Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/hypervisor.h>
19 #include <asm/processor.h>
20 #include <asm/sections.h>
21 #include <linux/topology.h>
22 #include <linux/cpumask.h>
23 #include <asm/pgtable.h>
24 #include <asm/atomic.h>
25 #include <asm/proto.h>
26 #include <asm/setup.h>
27 #include <asm/apic.h>
28 #include <asm/desc.h>
29 #include <asm/i387.h>
30 #include <asm/mtrr.h>
31 #include <linux/numa.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/mce.h>
35 #include <asm/msr.h>
36 #include <asm/pat.h>
37
38 #ifdef CONFIG_X86_LOCAL_APIC
39 #include <asm/uv/uv.h>
40 #endif
41
42 #include "cpu.h"
43
44 /* all of these masks are initialized in setup_cpu_local_masks() */
45 cpumask_var_t cpu_initialized_mask;
46 cpumask_var_t cpu_callout_mask;
47 cpumask_var_t cpu_callin_mask;
48
49 /* representing cpus for which sibling maps can be computed */
50 cpumask_var_t cpu_sibling_setup_mask;
51
52 /* correctly size the local cpu masks */
53 void __init setup_cpu_local_masks(void)
54 {
55         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
56         alloc_bootmem_cpumask_var(&cpu_callin_mask);
57         alloc_bootmem_cpumask_var(&cpu_callout_mask);
58         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
59 }
60
61 static void __cpuinit default_init(struct cpuinfo_x86 *c)
62 {
63 #ifdef CONFIG_X86_64
64         cpu_detect_cache_sizes(c);
65 #else
66         /* Not much we can do here... */
67         /* Check if at least it has cpuid */
68         if (c->cpuid_level == -1) {
69                 /* No cpuid. It must be an ancient CPU */
70                 if (c->x86 == 4)
71                         strcpy(c->x86_model_id, "486");
72                 else if (c->x86 == 3)
73                         strcpy(c->x86_model_id, "386");
74         }
75 #endif
76 }
77
78 static const struct cpu_dev __cpuinitconst default_cpu = {
79         .c_init         = default_init,
80         .c_vendor       = "Unknown",
81         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
82 };
83
84 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
85
86 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
87 #ifdef CONFIG_X86_64
88         /*
89          * We need valid kernel segments for data and code in long mode too
90          * IRET will check the segment types  kkeil 2000/10/28
91          * Also sysret mandates a special GDT layout
92          *
93          * TLS descriptors are currently at a different place compared to i386.
94          * Hopefully nobody expects them at a fixed place (Wine?)
95          */
96         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
97         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
98         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
99         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
100         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
101         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
102 #else
103         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
104         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
105         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
106         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
107         /*
108          * Segments used for calling PnP BIOS have byte granularity.
109          * They code segments and data segments have fixed 64k limits,
110          * the transfer segment sizes are set at run time.
111          */
112         /* 32-bit code */
113         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
114         /* 16-bit code */
115         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
116         /* 16-bit data */
117         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
118         /* 16-bit data */
119         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
120         /* 16-bit data */
121         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
122         /*
123          * The APM segments have byte granularity and their bases
124          * are set at run time.  All have 64k limits.
125          */
126         /* 32-bit code */
127         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
128         /* 16-bit code */
129         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
130         /* data */
131         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
132
133         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135         GDT_STACK_CANARY_INIT
136 #endif
137 } };
138 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
139
140 static int __init x86_xsave_setup(char *s)
141 {
142         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
143         return 1;
144 }
145 __setup("noxsave", x86_xsave_setup);
146
147 #ifdef CONFIG_X86_32
148 static int cachesize_override __cpuinitdata = -1;
149 static int disable_x86_serial_nr __cpuinitdata = 1;
150
151 static int __init cachesize_setup(char *str)
152 {
153         get_option(&str, &cachesize_override);
154         return 1;
155 }
156 __setup("cachesize=", cachesize_setup);
157
158 static int __init x86_fxsr_setup(char *s)
159 {
160         setup_clear_cpu_cap(X86_FEATURE_FXSR);
161         setup_clear_cpu_cap(X86_FEATURE_XMM);
162         return 1;
163 }
164 __setup("nofxsr", x86_fxsr_setup);
165
166 static int __init x86_sep_setup(char *s)
167 {
168         setup_clear_cpu_cap(X86_FEATURE_SEP);
169         return 1;
170 }
171 __setup("nosep", x86_sep_setup);
172
173 /* Standard macro to see if a specific flag is changeable */
174 static inline int flag_is_changeable_p(u32 flag)
175 {
176         u32 f1, f2;
177
178         /*
179          * Cyrix and IDT cpus allow disabling of CPUID
180          * so the code below may return different results
181          * when it is executed before and after enabling
182          * the CPUID. Add "volatile" to not allow gcc to
183          * optimize the subsequent calls to this function.
184          */
185         asm volatile ("pushfl           \n\t"
186                       "pushfl           \n\t"
187                       "popl %0          \n\t"
188                       "movl %0, %1      \n\t"
189                       "xorl %2, %0      \n\t"
190                       "pushl %0         \n\t"
191                       "popfl            \n\t"
192                       "pushfl           \n\t"
193                       "popl %0          \n\t"
194                       "popfl            \n\t"
195
196                       : "=&r" (f1), "=&r" (f2)
197                       : "ir" (flag));
198
199         return ((f1^f2) & flag) != 0;
200 }
201
202 /* Probe for the CPUID instruction */
203 static int __cpuinit have_cpuid_p(void)
204 {
205         return flag_is_changeable_p(X86_EFLAGS_ID);
206 }
207
208 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
209 {
210         unsigned long lo, hi;
211
212         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
213                 return;
214
215         /* Disable processor serial number: */
216
217         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
218         lo |= 0x200000;
219         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
220
221         printk(KERN_NOTICE "CPU serial number disabled.\n");
222         clear_cpu_cap(c, X86_FEATURE_PN);
223
224         /* Disabling the serial number may affect the cpuid level */
225         c->cpuid_level = cpuid_eax(0);
226 }
227
228 static int __init x86_serial_nr_setup(char *s)
229 {
230         disable_x86_serial_nr = 0;
231         return 1;
232 }
233 __setup("serialnumber", x86_serial_nr_setup);
234 #else
235 static inline int flag_is_changeable_p(u32 flag)
236 {
237         return 1;
238 }
239 /* Probe for the CPUID instruction */
240 static inline int have_cpuid_p(void)
241 {
242         return 1;
243 }
244 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
245 {
246 }
247 #endif
248
249 /*
250  * Some CPU features depend on higher CPUID levels, which may not always
251  * be available due to CPUID level capping or broken virtualization
252  * software.  Add those features to this table to auto-disable them.
253  */
254 struct cpuid_dependent_feature {
255         u32 feature;
256         u32 level;
257 };
258
259 static const struct cpuid_dependent_feature __cpuinitconst
260 cpuid_dependent_features[] = {
261         { X86_FEATURE_MWAIT,            0x00000005 },
262         { X86_FEATURE_DCA,              0x00000009 },
263         { X86_FEATURE_XSAVE,            0x0000000d },
264         { 0, 0 }
265 };
266
267 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
268 {
269         const struct cpuid_dependent_feature *df;
270
271         for (df = cpuid_dependent_features; df->feature; df++) {
272
273                 if (!cpu_has(c, df->feature))
274                         continue;
275                 /*
276                  * Note: cpuid_level is set to -1 if unavailable, but
277                  * extended_extended_level is set to 0 if unavailable
278                  * and the legitimate extended levels are all negative
279                  * when signed; hence the weird messing around with
280                  * signs here...
281                  */
282                 if (!((s32)df->level < 0 ?
283                      (u32)df->level > (u32)c->extended_cpuid_level :
284                      (s32)df->level > (s32)c->cpuid_level))
285                         continue;
286
287                 clear_cpu_cap(c, df->feature);
288                 if (!warn)
289                         continue;
290
291                 printk(KERN_WARNING
292                        "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
293                                 x86_cap_flags[df->feature], df->level);
294         }
295 }
296
297 /*
298  * Naming convention should be: <Name> [(<Codename>)]
299  * This table only is used unless init_<vendor>() below doesn't set it;
300  * in particular, if CPUID levels 0x80000002..4 are supported, this
301  * isn't used
302  */
303
304 /* Look up CPU names by table lookup. */
305 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
306 {
307         const struct cpu_model_info *info;
308
309         if (c->x86_model >= 16)
310                 return NULL;    /* Range check */
311
312         if (!this_cpu)
313                 return NULL;
314
315         info = this_cpu->c_models;
316
317         while (info && info->family) {
318                 if (info->family == c->x86)
319                         return info->model_names[c->x86_model];
320                 info++;
321         }
322         return NULL;            /* Not found */
323 }
324
325 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
326 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
327
328 void load_percpu_segment(int cpu)
329 {
330 #ifdef CONFIG_X86_32
331         loadsegment(fs, __KERNEL_PERCPU);
332 #else
333         loadsegment(gs, 0);
334         wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
335 #endif
336         load_stack_canary_segment();
337 }
338
339 /*
340  * Current gdt points %fs at the "master" per-cpu area: after this,
341  * it's on the real one.
342  */
343 void switch_to_new_gdt(int cpu)
344 {
345         struct desc_ptr gdt_descr;
346
347         gdt_descr.address = (long)get_cpu_gdt_table(cpu);
348         gdt_descr.size = GDT_SIZE - 1;
349         load_gdt(&gdt_descr);
350         /* Reload the per-cpu base */
351
352         load_percpu_segment(cpu);
353 }
354
355 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
356
357 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
358 {
359         unsigned int *v;
360         char *p, *q;
361
362         if (c->extended_cpuid_level < 0x80000004)
363                 return;
364
365         v = (unsigned int *)c->x86_model_id;
366         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
367         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
368         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
369         c->x86_model_id[48] = 0;
370
371         /*
372          * Intel chips right-justify this string for some dumb reason;
373          * undo that brain damage:
374          */
375         p = q = &c->x86_model_id[0];
376         while (*p == ' ')
377                 p++;
378         if (p != q) {
379                 while (*p)
380                         *q++ = *p++;
381                 while (q <= &c->x86_model_id[48])
382                         *q++ = '\0';    /* Zero-pad the rest */
383         }
384 }
385
386 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
387 {
388         unsigned int n, dummy, ebx, ecx, edx, l2size;
389
390         n = c->extended_cpuid_level;
391
392         if (n >= 0x80000005) {
393                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
394                 c->x86_cache_size = (ecx>>24) + (edx>>24);
395 #ifdef CONFIG_X86_64
396                 /* On K8 L1 TLB is inclusive, so don't count it */
397                 c->x86_tlbsize = 0;
398 #endif
399         }
400
401         if (n < 0x80000006)     /* Some chips just has a large L1. */
402                 return;
403
404         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
405         l2size = ecx >> 16;
406
407 #ifdef CONFIG_X86_64
408         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
409 #else
410         /* do processor-specific cache resizing */
411         if (this_cpu->c_size_cache)
412                 l2size = this_cpu->c_size_cache(c, l2size);
413
414         /* Allow user to override all this if necessary. */
415         if (cachesize_override != -1)
416                 l2size = cachesize_override;
417
418         if (l2size == 0)
419                 return;         /* Again, no L2 cache is possible */
420 #endif
421
422         c->x86_cache_size = l2size;
423 }
424
425 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
426 {
427 #ifdef CONFIG_X86_HT
428         u32 eax, ebx, ecx, edx;
429         int index_msb, core_bits;
430
431         if (!cpu_has(c, X86_FEATURE_HT))
432                 return;
433
434         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
435                 goto out;
436
437         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
438                 return;
439
440         cpuid(1, &eax, &ebx, &ecx, &edx);
441
442         smp_num_siblings = (ebx & 0xff0000) >> 16;
443
444         if (smp_num_siblings == 1) {
445                 printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n");
446                 goto out;
447         }
448
449         if (smp_num_siblings <= 1)
450                 goto out;
451
452         if (smp_num_siblings > nr_cpu_ids) {
453                 pr_warning("CPU: Unsupported number of siblings %d",
454                            smp_num_siblings);
455                 smp_num_siblings = 1;
456                 return;
457         }
458
459         index_msb = get_count_order(smp_num_siblings);
460         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
461
462         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
463
464         index_msb = get_count_order(smp_num_siblings);
465
466         core_bits = get_count_order(c->x86_max_cores);
467
468         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
469                                        ((1 << core_bits) - 1);
470
471 out:
472         if ((c->x86_max_cores * smp_num_siblings) > 1) {
473                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
474                        c->phys_proc_id);
475                 printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
476                        c->cpu_core_id);
477         }
478 #endif
479 }
480
481 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
482 {
483         char *v = c->x86_vendor_id;
484         int i;
485
486         for (i = 0; i < X86_VENDOR_NUM; i++) {
487                 if (!cpu_devs[i])
488                         break;
489
490                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
491                     (cpu_devs[i]->c_ident[1] &&
492                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
493
494                         this_cpu = cpu_devs[i];
495                         c->x86_vendor = this_cpu->c_x86_vendor;
496                         return;
497                 }
498         }
499
500         printk_once(KERN_ERR
501                         "CPU: vendor_id '%s' unknown, using generic init.\n" \
502                         "CPU: Your system may be unstable.\n", v);
503
504         c->x86_vendor = X86_VENDOR_UNKNOWN;
505         this_cpu = &default_cpu;
506 }
507
508 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
509 {
510         /* Get vendor name */
511         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
512               (unsigned int *)&c->x86_vendor_id[0],
513               (unsigned int *)&c->x86_vendor_id[8],
514               (unsigned int *)&c->x86_vendor_id[4]);
515
516         c->x86 = 4;
517         /* Intel-defined flags: level 0x00000001 */
518         if (c->cpuid_level >= 0x00000001) {
519                 u32 junk, tfms, cap0, misc;
520
521                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
522                 c->x86 = (tfms >> 8) & 0xf;
523                 c->x86_model = (tfms >> 4) & 0xf;
524                 c->x86_mask = tfms & 0xf;
525
526                 if (c->x86 == 0xf)
527                         c->x86 += (tfms >> 20) & 0xff;
528                 if (c->x86 >= 0x6)
529                         c->x86_model += ((tfms >> 16) & 0xf) << 4;
530
531                 if (cap0 & (1<<19)) {
532                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
533                         c->x86_cache_alignment = c->x86_clflush_size;
534                 }
535         }
536 }
537
538 static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
539 {
540         u32 tfms, xlvl;
541         u32 ebx;
542
543         /* Intel-defined flags: level 0x00000001 */
544         if (c->cpuid_level >= 0x00000001) {
545                 u32 capability, excap;
546
547                 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
548                 c->x86_capability[0] = capability;
549                 c->x86_capability[4] = excap;
550         }
551
552         /* AMD-defined flags: level 0x80000001 */
553         xlvl = cpuid_eax(0x80000000);
554         c->extended_cpuid_level = xlvl;
555
556         if ((xlvl & 0xffff0000) == 0x80000000) {
557                 if (xlvl >= 0x80000001) {
558                         c->x86_capability[1] = cpuid_edx(0x80000001);
559                         c->x86_capability[6] = cpuid_ecx(0x80000001);
560                 }
561         }
562
563         if (c->extended_cpuid_level >= 0x80000008) {
564                 u32 eax = cpuid_eax(0x80000008);
565
566                 c->x86_virt_bits = (eax >> 8) & 0xff;
567                 c->x86_phys_bits = eax & 0xff;
568         }
569 #ifdef CONFIG_X86_32
570         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
571                 c->x86_phys_bits = 36;
572 #endif
573
574         if (c->extended_cpuid_level >= 0x80000007)
575                 c->x86_power = cpuid_edx(0x80000007);
576
577 }
578
579 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
580 {
581 #ifdef CONFIG_X86_32
582         int i;
583
584         /*
585          * First of all, decide if this is a 486 or higher
586          * It's a 486 if we can modify the AC flag
587          */
588         if (flag_is_changeable_p(X86_EFLAGS_AC))
589                 c->x86 = 4;
590         else
591                 c->x86 = 3;
592
593         for (i = 0; i < X86_VENDOR_NUM; i++)
594                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
595                         c->x86_vendor_id[0] = 0;
596                         cpu_devs[i]->c_identify(c);
597                         if (c->x86_vendor_id[0]) {
598                                 get_cpu_vendor(c);
599                                 break;
600                         }
601                 }
602 #endif
603 }
604
605 /*
606  * Do minimum CPU detection early.
607  * Fields really needed: vendor, cpuid_level, family, model, mask,
608  * cache alignment.
609  * The others are not touched to avoid unwanted side effects.
610  *
611  * WARNING: this function is only called on the BP.  Don't add code here
612  * that is supposed to run on all CPUs.
613  */
614 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
615 {
616 #ifdef CONFIG_X86_64
617         c->x86_clflush_size = 64;
618         c->x86_phys_bits = 36;
619         c->x86_virt_bits = 48;
620 #else
621         c->x86_clflush_size = 32;
622         c->x86_phys_bits = 32;
623         c->x86_virt_bits = 32;
624 #endif
625         c->x86_cache_alignment = c->x86_clflush_size;
626
627         memset(&c->x86_capability, 0, sizeof c->x86_capability);
628         c->extended_cpuid_level = 0;
629
630         if (!have_cpuid_p())
631                 identify_cpu_without_cpuid(c);
632
633         /* cyrix could have cpuid enabled via c_identify()*/
634         if (!have_cpuid_p())
635                 return;
636
637         cpu_detect(c);
638
639         get_cpu_vendor(c);
640
641         get_cpu_cap(c);
642
643         if (this_cpu->c_early_init)
644                 this_cpu->c_early_init(c);
645
646 #ifdef CONFIG_SMP
647         c->cpu_index = boot_cpu_id;
648 #endif
649         filter_cpuid_features(c, false);
650 }
651
652 void __init early_cpu_init(void)
653 {
654         const struct cpu_dev *const *cdev;
655         int count = 0;
656
657 #ifdef PROCESSOR_SELECT
658         printk(KERN_INFO "KERNEL supported cpus:\n");
659 #endif
660
661         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
662                 const struct cpu_dev *cpudev = *cdev;
663
664                 if (count >= X86_VENDOR_NUM)
665                         break;
666                 cpu_devs[count] = cpudev;
667                 count++;
668
669 #ifdef PROCESSOR_SELECT
670                 {
671                         unsigned int j;
672
673                         for (j = 0; j < 2; j++) {
674                                 if (!cpudev->c_ident[j])
675                                         continue;
676                                 printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
677                                         cpudev->c_ident[j]);
678                         }
679                 }
680 #endif
681         }
682         early_identify_cpu(&boot_cpu_data);
683 }
684
685 /*
686  * The NOPL instruction is supposed to exist on all CPUs with
687  * family >= 6; unfortunately, that's not true in practice because
688  * of early VIA chips and (more importantly) broken virtualizers that
689  * are not easy to detect.  In the latter case it doesn't even *fail*
690  * reliably, so probing for it doesn't even work.  Disable it completely
691  * unless we can find a reliable way to detect all the broken cases.
692  */
693 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
694 {
695         clear_cpu_cap(c, X86_FEATURE_NOPL);
696 }
697
698 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
699 {
700         c->extended_cpuid_level = 0;
701
702         if (!have_cpuid_p())
703                 identify_cpu_without_cpuid(c);
704
705         /* cyrix could have cpuid enabled via c_identify()*/
706         if (!have_cpuid_p())
707                 return;
708
709         cpu_detect(c);
710
711         get_cpu_vendor(c);
712
713         get_cpu_cap(c);
714
715         if (c->cpuid_level >= 0x00000001) {
716                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
717 #ifdef CONFIG_X86_32
718 # ifdef CONFIG_X86_HT
719                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
720 # else
721                 c->apicid = c->initial_apicid;
722 # endif
723 #endif
724
725 #ifdef CONFIG_X86_HT
726                 c->phys_proc_id = c->initial_apicid;
727 #endif
728         }
729
730         get_model_name(c); /* Default name */
731
732         init_scattered_cpuid_features(c);
733         detect_nopl(c);
734 }
735
736 /*
737  * This does the hard work of actually picking apart the CPU stuff...
738  */
739 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
740 {
741         int i;
742
743         c->loops_per_jiffy = loops_per_jiffy;
744         c->x86_cache_size = -1;
745         c->x86_vendor = X86_VENDOR_UNKNOWN;
746         c->x86_model = c->x86_mask = 0; /* So far unknown... */
747         c->x86_vendor_id[0] = '\0'; /* Unset */
748         c->x86_model_id[0] = '\0';  /* Unset */
749         c->x86_max_cores = 1;
750         c->x86_coreid_bits = 0;
751 #ifdef CONFIG_X86_64
752         c->x86_clflush_size = 64;
753         c->x86_phys_bits = 36;
754         c->x86_virt_bits = 48;
755 #else
756         c->cpuid_level = -1;    /* CPUID not detected */
757         c->x86_clflush_size = 32;
758         c->x86_phys_bits = 32;
759         c->x86_virt_bits = 32;
760 #endif
761         c->x86_cache_alignment = c->x86_clflush_size;
762         memset(&c->x86_capability, 0, sizeof c->x86_capability);
763
764         generic_identify(c);
765
766         if (this_cpu->c_identify)
767                 this_cpu->c_identify(c);
768
769         /* Clear/Set all flags overriden by options, after probe */
770         for (i = 0; i < NCAPINTS; i++) {
771                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
772                 c->x86_capability[i] |= cpu_caps_set[i];
773         }
774
775 #ifdef CONFIG_X86_64
776         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
777 #endif
778
779         /*
780          * Vendor-specific initialization.  In this section we
781          * canonicalize the feature flags, meaning if there are
782          * features a certain CPU supports which CPUID doesn't
783          * tell us, CPUID claiming incorrect flags, or other bugs,
784          * we handle them here.
785          *
786          * At the end of this section, c->x86_capability better
787          * indicate the features this CPU genuinely supports!
788          */
789         if (this_cpu->c_init)
790                 this_cpu->c_init(c);
791
792         /* Disable the PN if appropriate */
793         squash_the_stupid_serial_number(c);
794
795         /*
796          * The vendor-specific functions might have changed features.
797          * Now we do "generic changes."
798          */
799
800         /* Filter out anything that depends on CPUID levels we don't have */
801         filter_cpuid_features(c, true);
802
803         /* If the model name is still unset, do table lookup. */
804         if (!c->x86_model_id[0]) {
805                 const char *p;
806                 p = table_lookup_model(c);
807                 if (p)
808                         strcpy(c->x86_model_id, p);
809                 else
810                         /* Last resort... */
811                         sprintf(c->x86_model_id, "%02x/%02x",
812                                 c->x86, c->x86_model);
813         }
814
815 #ifdef CONFIG_X86_64
816         detect_ht(c);
817 #endif
818
819         init_hypervisor(c);
820
821         /*
822          * Clear/Set all flags overriden by options, need do it
823          * before following smp all cpus cap AND.
824          */
825         for (i = 0; i < NCAPINTS; i++) {
826                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
827                 c->x86_capability[i] |= cpu_caps_set[i];
828         }
829
830         /*
831          * On SMP, boot_cpu_data holds the common feature set between
832          * all CPUs; so make sure that we indicate which features are
833          * common between the CPUs.  The first time this routine gets
834          * executed, c == &boot_cpu_data.
835          */
836         if (c != &boot_cpu_data) {
837                 /* AND the already accumulated flags with these */
838                 for (i = 0; i < NCAPINTS; i++)
839                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
840         }
841
842         /* Init Machine Check Exception if available. */
843         mcheck_cpu_init(c);
844
845         select_idle_routine(c);
846
847 #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
848         numa_add_cpu(smp_processor_id());
849 #endif
850 }
851
852 #ifdef CONFIG_X86_64
853 static void vgetcpu_set_mode(void)
854 {
855         if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
856                 vgetcpu_mode = VGETCPU_RDTSCP;
857         else
858                 vgetcpu_mode = VGETCPU_LSL;
859 }
860 #endif
861
862 void __init identify_boot_cpu(void)
863 {
864         identify_cpu(&boot_cpu_data);
865         init_c1e_mask();
866 #ifdef CONFIG_X86_32
867         sysenter_setup();
868         enable_sep_cpu();
869 #else
870         vgetcpu_set_mode();
871 #endif
872         init_hw_perf_events();
873 }
874
875 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
876 {
877         BUG_ON(c == &boot_cpu_data);
878         identify_cpu(c);
879 #ifdef CONFIG_X86_32
880         enable_sep_cpu();
881 #endif
882         mtrr_ap_init();
883 }
884
885 struct msr_range {
886         unsigned        min;
887         unsigned        max;
888 };
889
890 static const struct msr_range msr_range_array[] __cpuinitconst = {
891         { 0x00000000, 0x00000418},
892         { 0xc0000000, 0xc000040b},
893         { 0xc0010000, 0xc0010142},
894         { 0xc0011000, 0xc001103b},
895 };
896
897 static void __cpuinit print_cpu_msr(void)
898 {
899         unsigned index_min, index_max;
900         unsigned index;
901         u64 val;
902         int i;
903
904         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
905                 index_min = msr_range_array[i].min;
906                 index_max = msr_range_array[i].max;
907
908                 for (index = index_min; index < index_max; index++) {
909                         if (rdmsrl_amd_safe(index, &val))
910                                 continue;
911                         printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
912                 }
913         }
914 }
915
916 static int show_msr __cpuinitdata;
917
918 static __init int setup_show_msr(char *arg)
919 {
920         int num;
921
922         get_option(&arg, &num);
923
924         if (num > 0)
925                 show_msr = num;
926         return 1;
927 }
928 __setup("show_msr=", setup_show_msr);
929
930 static __init int setup_noclflush(char *arg)
931 {
932         setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
933         return 1;
934 }
935 __setup("noclflush", setup_noclflush);
936
937 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
938 {
939         const char *vendor = NULL;
940
941         if (c->x86_vendor < X86_VENDOR_NUM) {
942                 vendor = this_cpu->c_vendor;
943         } else {
944                 if (c->cpuid_level >= 0)
945                         vendor = c->x86_vendor_id;
946         }
947
948         if (vendor && !strstr(c->x86_model_id, vendor))
949                 printk(KERN_CONT "%s ", vendor);
950
951         if (c->x86_model_id[0])
952                 printk(KERN_CONT "%s", c->x86_model_id);
953         else
954                 printk(KERN_CONT "%d86", c->x86);
955
956         if (c->x86_mask || c->cpuid_level >= 0)
957                 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
958         else
959                 printk(KERN_CONT "\n");
960
961 #ifdef CONFIG_SMP
962         if (c->cpu_index < show_msr)
963                 print_cpu_msr();
964 #else
965         if (show_msr)
966                 print_cpu_msr();
967 #endif
968 }
969
970 static __init int setup_disablecpuid(char *arg)
971 {
972         int bit;
973
974         if (get_option(&arg, &bit) && bit < NCAPINTS*32)
975                 setup_clear_cpu_cap(bit);
976         else
977                 return 0;
978
979         return 1;
980 }
981 __setup("clearcpuid=", setup_disablecpuid);
982
983 #ifdef CONFIG_X86_64
984 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
985
986 DEFINE_PER_CPU_FIRST(union irq_stack_union,
987                      irq_stack_union) __aligned(PAGE_SIZE);
988
989 /*
990  * The following four percpu variables are hot.  Align current_task to
991  * cacheline size such that all four fall in the same cacheline.
992  */
993 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
994         &init_task;
995 EXPORT_PER_CPU_SYMBOL(current_task);
996
997 DEFINE_PER_CPU(unsigned long, kernel_stack) =
998         (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
999 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1000
1001 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1002         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1003
1004 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1005
1006 /*
1007  * Special IST stacks which the CPU switches to when it calls
1008  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1009  * limit), all of them are 4K, except the debug stack which
1010  * is 8K.
1011  */
1012 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1013           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1014           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1015 };
1016
1017 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1018         [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1019
1020 /* May not be marked __init: used by software suspend */
1021 void syscall_init(void)
1022 {
1023         /*
1024          * LSTAR and STAR live in a bit strange symbiosis.
1025          * They both write to the same internal register. STAR allows to
1026          * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1027          */
1028         wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1029         wrmsrl(MSR_LSTAR, system_call);
1030         wrmsrl(MSR_CSTAR, ignore_sysret);
1031
1032 #ifdef CONFIG_IA32_EMULATION
1033         syscall32_cpu_init();
1034 #endif
1035
1036         /* Flags to clear on syscall */
1037         wrmsrl(MSR_SYSCALL_MASK,
1038                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
1039 }
1040
1041 unsigned long kernel_eflags;
1042
1043 /*
1044  * Copies of the original ist values from the tss are only accessed during
1045  * debugging, no special alignment required.
1046  */
1047 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1048
1049 #else   /* CONFIG_X86_64 */
1050
1051 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1052 EXPORT_PER_CPU_SYMBOL(current_task);
1053
1054 #ifdef CONFIG_CC_STACKPROTECTOR
1055 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1056 #endif
1057
1058 /* Make sure %fs and %gs are initialized properly in idle threads */
1059 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
1060 {
1061         memset(regs, 0, sizeof(struct pt_regs));
1062         regs->fs = __KERNEL_PERCPU;
1063         regs->gs = __KERNEL_STACK_CANARY;
1064
1065         return regs;
1066 }
1067 #endif  /* CONFIG_X86_64 */
1068
1069 /*
1070  * Clear all 6 debug registers:
1071  */
1072 static void clear_all_debug_regs(void)
1073 {
1074         int i;
1075
1076         for (i = 0; i < 8; i++) {
1077                 /* Ignore db4, db5 */
1078                 if ((i == 4) || (i == 5))
1079                         continue;
1080
1081                 set_debugreg(0, i);
1082         }
1083 }
1084
1085 /*
1086  * cpu_init() initializes state that is per-CPU. Some data is already
1087  * initialized (naturally) in the bootstrap process, such as the GDT
1088  * and IDT. We reload them nevertheless, this function acts as a
1089  * 'CPU state barrier', nothing should get across.
1090  * A lot of state is already set up in PDA init for 64 bit
1091  */
1092 #ifdef CONFIG_X86_64
1093
1094 void __cpuinit cpu_init(void)
1095 {
1096         struct orig_ist *orig_ist;
1097         struct task_struct *me;
1098         struct tss_struct *t;
1099         unsigned long v;
1100         int cpu;
1101         int i;
1102
1103         cpu = stack_smp_processor_id();
1104         t = &per_cpu(init_tss, cpu);
1105         orig_ist = &per_cpu(orig_ist, cpu);
1106
1107 #ifdef CONFIG_NUMA
1108         if (cpu != 0 && percpu_read(node_number) == 0 &&
1109             cpu_to_node(cpu) != NUMA_NO_NODE)
1110                 percpu_write(node_number, cpu_to_node(cpu));
1111 #endif
1112
1113         me = current;
1114
1115         if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1116                 panic("CPU#%d already initialized!\n", cpu);
1117
1118         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1119
1120         clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1121
1122         /*
1123          * Initialize the per-CPU GDT with the boot GDT,
1124          * and set up the GDT descriptor:
1125          */
1126
1127         switch_to_new_gdt(cpu);
1128         loadsegment(fs, 0);
1129
1130         load_idt((const struct desc_ptr *)&idt_descr);
1131
1132         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1133         syscall_init();
1134
1135         wrmsrl(MSR_FS_BASE, 0);
1136         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1137         barrier();
1138
1139         x86_configure_nx();
1140         if (cpu != 0)
1141                 enable_x2apic();
1142
1143         /*
1144          * set up and load the per-CPU TSS
1145          */
1146         if (!orig_ist->ist[0]) {
1147                 char *estacks = per_cpu(exception_stacks, cpu);
1148
1149                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1150                         estacks += exception_stack_sizes[v];
1151                         orig_ist->ist[v] = t->x86_tss.ist[v] =
1152                                         (unsigned long)estacks;
1153                 }
1154         }
1155
1156         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1157
1158         /*
1159          * <= is required because the CPU will access up to
1160          * 8 bits beyond the end of the IO permission bitmap.
1161          */
1162         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1163                 t->io_bitmap[i] = ~0UL;
1164
1165         atomic_inc(&init_mm.mm_count);
1166         me->active_mm = &init_mm;
1167         BUG_ON(me->mm);
1168         enter_lazy_tlb(&init_mm, me);
1169
1170         load_sp0(t, &current->thread);
1171         set_tss_desc(cpu, t);
1172         load_TR_desc();
1173         load_LDT(&init_mm.context);
1174
1175 #ifdef CONFIG_KGDB
1176         /*
1177          * If the kgdb is connected no debug regs should be altered.  This
1178          * is only applicable when KGDB and a KGDB I/O module are built
1179          * into the kernel and you are using early debugging with
1180          * kgdbwait. KGDB will control the kernel HW breakpoint registers.
1181          */
1182         if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
1183                 arch_kgdb_ops.correct_hw_break();
1184         else
1185 #endif
1186                 clear_all_debug_regs();
1187
1188         fpu_init();
1189
1190         raw_local_save_flags(kernel_eflags);
1191
1192         if (is_uv_system())
1193                 uv_cpu_init();
1194 }
1195
1196 #else
1197
1198 void __cpuinit cpu_init(void)
1199 {
1200         int cpu = smp_processor_id();
1201         struct task_struct *curr = current;
1202         struct tss_struct *t = &per_cpu(init_tss, cpu);
1203         struct thread_struct *thread = &curr->thread;
1204
1205         if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1206                 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1207                 for (;;)
1208                         local_irq_enable();
1209         }
1210
1211         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1212
1213         if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1214                 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1215
1216         load_idt(&idt_descr);
1217         switch_to_new_gdt(cpu);
1218
1219         /*
1220          * Set up and load the per-CPU TSS and LDT
1221          */
1222         atomic_inc(&init_mm.mm_count);
1223         curr->active_mm = &init_mm;
1224         BUG_ON(curr->mm);
1225         enter_lazy_tlb(&init_mm, curr);
1226
1227         load_sp0(t, thread);
1228         set_tss_desc(cpu, t);
1229         load_TR_desc();
1230         load_LDT(&init_mm.context);
1231
1232         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1233
1234 #ifdef CONFIG_DOUBLEFAULT
1235         /* Set up doublefault TSS pointer in the GDT */
1236         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1237 #endif
1238
1239         clear_all_debug_regs();
1240
1241         /*
1242          * Force FPU initialization:
1243          */
1244         if (cpu_has_xsave)
1245                 current_thread_info()->status = TS_XSAVE;
1246         else
1247                 current_thread_info()->status = 0;
1248         clear_used_math();
1249         mxcsr_feature_mask_init();
1250
1251         /*
1252          * Boot processor to setup the FP and extended state context info.
1253          */
1254         if (smp_processor_id() == boot_cpu_id)
1255                 init_thread_xstate();
1256
1257         xsave_init();
1258 }
1259 #endif