VID;
149         data->currfid = lo & MSR_S_LO_CURRENT_FID;
150
151         return 0;
152 }
153
154 /* the isochronous relief time */
155 static void count_off_irt(struct powernow_k8_data *data)
156 {
157         udelay((1 << data->irt) * 10);
158         return;
159 }
160
161 /* the voltage stabilization time */
162 static void count_off_vst(struct powernow_k8_data *data)
163 {
164         udelay(data->vstable * VST_UNITS_20US);
165         return;
166 }
167
168 /* need to init the control msr to a safe value (for each cpu) */
169 static void fidvid_msr_init(void)
170 {
171         u32 lo, hi;
172         u8 fid, vid;
173
174         rdmsr(MSR_FIDVID_STATUS, lo, hi);
175         vid = hi & MSR_S_HI_CURRENT_VID;
176         fid = lo & MSR_S_LO_CURRENT_FID;
177         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
178         hi = MSR_C_HI_STP_GNT_BENIGN;
179         dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
180         wrmsr(MSR_FIDVID_CTL, lo, hi);
181 }
182
183 /* write the new fid value along with the other control fields to the msr */
184 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
185 {
186         u32 lo;
187         u32 savevid = data->currvid;
188         u32 i = 0;
189
190         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
191                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
192                 return 1;
193         }
194
195         lo = fid;
196         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
197         lo |= MSR_C_LO_INIT_FID_VID;
198
199         dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
200                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
201
202         do {
203                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
204                 if (i++ > 100) {
205                         printk(KERN_ERR PFX
206                                 "Hardware error - pending bit very stuck - "
207                                 "no further pstate changes possible\n");
208                         return 1;
209                 }
210         } while (query_current_values_with_pending_wait(data));
211
212         count_off_irt(data);
213
214         if (savevid != data->currvid) {
215                 printk(KERN_ERR PFX
216                         "vid change on fid trans, old 0x%x, new 0x%x\n",
217                         savevid, data->currvid);
218                 return 1;
219         }
220
221         if (fid != data->currfid) {
222                 printk(KERN_ERR PFX
223                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
224                         data->currfid);
225                 return 1;
226         }
227
228         return 0;
229 }
230
231 /* Write a new vid to the hardware */
232 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
233 {
234         u32 lo;
235         u32 savefid = data->currfid;
236         int i = 0;
237
238         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
239                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
240                 return 1;
241         }
242
243         lo = data->currfid;
244         lo |= (vid << MSR_C_LO_VID_SHIFT);
245         lo |= MSR_C_LO_INIT_FID_VID;
246
247         dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248                 vid, lo, STOP_GRANT_5NS);
249
250         do {
251                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252                 if (i++ > 100) {
253                         printk(KERN_ERR PFX "internal error - pending bit "
254                                         "very stuck - no further pstate "
255                                         "changes possible\n");
256                         return 1;
257                 }
258         } while (query_current_values_with_pending_wait(data));
259
260         if (savefid != data->currfid) {
261                 printk(KERN_ERR PFX "fid changed on vid trans, old "
262                         "0x%x new 0x%x\n",
263                        savefid, data->currfid);
264                 return 1;
265         }
266
267         if (vid != data->currvid) {
268                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
269                                 "curr 0x%x\n",
270                                 vid, data->currvid);
271                 return 1;
272         }
273
274         return 0;
275 }
276
277 /*
278  * Reduce the vid by the max of step or reqvid.
279  * Decreasing vid codes represent increasing voltages:
280  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
281  */
282 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
283                 u32 reqvid, u32 step)
284 {
285         if ((data->currvid - reqvid) > step)
286                 reqvid = data->currvid - step;
287
288         if (write_new_vid(data, reqvid))
289                 return 1;
290
291         count_off_vst(data);
292
293         return 0;
294 }
295
296 /* Change hardware pstate by single MSR write */
297 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
298 {
299         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
300         data->currpstate = pstate;
301         return 0;
302 }
303
304 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
305 static int transition_fid_vid(struct powernow_k8_data *data,
306                 u32 reqfid, u32 reqvid)
307 {
308         if (core_voltage_pre_transition(data, reqvid, reqfid))
309                 return 1;
310
311         if (core_frequency_transition(data, reqfid))
312                 return 1;
313
314         if (core_voltage_post_transition(data, reqvid))
315                 return 1;
316
317         if (query_current_values_with_pending_wait(data))
318                 return 1;
319
320         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
321                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
322                                 "curr 0x%x 0x%x\n",
323                                 smp_processor_id(),
324                                 reqfid, reqvid, data->currfid, data->currvid);
325                 return 1;
326         }
327
328         dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
329                 smp_processor_id(), data->currfid, data->currvid);
330
331         return 0;
332 }
333
334 /* Phase 1 - core voltage transition ... setup voltage */
335 static int core_voltage_pre_transition(struct powernow_k8_data *data,
336                 u32 reqvid, u32 reqfid)
337 {
338         u32 rvosteps = data->rvo;
339         u32 savefid = data->currfid;
340         u32 maxvid, lo, rvomult = 1;
341
342         dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
343                 "reqvid 0x%x, rvo 0x%x\n",
344                 smp_processor_id(),
345                 data->currfid, data->currvid, reqvid, data->rvo);
346
347         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
348                 rvomult = 2;
349         rvosteps *= rvomult;
350         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
351         maxvid = 0x1f & (maxvid >> 16);
352         dprintk("ph1 maxvid=0x%x\n", maxvid);
353         if (reqvid < maxvid) /* lower numbers are higher voltages */
354                 reqvid = maxvid;
355
356         while (data->currvid > reqvid) {
357                 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
358                         data->currvid, reqvid);
359                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
360                         return 1;
361         }
362
363         while ((rvosteps > 0) &&
364                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
365                 if (data->currvid == maxvid) {
366                         rvosteps = 0;
367                 } else {
368                         dprintk("ph1: changing vid for rvo, req 0x%x\n",
369                                 data->currvid - 1);
370                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
371                                 return 1;
372                         rvosteps--;
373                 }
374         }
375
376         if (query_current_values_with_pending_wait(data))
377                 return 1;
378
379         if (savefid != data->currfid) {
380                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
381                                 data->currfid);
382                 return 1;
383         }
384
385         dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
386                 data->currfid, data->currvid);
387
388         return 0;
389 }
390
391 /* Phase 2 - core frequency transition */
392 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
393 {
394         u32 vcoreqfid, vcocurrfid, vcofiddiff;
395         u32 fid_interval, savevid = data->currvid;
396
397         if (data->currfid == reqfid) {
398                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
399                                 data->currfid);
400                 return 0;
401         }
402
403         dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
404                 "reqfid 0x%x\n",
405                 smp_processor_id(),
406                 data->currfid, data->currvid, reqfid);
407
408         vcoreqfid = convert_fid_to_vco_fid(reqfid);
409         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
410         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
411             : vcoreqfid - vcocurrfid;
412
413         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
414                 vcofiddiff = 0;
415
416         while (vcofiddiff > 2) {
417                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
418
419                 if (reqfid > data->currfid) {
420                         if (data->currfid > LO_FID_TABLE_TOP) {
421                                 if (write_new_fid(data,
422                                                 data->currfid + fid_interval))
423                                         return 1;
424                         } else {
425                                 if (write_new_fid
426                                     (data,
427                                      2 + convert_fid_to_vco_fid(data->currfid)))
428                                         return 1;
429                         }
430                 } else {
431                         if (write_new_fid(data, data->currfid - fid_interval))
432                                 return 1;
433                 }
434
435                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
436                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
437                     : vcoreqfid - vcocurrfid;
438         }
439
440         if (write_new_fid(data, reqfid))
441                 return 1;
442
443         if (query_current_values_with_pending_wait(data))
444                 return 1;
445
446         if (data->currfid != reqfid) {
447                 printk(KERN_ERR PFX
448                         "ph2: mismatch, failed fid transition, "
449                         "curr 0x%x, req 0x%x\n",
450                         data->currfid, reqfid);
451                 return 1;
452         }
453
454         if (savevid != data->currvid) {
455                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
456                         savevid, data->currvid);
457                 return 1;
458         }
459
460         dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
461                 data->currfid, data->currvid);
462
463         return 0;
464 }
465
466 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
467 static int core_voltage_post_transition(struct powernow_k8_data *data,
468                 u32 reqvid)
469 {
470         u32 savefid = data->currfid;
471         u32 savereqvid = reqvid;
472
473         dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
474                 smp_processor_id(),
475                 data->currfid, data->currvid);
476
477         if (reqvid != data->currvid) {
478                 if (write_new_vid(data, reqvid))
479                         return 1;
480
481                 if (savefid != data->currfid) {
482                         printk(KERN_ERR PFX
483                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
484                                savefid, data->currfid);
485                         return 1;
486                 }
487
488                 if (data->currvid != reqvid) {
489                         printk(KERN_ERR PFX
490                                "ph3: failed vid transition\n, "
491                                "req 0x%x, curr 0x%x",
492                                reqvid, data->currvid);
493                         return 1;
494                 }
495         }
496
497         if (query_current_values_with_pending_wait(data))
498                 return 1;
499
500         if (savereqvid != data->currvid) {
501                 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
502                 return 1;
503         }
504
505         if (savefid != data->currfid) {
506                 dprintk("ph3 failed, currfid changed 0x%x\n",
507                         data->currfid);
508                 return 1;
509         }
510
511         dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
512                 data->currfid, data->currvid);
513
514         return 0;
515 }
516
517 static void check_supported_cpu(void *_rc)
518 {
519         u32 eax, ebx, ecx, edx;
520         int *rc = _rc;
521
522         *rc = -ENODEV;
523
524         if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
525                 return;
526
527         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
528         if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
529             ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
530                 return;
531
532         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
533                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
534                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
535                         printk(KERN_INFO PFX
536                                 "Processor cpuid %x not supported\n", eax);
537                         return;
538                 }
539
540                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
541                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
542                         printk(KERN_INFO PFX
543                                "No frequency change capabilities detected\n");
544                         return;
545                 }
546
547                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
548                 if ((edx & P_STATE_TRANSITION_CAPABLE)
549                         != P_STATE_TRANSITION_CAPABLE) {
550                         printk(KERN_INFO PFX
551                                 "Power state transitions not supported\n");
552                         return;
553                 }
554         } else { /* must be a HW Pstate capable processor */
555                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
556                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
557                         cpu_family = CPU_HW_PSTATE;
558                 else
559                         return;
560         }
561
562         *rc = 0;
563 }
564
565 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
566                 u8 maxvid)
567 {
568         unsigned int j;
569         u8 lastfid = 0xff;
570
571         for (j = 0; j < data->numps; j++) {
572                 if (pst[j].vid > LEAST_VID) {
573                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
574                                j, pst[j].vid);
575                         return -EINVAL;
576                 }
577                 if (pst[j].vid < data->rvo) {
578                         /* vid + rvo >= 0 */
579                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
580                                " %d\n", j);
581                         return -ENODEV;
582                 }
583                 if (pst[j].vid < maxvid + data->rvo) {
584                         /* vid + rvo >= maxvid */
585                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
586                                " %d\n", j);
587                         return -ENODEV;
588                 }
589                 if (pst[j].fid > MAX_FID) {
590                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
591                                " %d\n", j);
592                         return -ENODEV;
593                 }
594                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
595                         /* Only first fid is allowed to be in "low" range */
596                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
597                                "0x%x\n", j, pst[j].fid);
598                         return -EINVAL;
599                 }
600                 if (pst[j].fid < lastfid)
601                         lastfid = pst[j].fid;
602         }
603         if (lastfid & 1) {
604                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
605                 return -EINVAL;
606         }
607         if (lastfid > LO_FID_TABLE_TOP)
608                 printk(KERN_INFO FW_BUG PFX
609                         "first fid not from lo freq table\n");
610
611         return 0;
612 }
613
614 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
615                 unsigned int entry)
616 {
617         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
618 }
619
620 static void print_basics(struct powernow_k8_data *data)
621 {
622         int j;
623         for (j = 0; j < data->numps; j++) {
624                 if (data->powernow_table[j].frequency !=
625                                 CPUFREQ_ENTRY_INVALID) {
626                         if (cpu_family == CPU_HW_PSTATE) {
627                                 printk(KERN_INFO PFX
628                                         "   %d : pstate %d (%d MHz)\n", j,
629                                         data->powernow_table[j].index,
630                                         data->powernow_table[j].frequency/1000);
631                         } else {
632                                 printk(KERN_INFO PFX
633                                         "   %d : fid 0x%x (%d MHz), vid 0x%x\n",
634                                         j,
635                                         data->powernow_table[j].index & 0xff,
636                                         data->powernow_table[j].frequency/1000,
637                                         data->powernow_table[j].index >> 8);
638                         }
639                 }
640         }
641         if (data->batps)
642                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
643                                 data->batps);
644 }
645
646 static u32 freq_from_fid_did(u32 fid, u32 did)
647 {
648         u32 mhz = 0;
649
650         if (boot_cpu_data.x86 == 0x10)
651                 mhz = (100 * (fid + 0x10)) >> did;
652         else if (boot_cpu_data.x86 == 0x11)
653                 mhz = (100 * (fid + 8)) >> did;
654         else
655                 BUG();
656
657         return mhz * 1000;
658 }
659
660 static int fill_powernow_table(struct powernow_k8_data *data,
661                 struct pst_s *pst, u8 maxvid)
662 {
663         struct cpufreq_frequency_table *powernow_table;
664         unsigned int j;
665
666         if (data->batps) {
667                 /* use ACPI support to get full speed on mains power */
668                 printk(KERN_WARNING PFX
669                         "Only %d pstates usable (use ACPI driver for full "
670                         "range\n", data->batps);
671                 data->numps = data->batps;
672         }
673
674         for (j = 1; j < data->numps; j++) {
675                 if (pst[j-1].fid >= pst[j].fid) {
676                         printk(KERN_ERR PFX "PST out of sequence\n");
677                         return -EINVAL;
678                 }
679         }
680
681         if (data->numps < 2) {
682                 printk(KERN_ERR PFX "no p states to transition\n");
683                 return -ENODEV;
684         }
685
686         if (check_pst_table(data, pst, maxvid))
687                 return -EINVAL;
688
689         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
690                 * (data->numps + 1)), GFP_KERNEL);
691         if (!powernow_table) {
692                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
693                 return -ENOMEM;
694         }
695
696         for (j = 0; j < data->numps; j++) {
697                 int freq;
698                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
699                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
700                 freq = find_khz_freq_from_fid(pst[j].fid);
701                 powernow_table[j].frequency = freq;
702         }
703         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
704         powernow_table[data->numps].index = 0;
705
706         if (query_current_values_with_pending_wait(data)) {
707                 kfree(powernow_table);
708                 return -EIO;
709         }
710
711         dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
712         data->powernow_table = powernow_table;
713         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
714                 print_basics(data);
715
716         for (j = 0; j < data->numps; j++)
717                 if ((pst[j].fid == data->currfid) &&
718                     (pst[j].vid == data->currvid))
719                         return 0;
720
721         dprintk("currfid/vid do not match PST, ignoring\n");
722         return 0;
723 }
724
725 /* Find and validate the PSB/PST table in BIOS. */
726 static int find_psb_table(struct powernow_k8_data *data)
727 {
728         struct psb_s *psb;
729         unsigned int i;
730         u32 mvs;
731         u8 maxvid;
732         u32 cpst = 0;
733         u32 thiscpuid;
734
735         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
736                 /* Scan BIOS looking for the signature. */
737                 /* It can not be at ffff0 - it is too big. */
738
739                 psb = phys_to_virt(i);
740                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
741                         continue;
742
743                 dprintk("found PSB header at 0x%p\n", psb);
744
745                 dprintk("table vers: 0x%x\n", psb->tableversion);
746                 if (psb->tableversion != PSB_VERSION_1_4) {
747                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
748                         return -ENODEV;
749                 }
750
751                 dprintk("flags: 0x%x\n", psb->flags1);
752                 if (psb->flags1) {
753                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
754                         return -ENODEV;
755                 }
756
757                 data->vstable = psb->vstable;
758                 dprintk("voltage stabilization time: %d(*20us)\n",
759                                 data->vstable);
760
761                 dprintk("flags2: 0x%x\n", psb->flags2);
762                 data->rvo = psb->flags2 & 3;
763                 data->irt = ((psb->flags2) >> 2) & 3;
764                 mvs = ((psb->flags2) >> 4) & 3;
765                 data->vidmvs = 1 << mvs;
766                 data->batps = ((psb->flags2) >> 6) & 3;
767
768                 dprintk("ramp voltage offset: %d\n", data->rvo);
769                 dprintk("isochronous relief time: %d\n", data->irt);
770                 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
771
772                 dprintk("numpst: 0x%x\n", psb->num_tables);
773                 cpst = psb->num_tables;
774                 if ((psb->cpuid == 0x00000fc0) ||
775                     (psb->cpuid == 0x00000fe0)) {
776                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
777                         if ((thiscpuid == 0x00000fc0) ||
778                             (thiscpuid == 0x00000fe0))
779                                 cpst = 1;
780                 }
781                 if (cpst != 1) {
782                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
783                         return -ENODEV;
784                 }
785
786                 data->plllock = psb->plllocktime;
787                 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
788                 dprintk("maxfid: 0x%x\n", psb->maxfid);
789                 dprintk("maxvid: 0x%x\n", psb->maxvid);
790                 maxvid = psb->maxvid;
791
792                 data->numps = psb->numps;
793                 dprintk("numpstates: 0x%x\n", data->numps);
794                 return fill_powernow_table(data,
795                                 (struct pst_s *)(psb+1), maxvid);
796         }
797         /*
798          * If you see this message, complain to BIOS manufacturer. If
799          * he tells you "we do not support Linux" or some similar
800          * nonsense, remember that Windows 2000 uses the same legacy
801          * mechanism that the old Linux PSB driver uses. Tell them it
802          * is broken with Windows 2000.
803          *
804          * The reference to the AMD documentation is chapter 9 in the
805          * BIOS and Kernel Developer's Guide, which is available on
806          * www.amd.com
807          */
808         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
809         return -ENODEV;
810 }
811
812 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
813                 unsigned int index)
814 {
815         u64 control;
816
817         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
818                 return;
819
820         control = data->acpi_data.states[index].control;
821         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
822         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
823         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
824         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
825         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
826         data->vstable = (control >> VST_SHIFT) & VST_MASK;
827 }
828
829 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
830 {
831         struct cpufreq_frequency_table *powernow_table;
832         int ret_val = -ENODEV;
833         u64 control, status;
834
835         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
836                 dprintk("register performance failed: bad ACPI data\n");
837                 return -EIO;
838         }
839
840         /* verify the data contained in the ACPI structures */
841         if (data->acpi_data.state_count <= 1) {
842                 dprintk("No ACPI P-States\n");
843                 goto err_out;
844         }
845
846         control = data->acpi_data.control_register.space_id;
847         status = data->acpi_data.status_register.space_id;
848
849         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
850             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
851                 dprintk("Invalid control/status registers (%x - %x)\n",
852                         control, status);
853                 goto err_out;
854         }
855
856         /* fill in data->powernow_table */
857         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
858                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
859         if (!powernow_table) {
860                 dprintk("powernow_table memory alloc failure\n");
861                 goto err_out;
862         }
863
864         /* fill in data */
865         data->numps = data->acpi_data.state_count;
866         powernow_k8_acpi_pst_values(data, 0);
867
868         if (cpu_family == CPU_HW_PSTATE)
869                 ret_val = fill_powernow_table_pstate(data, powernow_table);
870         else
871                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
872         if (ret_val)
873                 goto err_out_mem;
874
875         powernow_table[data->acpi_data.state_count].frequency =
876                 CPUFREQ_TABLE_END;
877         powernow_table[data->acpi_data.state_count].index = 0;
878         data->powernow_table = powernow_table;
879
880         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
881                 print_basics(data);
882
883         /* notify BIOS that we exist */
884         acpi_processor_notify_smm(THIS_MODULE);
885
886         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
887                 printk(KERN_ERR PFX
888                                 "unable to alloc powernow_k8_data cpumask\n");
889                 ret_val = -ENOMEM;
890                 goto err_out_mem;
891         }
892
893         return 0;
894
895 err_out_mem:
896         kfree(powernow_table);
897
898 err_out:
899         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
900
901         /* data->acpi_data.state_count informs us at ->exit()
902          * whether ACPI was used */
903         data->acpi_data.state_count = 0;
904
905         return ret_val;
906 }
907
908 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
909                 struct cpufreq_frequency_table *powernow_table)
910 {
911         int i;
912         u32 hi = 0, lo = 0;
913         rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
914         data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
915
916         for (i = 0; i < data->acpi_data.state_count; i++) {
917                 u32 index;
918
919                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
920                 if (index > data->max_hw_pstate) {
921                         printk(KERN_ERR PFX "invalid pstate %d - "
922                                         "bad value %d.\n", i, index);
923                         printk(KERN_ERR PFX "Please report to BIOS "
924                                         "manufacturer\n");
925                         invalidate_entry(powernow_table, i);
926                         continue;
927                 }
928                 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
929                 if (!(hi & HW_PSTATE_VALID_MASK)) {
930                         dprintk("invalid pstate %d, ignoring\n", index);
931                         invalidate_entry(powernow_table, i);
932                         continue;
933                 }
934
935                 powernow_table[i].index = index;
936
937                 /* Frequency may be rounded for these */
938                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
939                                  || boot_cpu_data.x86 == 0x11) {
940                         powernow_table[i].frequency =
941                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
942                 } else
943                         powernow_table[i].frequency =
944                                 data->acpi_data.states[i].core_frequency * 1000;
945         }
946         return 0;
947 }
948
949 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
950                 struct cpufreq_frequency_table *powernow_table)
951 {
952         int i;
953
954         for (i = 0; i < data->acpi_data.state_count; i++) {
955                 u32 fid;
956                 u32 vid;
957                 u32 freq, index;
958                 u64 status, control;
959
960                 if (data->exttype) {
961                         status =  data->acpi_data.states[i].status;
962                         fid = status & EXT_FID_MASK;
963                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
964                 } else {
965                         control =  data->acpi_data.states[i].control;
966                         fid = control & FID_MASK;
967                         vid = (control >> VID_SHIFT) & VID_MASK;
968                 }
969
970                 dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
971
972                 index = fid | (vid<<8);
973                 powernow_table[i].index = index;
974
975                 freq = find_khz_freq_from_fid(fid);
976                 powernow_table[i].frequency = freq;
977
978                 /* verify frequency is OK */
979                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
980                         dprintk("invalid freq %u kHz, ignoring\n", freq);
981                         invalidate_entry(powernow_table, i);
982                         continue;
983                 }
984
985                 /* verify voltage is OK -
986                  * BIOSs are using "off" to indicate invalid */
987                 if (vid == VID_OFF) {
988                         dprintk("invalid vid %u, ignoring\n", vid);
989                         invalidate_entry(powernow_table, i);
990                         continue;
991                 }
992
993                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
994                         printk(KERN_INFO PFX "invalid freq entries "
995                                 "%u kHz vs. %u kHz\n", freq,
996                                 (unsigned int)
997                                 (data->acpi_data.states[i].core_frequency
998                                  * 1000));
999                         invalidate_entry(powernow_table, i);
1000                         continue;
1001                 }
1002         }
1003         return 0;
1004 }
1005
1006 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1007 {
1008         if (data->acpi_data.state_count)
1009                 acpi_processor_unregister_performance(&data->acpi_data,
1010                                 data->cpu);
1011         free_cpumask_var(data->acpi_data.shared_cpu_map);
1012 }
1013
1014 static int get_transition_latency(struct powernow_k8_data *data)
1015 {
1016         int max_latency = 0;
1017         int i;
1018         for (i = 0; i < data->acpi_data.state_count; i++) {
1019                 int cur_latency = data->acpi_data.states[i].transition_latency
1020                         + data->acpi_data.states[i].bus_master_latency;
1021                 if (cur_latency > max_latency)
1022                         max_latency = cur_latency;
1023         }
1024         if (max_latency == 0) {
1025                 /*
1026                  * Fam 11h always returns 0 as transition latency.
1027                  * This is intended and means "very fast". While cpufreq core
1028                  * and governors currently can handle that gracefully, better
1029                  * set it to 1 to avoid problems in the future.
1030                  * For all others it's a BIOS bug.
1031                  */
1032                 if (boot_cpu_data.x86 != 0x11)
1033                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1034                                 "latency\n");
1035                 max_latency = 1;
1036         }
1037         /* value in usecs, needs to be in nanoseconds */
1038         return 1000 * max_latency;
1039 }
1040
1041 /* Take a frequency, and issue the fid/vid transition command */
1042 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1043                 unsigned int index)
1044 {
1045         u32 fid = 0;
1046         u32 vid = 0;
1047         int res, i;
1048         struct cpufreq_freqs freqs;
1049
1050         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1051
1052         /* fid/vid correctness check for k8 */
1053         /* fid are the lower 8 bits of the index we stored into
1054          * the cpufreq frequency table in find_psb_table, vid
1055          * are the upper 8 bits.
1056          */
1057         fid = data->powernow_table[index].index & 0xFF;
1058         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1059
1060         dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1061
1062         if (query_current_values_with_pending_wait(data))
1063                 return 1;
1064
1065         if ((data->currvid == vid) && (data->currfid == fid)) {
1066                 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
1067                         fid, vid);
1068                 return 0;
1069         }
1070
1071         dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1072                 smp_processor_id(), fid, vid);
1073         freqs.old = find_khz_freq_from_fid(data->currfid);
1074         freqs.new = find_khz_freq_from_fid(fid);
1075
1076         for_each_cpu(i, data->available_cores) {
1077                 freqs.cpu = i;
1078                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1079         }
1080
1081         res = transition_fid_vid(data, fid, vid);
1082         freqs.new = find_khz_freq_from_fid(data->currfid);
1083
1084         for_each_cpu(i, data->available_cores) {
1085                 freqs.cpu = i;
1086                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1087         }
1088         return res;
1089 }
1090
1091 /* Take a frequency, and issue the hardware pstate transition command */
1092 static int transition_frequency_pstate(struct powernow_k8_data *data,
1093                 unsigned int index)
1094 {
1095         u32 pstate = 0;
1096         int res, i;
1097         struct cpufreq_freqs freqs;
1098
1099         dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1100
1101         /* get MSR index for hardware pstate transition */
1102         pstate = index & HW_PSTATE_MASK;
1103         if (pstate > data->max_hw_pstate)
1104                 return 0;
1105         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1106                         data->currpstate);
1107         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1108
1109         for_each_cpu(i, data->available_cores) {
1110                 freqs.cpu = i;
1111                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1112         }
1113
1114         res = transition_pstate(data, pstate);
1115         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1116
1117         for_each_cpu(i, data->available_cores) {
1118                 freqs.cpu = i;
1119                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1120         }
1121         return res;
1122 }
1123
1124 /* Driver entry point to switch to the target frequency */
1125 static int powernowk8_target(struct cpufreq_policy *pol,
1126                 unsigned targfreq, unsigned relation)
1127 {
1128         cpumask_var_t oldmask;
1129         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1130         u32 checkfid;
1131         u32 checkvid;
1132         unsigned int newstate;
1133         int ret = -EIO;
1134
1135         if (!data)
1136                 return -EINVAL;
1137
1138         checkfid = data->currfid;
1139         checkvid = data->currvid;
1140
1141         /* only run on specific CPU from here on. */
1142         /* This is poor form: use a workqueue or smp_call_function_single */
1143         if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1144                 return -ENOMEM;
1145
1146         cpumask_copy(oldmask, tsk_cpus_allowed(current));
1147         set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1148
1149         if (smp_processor_id() != pol->cpu) {
1150                 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1151                 goto err_out;
1152         }
1153
1154         if (pending_bit_stuck()) {
1155                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1156                 goto err_out;
1157         }
1158
1159         dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1160                 pol->cpu, targfreq, pol->min, pol->max, relation);
1161
1162         if (query_current_values_with_pending_wait(data))
1163                 goto err_out;
1164
1165         if (cpu_family != CPU_HW_PSTATE) {
1166                 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1167                 data->currfid, data->currvid);
1168
1169                 if ((checkvid != data->currvid) ||
1170                     (checkfid != data->currfid)) {
1171                         printk(KERN_INFO PFX
1172                                 "error - out of sync, fix 0x%x 0x%x, "
1173                                 "vid 0x%x 0x%x\n",
1174                                 checkfid, data->currfid,
1175                                 checkvid, data->currvid);
1176                 }
1177         }
1178
1179         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1180                                 targfreq, relation, &newstate))
1181                 goto err_out;
1182
1183         mutex_lock(&fidvid_mutex);
1184
1185         powernow_k8_acpi_pst_values(data, newstate);
1186
1187         if (cpu_family == CPU_HW_PSTATE)
1188                 ret = transition_frequency_pstate(data, newstate);
1189         else
1190                 ret = transition_frequency_fidvid(data, newstate);
1191         if (ret) {
1192                 printk(KERN_ERR PFX "transition frequency failed\n");
1193                 ret = 1;
1194                 mutex_unlock(&fidvid_mutex);
1195                 goto err_out;
1196         }
1197         mutex_unlock(&fidvid_mutex);
1198
1199         if (cpu_family == CPU_HW_PSTATE)
1200                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1201                                 newstate);
1202         else
1203                 pol->cur = find_khz_freq_from_fid(data->currfid);
1204         ret = 0;
1205
1206 err_out:
1207         set_cpus_allowed_ptr(current, oldmask);
1208         free_cpumask_var(oldmask);
1209         return ret;
1210 }
1211
1212 /* Driver entry point to verify the policy and range of frequencies */
1213 static int powernowk8_verify(struct cpufreq_policy *pol)
1214 {
1215         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1216
1217         if (!data)
1218                 return -EINVAL;
1219
1220         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1221 }
1222
1223 struct init_on_cpu {
1224         struct powernow_k8_data *data;
1225         int rc;
1226 };
1227
1228 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1229 {
1230         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1231
1232         if (pending_bit_stuck()) {
1233                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1234                 init_on_cpu->rc = -ENODEV;
1235                 return;
1236         }
1237
1238         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1239                 init_on_cpu->rc = -ENODEV;
1240                 return;
1241         }
1242
1243         if (cpu_family == CPU_OPTERON)
1244                 fidvid_msr_init();
1245
1246         init_on_cpu->rc = 0;
1247 }
1248
1249 /* per CPU init entry point to the driver */
1250 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1251 {
1252         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1253                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1254                 FW_BUG PFX "Try again with latest BIOS.\n";
1255         struct powernow_k8_data *data;
1256         struct init_on_cpu init_on_cpu;
1257         int rc;
1258         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1259
1260         if (!cpu_online(pol->cpu))
1261                 return -ENODEV;
1262
1263         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1264         if (rc)
1265                 return -ENODEV;
1266
1267         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1268         if (!data) {
1269                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1270                 return -ENOMEM;
1271         }
1272
1273         data->cpu = pol->cpu;
1274         data->currpstate = HW_PSTATE_INVALID;
1275
1276         if (powernow_k8_cpu_init_acpi(data)) {
1277                 /*
1278                  * Use the PSB BIOS structure. This is only availabe on
1279                  * an UP version, and is deprecated by AMD.
1280                  */
1281                 if (num_online_cpus() != 1) {
1282                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1283                         goto err_out;
1284                 }
1285                 if (pol->cpu != 0) {
1286                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1287                                "CPU other than CPU0. Complain to your BIOS "
1288                                "vendor.\n");
1289                         goto err_out;
1290                 }
1291                 rc = find_psb_table(data);
1292                 if (rc)
1293                         goto err_out;
1294
1295                 /* Take a crude guess here.
1296                  * That guess was in microseconds, so multiply with 1000 */
1297                 pol->cpuinfo.transition_latency = (
1298                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1299                          ((1 << data->irt) * 30)) * 1000;
1300         } else /* ACPI _PSS objects available */
1301                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1302
1303         /* only run on specific CPU from here on */
1304         init_on_cpu.data = data;
1305         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1306                                  &init_on_cpu, 1);
1307         rc = init_on_cpu.rc;
1308         if (rc != 0)
1309                 goto err_out_exit_acpi;
1310
1311         if (cpu_family == CPU_HW_PSTATE)
1312                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1313         else
1314                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1315         data->available_cores = pol->cpus;
1316
1317         if (cpu_family == CPU_HW_PSTATE)
1318                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1319                                 data->currpstate);
1320         else
1321                 pol->cur = find_khz_freq_from_fid(data->currfid);
1322         dprintk("policy current frequency %d kHz\n", pol->cur);
1323
1324         /* min/max the cpu is capable of */
1325         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1326                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1327                 powernow_k8_cpu_exit_acpi(data);
1328                 kfree(data->powernow_table);
1329                 kfree(data);
1330                 return -EINVAL;
1331         }
1332
1333         /* Check for APERF/MPERF support in hardware */
1334         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1335                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1336
1337         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1338
1339         if (cpu_family == CPU_HW_PSTATE)
1340                 dprintk("cpu_init done, current pstate 0x%x\n",
1341                                 data->currpstate);
1342         else
1343                 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1344                         data->currfid, data->currvid);
1345
1346         per_cpu(powernow_data, pol->cpu) = data;
1347
1348         return 0;
1349
1350 err_out_exit_acpi:
1351         powernow_k8_cpu_exit_acpi(data);
1352
1353 err_out:
1354         kfree(data);
1355         return -ENODEV;
1356 }
1357
1358 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1359 {
1360         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1361
1362         if (!data)
1363                 return -EINVAL;
1364
1365         powernow_k8_cpu_exit_acpi(data);
1366
1367         cpufreq_frequency_table_put_attr(pol->cpu);
1368
1369         kfree(data->powernow_table);
1370         kfree(data);
1371         per_cpu(powernow_data, pol->cpu) = NULL;
1372
1373         return 0;
1374 }
1375
1376 static void query_values_on_cpu(void *_err)
1377 {
1378         int *err = _err;
1379         struct powernow_k8_data *data = __get_cpu_var(powernow_data);
1380
1381         *err = query_current_values_with_pending_wait(data);
1382 }
1383
1384 static unsigned int powernowk8_get(unsigned int cpu)
1385 {
1386         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1387         unsigned int khz = 0;
1388         int err;
1389
1390         if (!data)
1391                 return 0;
1392
1393         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1394         if (err)
1395                 goto out;
1396
1397         if (cpu_family == CPU_HW_PSTATE)
1398                 khz = find_khz_freq_from_pstate(data->powernow_table,
1399                                                 data->currpstate);
1400         else
1401                 khz = find_khz_freq_from_fid(data->currfid);
1402
1403
1404 out:
1405         return khz;
1406 }
1407
1408 static void _cpb_toggle_msrs(bool t)
1409 {
1410         int cpu;
1411
1412         get_online_cpus();
1413
1414         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1415
1416         for_each_cpu(cpu, cpu_online_mask) {
1417                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1418                 if (t)
1419                         reg->l &= ~BIT(25);
1420                 else
1421                         reg->l |= BIT(25);
1422         }
1423         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1424
1425         put_online_cpus();
1426 }
1427
1428 /*
1429  * Switch on/off core performance boosting.
1430  *
1431  * 0=disable
1432  * 1=enable.
1433  */
1434 static void cpb_toggle(bool t)
1435 {
1436         if (!cpb_capable)
1437                 return;
1438
1439         if (t && !cpb_enabled) {
1440                 cpb_enabled = true;
1441                 _cpb_toggle_msrs(t);
1442                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1443         } else if (!t && cpb_enabled) {
1444                 cpb_enabled = false;
1445                 _cpb_toggle_msrs(t);
1446                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1447         }
1448 }
1449
1450 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1451                                  size_t count)
1452 {
1453         int ret = -EINVAL;
1454         unsigned long val = 0;
1455
1456         ret = strict_strtoul(buf, 10, &val);
1457         if (!ret && (val == 0 || val == 1) && cpb_capable)
1458                 cpb_toggle(val);
1459         else
1460                 return -EINVAL;
1461
1462         return count;
1463 }
1464
1465 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1466 {
1467         return sprintf(buf, "%u\n", cpb_enabled);
1468 }
1469
1470 #define define_one_rw(_name) \
1471 static struct freq_attr _name = \
1472 __ATTR(_name, 0644, show_##_name, store_##_name)
1473
1474 define_one_rw(cpb);
1475
1476 static struct freq_attr *powernow_k8_attr[] = {
1477         &cpufreq_freq_attr_scaling_available_freqs,
1478         &cpb,
1479         NULL,
1480 };
1481
1482 static struct cpufreq_driver cpufreq_amd64_driver = {
1483         .verify         = powernowk8_verify,
1484         .target         = powernowk8_target,
1485         .bios_limit     = acpi_processor_get_bios_limit,
1486         .init           = powernowk8_cpu_init,
1487         .exit           = __devexit_p(powernowk8_cpu_exit),
1488         .get            = powernowk8_get,
1489         .name           = "powernow-k8",
1490         .owner          = THIS_MODULE,
1491         .attr           = powernow_k8_attr,
1492 };
1493
1494 /*
1495  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1496  * cannot block the remaining ones from boosting. On the CPU_UP path we
1497  * simply keep the boost-disable flag in sync with the current global
1498  * state.
1499  */
1500 static int __cpuinit cpb_notify(struct notifier_block *nb, unsigned long action,
1501                                 void *hcpu)
1502 {
1503         unsigned cpu = (long)hcpu;
1504         u32 lo, hi;
1505
1506         switch (action) {
1507         case CPU_UP_PREPARE:
1508         case CPU_UP_PREPARE_FROZEN:
1509
1510                 if (!cpb_enabled) {
1511                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1512                         lo |= BIT(25);
1513                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1514                 }
1515                 break;
1516
1517         case CPU_DOWN_PREPARE:
1518         case CPU_DOWN_PREPARE_FROZEN:
1519                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1520                 lo &= ~BIT(25);
1521                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1522                 break;
1523
1524         default:
1525                 break;
1526         }
1527
1528         return NOTIFY_OK;
1529 }
1530
1531 static struct notifier_block __cpuinitdata cpb_nb = {
1532         .notifier_call          = cpb_notify,
1533 };
1534
1535 /* driver entry point for init */
1536 static int __cpuinit powernowk8_init(void)
1537 {
1538         unsigned int i, supported_cpus = 0, cpu;
1539
1540         for_each_online_cpu(i) {
1541                 int rc;
1542                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1543                 if (rc == 0)
1544                         supported_cpus++;
1545         }
1546
1547         if (supported_cpus != num_online_cpus())
1548                 return -ENODEV;
1549
1550         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1551                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1552
1553         if (boot_cpu_has(X86_FEATURE_CPB)) {
1554
1555                 cpb_capable = true;
1556
1557                 register_cpu_notifier(&cpb_nb);
1558
1559                 msrs = msrs_alloc();
1560                 if (!msrs) {
1561                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1562                         return -ENOMEM;
1563                 }
1564
1565                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1566
1567                 for_each_cpu(cpu, cpu_online_mask) {
1568                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1569                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1570                 }
1571
1572                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1573                         (cpb_enabled ? "on" : "off"));
1574         }
1575
1576         return cpufreq_register_driver(&cpufreq_amd64_driver);
1577 }
1578
1579 /* driver entry point for term */
1580 static void __exit powernowk8_exit(void)
1581 {
1582         dprintk("exit\n");
1583
1584         if (boot_cpu_has(X86_FEATURE_CPB)) {
1585                 msrs_free(msrs);
1586                 msrs = NULL;
1587
1588                 unregister_cpu_notifier(&cpb_nb);
1589         }
1590
1591         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1592 }
1593
1594 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1595                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1596 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1597 MODULE_LICENSE("GPL");
1598
1599 late_initcall(powernowk8_init);
1600 module_exit(powernowk8_exit);