Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/syscore_ops.h>
23
24 #include <asm/stackprotector.h>
25 #include <asm/perf_event.h>
26 #include <asm/mmu_context.h>
27 #include <asm/archrandom.h>
28 #include <asm/hypervisor.h>
29 #include <asm/processor.h>
30 #include <asm/tlbflush.h>
31 #include <asm/debugreg.h>
32 #include <asm/sections.h>
33 #include <asm/vsyscall.h>
34 #include <linux/topology.h>
35 #include <linux/cpumask.h>
36 #include <asm/pgtable.h>
37 #include <linux/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/setup.h>
40 #include <asm/apic.h>
41 #include <asm/desc.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/mtrr.h>
44 #include <asm/hwcap2.h>
45 #include <linux/numa.h>
46 #include <asm/asm.h>
47 #include <asm/bugs.h>
48 #include <asm/cpu.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/pat.h>
52 #include <asm/microcode.h>
53 #include <asm/microcode_intel.h>
54 #include <asm/intel-family.h>
55 #include <asm/cpu_device_id.h>
56
57 #ifdef CONFIG_X86_LOCAL_APIC
58 #include <asm/uv/uv.h>
59 #endif
60
61 #include "cpu.h"
62
63 u32 elf_hwcap2 __read_mostly;
64
65 /* all of these masks are initialized in setup_cpu_local_masks() */
66 cpumask_var_t cpu_initialized_mask;
67 cpumask_var_t cpu_callout_mask;
68 cpumask_var_t cpu_callin_mask;
69
70 /* representing cpus for which sibling maps can be computed */
71 cpumask_var_t cpu_sibling_setup_mask;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80 /* correctly size the local cpu masks */
81 void __init setup_cpu_local_masks(void)
82 {
83         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84         alloc_bootmem_cpumask_var(&cpu_callin_mask);
85         alloc_bootmem_cpumask_var(&cpu_callout_mask);
86         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87 }
88
89 static void default_init(struct cpuinfo_x86 *c)
90 {
91 #ifdef CONFIG_X86_64
92         cpu_detect_cache_sizes(c);
93 #else
94         /* Not much we can do here... */
95         /* Check if at least it has cpuid */
96         if (c->cpuid_level == -1) {
97                 /* No cpuid. It must be an ancient CPU */
98                 if (c->x86 == 4)
99                         strcpy(c->x86_model_id, "486");
100                 else if (c->x86 == 3)
101                         strcpy(c->x86_model_id, "386");
102         }
103 #endif
104 }
105
106 static const struct cpu_dev default_cpu = {
107         .c_init         = default_init,
108         .c_vendor       = "Unknown",
109         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
110 };
111
112 static const struct cpu_dev *this_cpu = &default_cpu;
113
114 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115 #ifdef CONFIG_X86_64
116         /*
117          * We need valid kernel segments for data and code in long mode too
118          * IRET will check the segment types  kkeil 2000/10/28
119          * Also sysret mandates a special GDT layout
120          *
121          * TLS descriptors are currently at a different place compared to i386.
122          * Hopefully nobody expects them at a fixed place (Wine?)
123          */
124         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130 #else
131         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135         /*
136          * Segments used for calling PnP BIOS have byte granularity.
137          * They code segments and data segments have fixed 64k limits,
138          * the transfer segment sizes are set at run time.
139          */
140         /* 32-bit code */
141         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142         /* 16-bit code */
143         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144         /* 16-bit data */
145         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146         /* 16-bit data */
147         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
148         /* 16-bit data */
149         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
150         /*
151          * The APM segments have byte granularity and their bases
152          * are set at run time.  All have 64k limits.
153          */
154         /* 32-bit code */
155         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156         /* 16-bit code */
157         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158         /* data */
159         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163         GDT_STACK_CANARY_INIT
164 #endif
165 } };
166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
168 static int __init x86_mpx_setup(char *s)
169 {
170         /* require an exact match without trailing characters */
171         if (strlen(s))
172                 return 0;
173
174         /* do not emit a message if the feature is not present */
175         if (!boot_cpu_has(X86_FEATURE_MPX))
176                 return 1;
177
178         setup_clear_cpu_cap(X86_FEATURE_MPX);
179         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180         return 1;
181 }
182 __setup("nompx", x86_mpx_setup);
183
184 #ifdef CONFIG_X86_64
185 static int __init x86_nopcid_setup(char *s)
186 {
187         /* nopcid doesn't accept parameters */
188         if (s)
189                 return -EINVAL;
190
191         /* do not emit a message if the feature is not present */
192         if (!boot_cpu_has(X86_FEATURE_PCID))
193                 return 0;
194
195         setup_clear_cpu_cap(X86_FEATURE_PCID);
196         pr_info("nopcid: PCID feature disabled\n");
197         return 0;
198 }
199 early_param("nopcid", x86_nopcid_setup);
200 #endif
201
202 static int __init x86_noinvpcid_setup(char *s)
203 {
204         /* noinvpcid doesn't accept parameters */
205         if (s)
206                 return -EINVAL;
207
208         /* do not emit a message if the feature is not present */
209         if (!boot_cpu_has(X86_FEATURE_INVPCID))
210                 return 0;
211
212         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213         pr_info("noinvpcid: INVPCID feature disabled\n");
214         return 0;
215 }
216 early_param("noinvpcid", x86_noinvpcid_setup);
217
218 #ifdef CONFIG_X86_32
219 static int cachesize_override = -1;
220 static int disable_x86_serial_nr = 1;
221
222 static int __init cachesize_setup(char *str)
223 {
224         get_option(&str, &cachesize_override);
225         return 1;
226 }
227 __setup("cachesize=", cachesize_setup);
228
229 static int __init x86_sep_setup(char *s)
230 {
231         setup_clear_cpu_cap(X86_FEATURE_SEP);
232         return 1;
233 }
234 __setup("nosep", x86_sep_setup);
235
236 /* Standard macro to see if a specific flag is changeable */
237 static inline int flag_is_changeable_p(u32 flag)
238 {
239         u32 f1, f2;
240
241         /*
242          * Cyrix and IDT cpus allow disabling of CPUID
243          * so the code below may return different results
244          * when it is executed before and after enabling
245          * the CPUID. Add "volatile" to not allow gcc to
246          * optimize the subsequent calls to this function.
247          */
248         asm volatile ("pushfl           \n\t"
249                       "pushfl           \n\t"
250                       "popl %0          \n\t"
251                       "movl %0, %1      \n\t"
252                       "xorl %2, %0      \n\t"
253                       "pushl %0         \n\t"
254                       "popfl            \n\t"
255                       "pushfl           \n\t"
256                       "popl %0          \n\t"
257                       "popfl            \n\t"
258
259                       : "=&r" (f1), "=&r" (f2)
260                       : "ir" (flag));
261
262         return ((f1^f2) & flag) != 0;
263 }
264
265 /* Probe for the CPUID instruction */
266 int have_cpuid_p(void)
267 {
268         return flag_is_changeable_p(X86_EFLAGS_ID);
269 }
270
271 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273         unsigned long lo, hi;
274
275         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276                 return;
277
278         /* Disable processor serial number: */
279
280         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281         lo |= 0x200000;
282         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
284         pr_notice("CPU serial number disabled.\n");
285         clear_cpu_cap(c, X86_FEATURE_PN);
286
287         /* Disabling the serial number may affect the cpuid level */
288         c->cpuid_level = cpuid_eax(0);
289 }
290
291 static int __init x86_serial_nr_setup(char *s)
292 {
293         disable_x86_serial_nr = 0;
294         return 1;
295 }
296 __setup("serialnumber", x86_serial_nr_setup);
297 #else
298 static inline int flag_is_changeable_p(u32 flag)
299 {
300         return 1;
301 }
302 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303 {
304 }
305 #endif
306
307 static __init int setup_disable_smep(char *arg)
308 {
309         setup_clear_cpu_cap(X86_FEATURE_SMEP);
310         /* Check for things that depend on SMEP being enabled: */
311         check_mpx_erratum(&boot_cpu_data);
312         return 1;
313 }
314 __setup("nosmep", setup_disable_smep);
315
316 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317 {
318         if (cpu_has(c, X86_FEATURE_SMEP))
319                 cr4_set_bits(X86_CR4_SMEP);
320 }
321
322 static __init int setup_disable_smap(char *arg)
323 {
324         setup_clear_cpu_cap(X86_FEATURE_SMAP);
325         return 1;
326 }
327 __setup("nosmap", setup_disable_smap);
328
329 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330 {
331         unsigned long eflags = native_save_fl();
332
333         /* This should have been cleared long ago */
334         BUG_ON(eflags & X86_EFLAGS_AC);
335
336         if (cpu_has(c, X86_FEATURE_SMAP)) {
337 #ifdef CONFIG_X86_SMAP
338                 cr4_set_bits(X86_CR4_SMAP);
339 #else
340                 cr4_clear_bits(X86_CR4_SMAP);
341 #endif
342         }
343 }
344
345 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346 {
347         /* Check the boot processor, plus build option for UMIP. */
348         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349                 goto out;
350
351         /* Check the current processor's cpuid bits. */
352         if (!cpu_has(c, X86_FEATURE_UMIP))
353                 goto out;
354
355         cr4_set_bits(X86_CR4_UMIP);
356
357         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358
359         return;
360
361 out:
362         /*
363          * Make sure UMIP is disabled in case it was enabled in a
364          * previous boot (e.g., via kexec).
365          */
366         cr4_clear_bits(X86_CR4_UMIP);
367 }
368
369 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
370 static unsigned long cr4_pinned_bits __ro_after_init;
371
372 void native_write_cr0(unsigned long val)
373 {
374         unsigned long bits_missing = 0;
375
376 set_register:
377         asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
378
379         if (static_branch_likely(&cr_pinning)) {
380                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
381                         bits_missing = X86_CR0_WP;
382                         val |= bits_missing;
383                         goto set_register;
384                 }
385                 /* Warn after we've set the missing bits. */
386                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
387         }
388 }
389 EXPORT_SYMBOL(native_write_cr0);
390
391 void native_write_cr4(unsigned long val)
392 {
393         unsigned long bits_missing = 0;
394
395 set_register:
396         asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
397
398         if (static_branch_likely(&cr_pinning)) {
399                 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
400                         bits_missing = ~val & cr4_pinned_bits;
401                         val |= bits_missing;
402                         goto set_register;
403                 }
404                 /* Warn after we've set the missing bits. */
405                 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
406                           bits_missing);
407         }
408 }
409 EXPORT_SYMBOL(native_write_cr4);
410
411 void cr4_init(void)
412 {
413         unsigned long cr4 = __read_cr4();
414
415         if (boot_cpu_has(X86_FEATURE_PCID))
416                 cr4 |= X86_CR4_PCIDE;
417         if (static_branch_likely(&cr_pinning))
418                 cr4 |= cr4_pinned_bits;
419
420         __write_cr4(cr4);
421
422         /* Initialize cr4 shadow for this CPU. */
423         this_cpu_write(cpu_tlbstate.cr4, cr4);
424 }
425
426 /*
427  * Once CPU feature detection is finished (and boot params have been
428  * parsed), record any of the sensitive CR bits that are set, and
429  * enable CR pinning.
430  */
431 static void __init setup_cr_pinning(void)
432 {
433         unsigned long mask;
434
435         mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
436         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
437         static_key_enable(&cr_pinning.key);
438 }
439
440 /*
441  * Protection Keys are not available in 32-bit mode.
442  */
443 static bool pku_disabled;
444
445 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
446 {
447         struct pkru_state *pk;
448
449         /* check the boot processor, plus compile options for PKU: */
450         if (!cpu_feature_enabled(X86_FEATURE_PKU))
451                 return;
452         /* checks the actual processor's cpuid bits: */
453         if (!cpu_has(c, X86_FEATURE_PKU))
454                 return;
455         if (pku_disabled)
456                 return;
457
458         cr4_set_bits(X86_CR4_PKE);
459         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
460         if (pk)
461                 pk->pkru = init_pkru_value;
462         /*
463          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
464          * cpuid bit to be set.  We need to ensure that we
465          * update that bit in this CPU's "cpu_info".
466          */
467         get_cpu_cap(c);
468 }
469
470 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
471 static __init int setup_disable_pku(char *arg)
472 {
473         /*
474          * Do not clear the X86_FEATURE_PKU bit.  All of the
475          * runtime checks are against OSPKE so clearing the
476          * bit does nothing.
477          *
478          * This way, we will see "pku" in cpuinfo, but not
479          * "ospke", which is exactly what we want.  It shows
480          * that the CPU has PKU, but the OS has not enabled it.
481          * This happens to be exactly how a system would look
482          * if we disabled the config option.
483          */
484         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
485         pku_disabled = true;
486         return 1;
487 }
488 __setup("nopku", setup_disable_pku);
489 #endif /* CONFIG_X86_64 */
490
491 /*
492  * Some CPU features depend on higher CPUID levels, which may not always
493  * be available due to CPUID level capping or broken virtualization
494  * software.  Add those features to this table to auto-disable them.
495  */
496 struct cpuid_dependent_feature {
497         u32 feature;
498         u32 level;
499 };
500
501 static const struct cpuid_dependent_feature
502 cpuid_dependent_features[] = {
503         { X86_FEATURE_MWAIT,            0x00000005 },
504         { X86_FEATURE_DCA,              0x00000009 },
505         { X86_FEATURE_XSAVE,            0x0000000d },
506         { 0, 0 }
507 };
508
509 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
510 {
511         const struct cpuid_dependent_feature *df;
512
513         for (df = cpuid_dependent_features; df->feature; df++) {
514
515                 if (!cpu_has(c, df->feature))
516                         continue;
517                 /*
518                  * Note: cpuid_level is set to -1 if unavailable, but
519                  * extended_extended_level is set to 0 if unavailable
520                  * and the legitimate extended levels are all negative
521                  * when signed; hence the weird messing around with
522                  * signs here...
523                  */
524                 if (!((s32)df->level < 0 ?
525                      (u32)df->level > (u32)c->extended_cpuid_level :
526                      (s32)df->level > (s32)c->cpuid_level))
527                         continue;
528
529                 clear_cpu_cap(c, df->feature);
530                 if (!warn)
531                         continue;
532
533                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
534                         x86_cap_flag(df->feature), df->level);
535         }
536 }
537
538 /*
539  * Naming convention should be: <Name> [(<Codename>)]
540  * This table only is used unless init_<vendor>() below doesn't set it;
541  * in particular, if CPUID levels 0x80000002..4 are supported, this
542  * isn't used
543  */
544
545 /* Look up CPU names by table lookup. */
546 static const char *table_lookup_model(struct cpuinfo_x86 *c)
547 {
548 #ifdef CONFIG_X86_32
549         const struct legacy_cpu_model_info *info;
550
551         if (c->x86_model >= 16)
552                 return NULL;    /* Range check */
553
554         if (!this_cpu)
555                 return NULL;
556
557         info = this_cpu->legacy_models;
558
559         while (info->family) {
560                 if (info->family == c->x86)
561                         return info->model_names[c->x86_model];
562                 info++;
563         }
564 #endif
565         return NULL;            /* Not found */
566 }
567
568 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
569 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
570
571 void load_percpu_segment(int cpu)
572 {
573 #ifdef CONFIG_X86_32
574         loadsegment(fs, __KERNEL_PERCPU);
575 #else
576         __loadsegment_simple(gs, 0);
577         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
578 #endif
579         load_stack_canary_segment();
580 }
581
582 #ifdef CONFIG_X86_32
583 /* The 32-bit entry code needs to find cpu_entry_area. */
584 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
585 #endif
586
587 /* Load the original GDT from the per-cpu structure */
588 void load_direct_gdt(int cpu)
589 {
590         struct desc_ptr gdt_descr;
591
592         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
593         gdt_descr.size = GDT_SIZE - 1;
594         load_gdt(&gdt_descr);
595 }
596 EXPORT_SYMBOL_GPL(load_direct_gdt);
597
598 /* Load a fixmap remapping of the per-cpu GDT */
599 void load_fixmap_gdt(int cpu)
600 {
601         struct desc_ptr gdt_descr;
602
603         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
604         gdt_descr.size = GDT_SIZE - 1;
605         load_gdt(&gdt_descr);
606 }
607 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
608
609 /*
610  * Current gdt points %fs at the "master" per-cpu area: after this,
611  * it's on the real one.
612  */
613 void switch_to_new_gdt(int cpu)
614 {
615         /* Load the original GDT */
616         load_direct_gdt(cpu);
617         /* Reload the per-cpu base */
618         load_percpu_segment(cpu);
619 }
620
621 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
622
623 static void get_model_name(struct cpuinfo_x86 *c)
624 {
625         unsigned int *v;
626         char *p, *q, *s;
627
628         if (c->extended_cpuid_level < 0x80000004)
629                 return;
630
631         v = (unsigned int *)c->x86_model_id;
632         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
633         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
634         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
635         c->x86_model_id[48] = 0;
636
637         /* Trim whitespace */
638         p = q = s = &c->x86_model_id[0];
639
640         while (*p == ' ')
641                 p++;
642
643         while (*p) {
644                 /* Note the last non-whitespace index */
645                 if (!isspace(*p))
646                         s = q;
647
648                 *q++ = *p++;
649         }
650
651         *(s + 1) = '\0';
652 }
653
654 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
655 {
656         unsigned int eax, ebx, ecx, edx;
657
658         c->x86_max_cores = 1;
659         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
660                 return;
661
662         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
663         if (eax & 0x1f)
664                 c->x86_max_cores = (eax >> 26) + 1;
665 }
666
667 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
668 {
669         unsigned int n, dummy, ebx, ecx, edx, l2size;
670
671         n = c->extended_cpuid_level;
672
673         if (n >= 0x80000005) {
674                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
675                 c->x86_cache_size = (ecx>>24) + (edx>>24);
676 #ifdef CONFIG_X86_64
677                 /* On K8 L1 TLB is inclusive, so don't count it */
678                 c->x86_tlbsize = 0;
679 #endif
680         }
681
682         if (n < 0x80000006)     /* Some chips just has a large L1. */
683                 return;
684
685         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
686         l2size = ecx >> 16;
687
688 #ifdef CONFIG_X86_64
689         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
690 #else
691         /* do processor-specific cache resizing */
692         if (this_cpu->legacy_cache_size)
693                 l2size = this_cpu->legacy_cache_size(c, l2size);
694
695         /* Allow user to override all this if necessary. */
696         if (cachesize_override != -1)
697                 l2size = cachesize_override;
698
699         if (l2size == 0)
700                 return;         /* Again, no L2 cache is possible */
701 #endif
702
703         c->x86_cache_size = l2size;
704 }
705
706 u16 __read_mostly tlb_lli_4k[NR_INFO];
707 u16 __read_mostly tlb_lli_2m[NR_INFO];
708 u16 __read_mostly tlb_lli_4m[NR_INFO];
709 u16 __read_mostly tlb_lld_4k[NR_INFO];
710 u16 __read_mostly tlb_lld_2m[NR_INFO];
711 u16 __read_mostly tlb_lld_4m[NR_INFO];
712 u16 __read_mostly tlb_lld_1g[NR_INFO];
713
714 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
715 {
716         if (this_cpu->c_detect_tlb)
717                 this_cpu->c_detect_tlb(c);
718
719         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
720                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
721                 tlb_lli_4m[ENTRIES]);
722
723         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
724                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
725                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
726 }
727
728 int detect_ht_early(struct cpuinfo_x86 *c)
729 {
730 #ifdef CONFIG_SMP
731         u32 eax, ebx, ecx, edx;
732
733         if (!cpu_has(c, X86_FEATURE_HT))
734                 return -1;
735
736         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
737                 return -1;
738
739         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
740                 return -1;
741
742         cpuid(1, &eax, &ebx, &ecx, &edx);
743
744         smp_num_siblings = (ebx & 0xff0000) >> 16;
745         if (smp_num_siblings == 1)
746                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
747 #endif
748         return 0;
749 }
750
751 void detect_ht(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754         int index_msb, core_bits;
755
756         if (detect_ht_early(c) < 0)
757                 return;
758
759         index_msb = get_count_order(smp_num_siblings);
760         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
761
762         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
763
764         index_msb = get_count_order(smp_num_siblings);
765
766         core_bits = get_count_order(c->x86_max_cores);
767
768         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
769                                        ((1 << core_bits) - 1);
770 #endif
771 }
772
773 static void get_cpu_vendor(struct cpuinfo_x86 *c)
774 {
775         char *v = c->x86_vendor_id;
776         int i;
777
778         for (i = 0; i < X86_VENDOR_NUM; i++) {
779                 if (!cpu_devs[i])
780                         break;
781
782                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
783                     (cpu_devs[i]->c_ident[1] &&
784                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
785
786                         this_cpu = cpu_devs[i];
787                         c->x86_vendor = this_cpu->c_x86_vendor;
788                         return;
789                 }
790         }
791
792         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
793                     "CPU: Your system may be unstable.\n", v);
794
795         c->x86_vendor = X86_VENDOR_UNKNOWN;
796         this_cpu = &default_cpu;
797 }
798
799 void cpu_detect(struct cpuinfo_x86 *c)
800 {
801         /* Get vendor name */
802         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
803               (unsigned int *)&c->x86_vendor_id[0],
804               (unsigned int *)&c->x86_vendor_id[8],
805               (unsigned int *)&c->x86_vendor_id[4]);
806
807         c->x86 = 4;
808         /* Intel-defined flags: level 0x00000001 */
809         if (c->cpuid_level >= 0x00000001) {
810                 u32 junk, tfms, cap0, misc;
811
812                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
813                 c->x86          = x86_family(tfms);
814                 c->x86_model    = x86_model(tfms);
815                 c->x86_stepping = x86_stepping(tfms);
816
817                 if (cap0 & (1<<19)) {
818                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
819                         c->x86_cache_alignment = c->x86_clflush_size;
820                 }
821         }
822 }
823
824 static void apply_forced_caps(struct cpuinfo_x86 *c)
825 {
826         int i;
827
828         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
829                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
830                 c->x86_capability[i] |= cpu_caps_set[i];
831         }
832 }
833
834 static void init_speculation_control(struct cpuinfo_x86 *c)
835 {
836         /*
837          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
838          * and they also have a different bit for STIBP support. Also,
839          * a hypervisor might have set the individual AMD bits even on
840          * Intel CPUs, for finer-grained selection of what's available.
841          */
842         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
843                 set_cpu_cap(c, X86_FEATURE_IBRS);
844                 set_cpu_cap(c, X86_FEATURE_IBPB);
845                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
846         }
847
848         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
849                 set_cpu_cap(c, X86_FEATURE_STIBP);
850
851         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
852             cpu_has(c, X86_FEATURE_VIRT_SSBD))
853                 set_cpu_cap(c, X86_FEATURE_SSBD);
854
855         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
856                 set_cpu_cap(c, X86_FEATURE_IBRS);
857                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
858         }
859
860         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
861                 set_cpu_cap(c, X86_FEATURE_IBPB);
862
863         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
864                 set_cpu_cap(c, X86_FEATURE_STIBP);
865                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
866         }
867
868         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
869                 set_cpu_cap(c, X86_FEATURE_SSBD);
870                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
872         }
873 }
874
875 static void init_cqm(struct cpuinfo_x86 *c)
876 {
877         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
878                 c->x86_cache_max_rmid  = -1;
879                 c->x86_cache_occ_scale = -1;
880                 return;
881         }
882
883         /* will be overridden if occupancy monitoring exists */
884         c->x86_cache_max_rmid = cpuid_ebx(0xf);
885
886         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
887             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
888             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
889                 u32 eax, ebx, ecx, edx;
890
891                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
892                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
893
894                 c->x86_cache_max_rmid  = ecx;
895                 c->x86_cache_occ_scale = ebx;
896         }
897 }
898
899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901         u32 eax, ebx, ecx, edx;
902
903         /* Intel-defined flags: level 0x00000001 */
904         if (c->cpuid_level >= 0x00000001) {
905                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907                 c->x86_capability[CPUID_1_ECX] = ecx;
908                 c->x86_capability[CPUID_1_EDX] = edx;
909         }
910
911         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912         if (c->cpuid_level >= 0x00000006)
913                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915         /* Additional Intel-defined flags: level 0x00000007 */
916         if (c->cpuid_level >= 0x00000007) {
917                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918                 c->x86_capability[CPUID_7_0_EBX] = ebx;
919                 c->x86_capability[CPUID_7_ECX] = ecx;
920                 c->x86_capability[CPUID_7_EDX] = edx;
921
922                 /* Check valid sub-leaf index before accessing it */
923                 if (eax >= 1) {
924                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925                         c->x86_capability[CPUID_7_1_EAX] = eax;
926                 }
927         }
928
929         /* Extended state features: level 0x0000000d */
930         if (c->cpuid_level >= 0x0000000d) {
931                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933                 c->x86_capability[CPUID_D_1_EAX] = eax;
934         }
935
936         /* AMD-defined flags: level 0x80000001 */
937         eax = cpuid_eax(0x80000000);
938         c->extended_cpuid_level = eax;
939
940         if ((eax & 0xffff0000) == 0x80000000) {
941                 if (eax >= 0x80000001) {
942                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
946                 }
947         }
948
949         if (c->extended_cpuid_level >= 0x80000007) {
950                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953                 c->x86_power = edx;
954         }
955
956         if (c->extended_cpuid_level >= 0x80000008) {
957                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959         }
960
961         if (c->extended_cpuid_level >= 0x8000000a)
962                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964         init_scattered_cpuid_features(c);
965         init_speculation_control(c);
966         init_cqm(c);
967
968         /*
969          * Clear/Set all flags overridden by options, after probe.
970          * This needs to happen each time we re-probe, which may happen
971          * several times during CPU initialization.
972          */
973         apply_forced_caps(c);
974 }
975
976 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
977 {
978         u32 eax, ebx, ecx, edx;
979
980         if (c->extended_cpuid_level >= 0x80000008) {
981                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
982
983                 c->x86_virt_bits = (eax >> 8) & 0xff;
984                 c->x86_phys_bits = eax & 0xff;
985         }
986 #ifdef CONFIG_X86_32
987         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
988                 c->x86_phys_bits = 36;
989 #endif
990         c->x86_cache_bits = c->x86_phys_bits;
991 }
992
993 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
994 {
995 #ifdef CONFIG_X86_32
996         int i;
997
998         /*
999          * First of all, decide if this is a 486 or higher
1000          * It's a 486 if we can modify the AC flag
1001          */
1002         if (flag_is_changeable_p(X86_EFLAGS_AC))
1003                 c->x86 = 4;
1004         else
1005                 c->x86 = 3;
1006
1007         for (i = 0; i < X86_VENDOR_NUM; i++)
1008                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009                         c->x86_vendor_id[0] = 0;
1010                         cpu_devs[i]->c_identify(c);
1011                         if (c->x86_vendor_id[0]) {
1012                                 get_cpu_vendor(c);
1013                                 break;
1014                         }
1015                 }
1016 #endif
1017 }
1018
1019 #define NO_SPECULATION  BIT(0)
1020 #define NO_MELTDOWN     BIT(1)
1021 #define NO_SSB          BIT(2)
1022 #define NO_L1TF         BIT(3)
1023 #define NO_MDS          BIT(4)
1024 #define MSBDS_ONLY      BIT(5)
1025 #define NO_SWAPGS       BIT(6)
1026
1027 #define VULNWL(_vendor, _family, _model, _whitelist)    \
1028         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1029
1030 #define VULNWL_INTEL(model, whitelist)          \
1031         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1032
1033 #define VULNWL_AMD(family, whitelist)           \
1034         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1035
1036 #define VULNWL_HYGON(family, whitelist)         \
1037         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1038
1039 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1040         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1041         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1042         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1043         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1044
1045         /* Intel Family 6 */
1046         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION),
1047         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION),
1048         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION),
1049         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION),
1050         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION),
1051
1052         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1053         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1054         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1055         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1056         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1057         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1058
1059         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1060
1061         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
1062         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS),
1063
1064         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS),
1065         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS),
1066         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS),
1067
1068         /*
1069          * Technically, swapgs isn't serializing on AMD (despite it previously
1070          * being documented as such in the APM).  But according to AMD, %gs is
1071          * updated non-speculatively, and the issuing of %gs-relative memory
1072          * operands will be blocked until the %gs update completes, which is
1073          * good enough for our purposes.
1074          */
1075
1076         /* AMD Family 0xf - 0x12 */
1077         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1078         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1079         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1080         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
1081
1082         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1083         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
1084         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
1085         {}
1086 };
1087
1088 static bool __init cpu_matches(unsigned long which)
1089 {
1090         const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1091
1092         return m && !!(m->driver_data & which);
1093 }
1094
1095 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1096 {
1097         u64 ia32_cap = 0;
1098
1099         if (cpu_matches(NO_SPECULATION))
1100                 return;
1101
1102         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1103         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1104
1105         if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1106                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1107
1108         if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1109            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1110                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1111
1112         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1113                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1114
1115         if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1116                 setup_force_cpu_bug(X86_BUG_MDS);
1117                 if (cpu_matches(MSBDS_ONLY))
1118                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1119         }
1120
1121         if (!cpu_matches(NO_SWAPGS))
1122                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1123
1124         if (cpu_matches(NO_MELTDOWN))
1125                 return;
1126
1127         /* Rogue Data Cache Load? No! */
1128         if (ia32_cap & ARCH_CAP_RDCL_NO)
1129                 return;
1130
1131         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1132
1133         if (cpu_matches(NO_L1TF))
1134                 return;
1135
1136         setup_force_cpu_bug(X86_BUG_L1TF);
1137 }
1138
1139 /*
1140  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1141  * unfortunately, that's not true in practice because of early VIA
1142  * chips and (more importantly) broken virtualizers that are not easy
1143  * to detect. In the latter case it doesn't even *fail* reliably, so
1144  * probing for it doesn't even work. Disable it completely on 32-bit
1145  * unless we can find a reliable way to detect all the broken cases.
1146  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1147  */
1148 static void detect_nopl(void)
1149 {
1150 #ifdef CONFIG_X86_32
1151         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1152 #else
1153         setup_force_cpu_cap(X86_FEATURE_NOPL);
1154 #endif
1155 }
1156
1157 /*
1158  * Do minimum CPU detection early.
1159  * Fields really needed: vendor, cpuid_level, family, model, mask,
1160  * cache alignment.
1161  * The others are not touched to avoid unwanted side effects.
1162  *
1163  * WARNING: this function is only called on the boot CPU.  Don't add code
1164  * here that is supposed to run on all CPUs.
1165  */
1166 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1167 {
1168 #ifdef CONFIG_X86_64
1169         c->x86_clflush_size = 64;
1170         c->x86_phys_bits = 36;
1171         c->x86_virt_bits = 48;
1172 #else
1173         c->x86_clflush_size = 32;
1174         c->x86_phys_bits = 32;
1175         c->x86_virt_bits = 32;
1176 #endif
1177         c->x86_cache_alignment = c->x86_clflush_size;
1178
1179         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1180         c->extended_cpuid_level = 0;
1181
1182         if (!have_cpuid_p())
1183                 identify_cpu_without_cpuid(c);
1184
1185         /* cyrix could have cpuid enabled via c_identify()*/
1186         if (have_cpuid_p()) {
1187                 cpu_detect(c);
1188                 get_cpu_vendor(c);
1189                 get_cpu_cap(c);
1190                 get_cpu_address_sizes(c);
1191                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1192
1193                 if (this_cpu->c_early_init)
1194                         this_cpu->c_early_init(c);
1195
1196                 c->cpu_index = 0;
1197                 filter_cpuid_features(c, false);
1198
1199                 if (this_cpu->c_bsp_init)
1200                         this_cpu->c_bsp_init(c);
1201         } else {
1202                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1203         }
1204
1205         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1206
1207         cpu_set_bug_bits(c);
1208
1209         fpu__init_system(c);
1210
1211 #ifdef CONFIG_X86_32
1212         /*
1213          * Regardless of whether PCID is enumerated, the SDM says
1214          * that it can't be enabled in 32-bit mode.
1215          */
1216         setup_clear_cpu_cap(X86_FEATURE_PCID);
1217 #endif
1218
1219         /*
1220          * Later in the boot process pgtable_l5_enabled() relies on
1221          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1222          * enabled by this point we need to clear the feature bit to avoid
1223          * false-positives at the later stage.
1224          *
1225          * pgtable_l5_enabled() can be false here for several reasons:
1226          *  - 5-level paging is disabled compile-time;
1227          *  - it's 32-bit kernel;
1228          *  - machine doesn't support 5-level paging;
1229          *  - user specified 'no5lvl' in kernel command line.
1230          */
1231         if (!pgtable_l5_enabled())
1232                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1233
1234         detect_nopl();
1235 }
1236
1237 void __init early_cpu_init(void)
1238 {
1239         const struct cpu_dev *const *cdev;
1240         int count = 0;
1241
1242 #ifdef CONFIG_PROCESSOR_SELECT
1243         pr_info("KERNEL supported cpus:\n");
1244 #endif
1245
1246         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1247                 const struct cpu_dev *cpudev = *cdev;
1248
1249                 if (count >= X86_VENDOR_NUM)
1250                         break;
1251                 cpu_devs[count] = cpudev;
1252                 count++;
1253
1254 #ifdef CONFIG_PROCESSOR_SELECT
1255                 {
1256                         unsigned int j;
1257
1258                         for (j = 0; j < 2; j++) {
1259                                 if (!cpudev->c_ident[j])
1260                                         continue;
1261                                 pr_info("  %s %s\n", cpudev->c_vendor,
1262                                         cpudev->c_ident[j]);
1263                         }
1264                 }
1265 #endif
1266         }
1267         early_identify_cpu(&boot_cpu_data);
1268 }
1269
1270 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1271 {
1272 #ifdef CONFIG_X86_64
1273         /*
1274          * Empirically, writing zero to a segment selector on AMD does
1275          * not clear the base, whereas writing zero to a segment
1276          * selector on Intel does clear the base.  Intel's behavior
1277          * allows slightly faster context switches in the common case
1278          * where GS is unused by the prev and next threads.
1279          *
1280          * Since neither vendor documents this anywhere that I can see,
1281          * detect it directly instead of hardcoding the choice by
1282          * vendor.
1283          *
1284          * I've designated AMD's behavior as the "bug" because it's
1285          * counterintuitive and less friendly.
1286          */
1287
1288         unsigned long old_base, tmp;
1289         rdmsrl(MSR_FS_BASE, old_base);
1290         wrmsrl(MSR_FS_BASE, 1);
1291         loadsegment(fs, 0);
1292         rdmsrl(MSR_FS_BASE, tmp);
1293         if (tmp != 0)
1294                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1295         wrmsrl(MSR_FS_BASE, old_base);
1296 #endif
1297 }
1298
1299 static void generic_identify(struct cpuinfo_x86 *c)
1300 {
1301         c->extended_cpuid_level = 0;
1302
1303         if (!have_cpuid_p())
1304                 identify_cpu_without_cpuid(c);
1305
1306         /* cyrix could have cpuid enabled via c_identify()*/
1307         if (!have_cpuid_p())
1308                 return;
1309
1310         cpu_detect(c);
1311
1312         get_cpu_vendor(c);
1313
1314         get_cpu_cap(c);
1315
1316         get_cpu_address_sizes(c);
1317
1318         if (c->cpuid_level >= 0x00000001) {
1319                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1320 #ifdef CONFIG_X86_32
1321 # ifdef CONFIG_SMP
1322                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1323 # else
1324                 c->apicid = c->initial_apicid;
1325 # endif
1326 #endif
1327                 c->phys_proc_id = c->initial_apicid;
1328         }
1329
1330         get_model_name(c); /* Default name */
1331
1332         detect_null_seg_behavior(c);
1333
1334         /*
1335          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1336          * systems that run Linux at CPL > 0 may or may not have the
1337          * issue, but, even if they have the issue, there's absolutely
1338          * nothing we can do about it because we can't use the real IRET
1339          * instruction.
1340          *
1341          * NB: For the time being, only 32-bit kernels support
1342          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1343          * whether to apply espfix using paravirt hooks.  If any
1344          * non-paravirt system ever shows up that does *not* have the
1345          * ESPFIX issue, we can change this.
1346          */
1347 #ifdef CONFIG_X86_32
1348 # ifdef CONFIG_PARAVIRT_XXL
1349         do {
1350                 extern void native_iret(void);
1351                 if (pv_ops.cpu.iret == native_iret)
1352                         set_cpu_bug(c, X86_BUG_ESPFIX);
1353         } while (0);
1354 # else
1355         set_cpu_bug(c, X86_BUG_ESPFIX);
1356 # endif
1357 #endif
1358 }
1359
1360 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1361 {
1362         /*
1363          * The heavy lifting of max_rmid and cache_occ_scale are handled
1364          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1365          * in case CQM bits really aren't there in this CPU.
1366          */
1367         if (c != &boot_cpu_data) {
1368                 boot_cpu_data.x86_cache_max_rmid =
1369                         min(boot_cpu_data.x86_cache_max_rmid,
1370                             c->x86_cache_max_rmid);
1371         }
1372 }
1373
1374 /*
1375  * Validate that ACPI/mptables have the same information about the
1376  * effective APIC id and update the package map.
1377  */
1378 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1379 {
1380 #ifdef CONFIG_SMP
1381         unsigned int apicid, cpu = smp_processor_id();
1382
1383         apicid = apic->cpu_present_to_apicid(cpu);
1384
1385         if (apicid != c->apicid) {
1386                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1387                        cpu, apicid, c->initial_apicid);
1388         }
1389         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1390         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1391 #else
1392         c->logical_proc_id = 0;
1393 #endif
1394 }
1395
1396 /*
1397  * This does the hard work of actually picking apart the CPU stuff...
1398  */
1399 static void identify_cpu(struct cpuinfo_x86 *c)
1400 {
1401         int i;
1402
1403         c->loops_per_jiffy = loops_per_jiffy;
1404         c->x86_cache_size = 0;
1405         c->x86_vendor = X86_VENDOR_UNKNOWN;
1406         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1407         c->x86_vendor_id[0] = '\0'; /* Unset */
1408         c->x86_model_id[0] = '\0';  /* Unset */
1409         c->x86_max_cores = 1;
1410         c->x86_coreid_bits = 0;
1411         c->cu_id = 0xff;
1412 #ifdef CONFIG_X86_64
1413         c->x86_clflush_size = 64;
1414         c->x86_phys_bits = 36;
1415         c->x86_virt_bits = 48;
1416 #else
1417         c->cpuid_level = -1;    /* CPUID not detected */
1418         c->x86_clflush_size = 32;
1419         c->x86_phys_bits = 32;
1420         c->x86_virt_bits = 32;
1421 #endif
1422         c->x86_cache_alignment = c->x86_clflush_size;
1423         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1424
1425         generic_identify(c);
1426
1427         if (this_cpu->c_identify)
1428                 this_cpu->c_identify(c);
1429
1430         /* Clear/Set all flags overridden by options, after probe */
1431         apply_forced_caps(c);
1432
1433 #ifdef CONFIG_X86_64
1434         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1435 #endif
1436
1437         /*
1438          * Vendor-specific initialization.  In this section we
1439          * canonicalize the feature flags, meaning if there are
1440          * features a certain CPU supports which CPUID doesn't
1441          * tell us, CPUID claiming incorrect flags, or other bugs,
1442          * we handle them here.
1443          *
1444          * At the end of this section, c->x86_capability better
1445          * indicate the features this CPU genuinely supports!
1446          */
1447         if (this_cpu->c_init)
1448                 this_cpu->c_init(c);
1449
1450         /* Disable the PN if appropriate */
1451         squash_the_stupid_serial_number(c);
1452
1453         /* Set up SMEP/SMAP/UMIP */
1454         setup_smep(c);
1455         setup_smap(c);
1456         setup_umip(c);
1457
1458         /*
1459          * The vendor-specific functions might have changed features.
1460          * Now we do "generic changes."
1461          */
1462
1463         /* Filter out anything that depends on CPUID levels we don't have */
1464         filter_cpuid_features(c, true);
1465
1466         /* If the model name is still unset, do table lookup. */
1467         if (!c->x86_model_id[0]) {
1468                 const char *p;
1469                 p = table_lookup_model(c);
1470                 if (p)
1471                         strcpy(c->x86_model_id, p);
1472                 else
1473                         /* Last resort... */
1474                         sprintf(c->x86_model_id, "%02x/%02x",
1475                                 c->x86, c->x86_model);
1476         }
1477
1478 #ifdef CONFIG_X86_64
1479         detect_ht(c);
1480 #endif
1481
1482         x86_init_rdrand(c);
1483         x86_init_cache_qos(c);
1484         setup_pku(c);
1485
1486         /*
1487          * Clear/Set all flags overridden by options, need do it
1488          * before following smp all cpus cap AND.
1489          */
1490         apply_forced_caps(c);
1491
1492         /*
1493          * On SMP, boot_cpu_data holds the common feature set between
1494          * all CPUs; so make sure that we indicate which features are
1495          * common between the CPUs.  The first time this routine gets
1496          * executed, c == &boot_cpu_data.
1497          */
1498         if (c != &boot_cpu_data) {
1499                 /* AND the already accumulated flags with these */
1500                 for (i = 0; i < NCAPINTS; i++)
1501                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1502
1503                 /* OR, i.e. replicate the bug flags */
1504                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1505                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1506         }
1507
1508         /* Init Machine Check Exception if available. */
1509         mcheck_cpu_init(c);
1510
1511         select_idle_routine(c);
1512
1513 #ifdef CONFIG_NUMA
1514         numa_add_cpu(smp_processor_id());
1515 #endif
1516 }
1517
1518 /*
1519  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1520  * on 32-bit kernels:
1521  */
1522 #ifdef CONFIG_X86_32
1523 void enable_sep_cpu(void)
1524 {
1525         struct tss_struct *tss;
1526         int cpu;
1527
1528         if (!boot_cpu_has(X86_FEATURE_SEP))
1529                 return;
1530
1531         cpu = get_cpu();
1532         tss = &per_cpu(cpu_tss_rw, cpu);
1533
1534         /*
1535          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1536          * see the big comment in struct x86_hw_tss's definition.
1537          */
1538
1539         tss->x86_tss.ss1 = __KERNEL_CS;
1540         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1541         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1542         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1543
1544         put_cpu();
1545 }
1546 #endif
1547
1548 void __init identify_boot_cpu(void)
1549 {
1550         identify_cpu(&boot_cpu_data);
1551 #ifdef CONFIG_X86_32
1552         sysenter_setup();
1553         enable_sep_cpu();
1554 #endif
1555         cpu_detect_tlb(&boot_cpu_data);
1556         setup_cr_pinning();
1557 }
1558
1559 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1560 {
1561         BUG_ON(c == &boot_cpu_data);
1562         identify_cpu(c);
1563 #ifdef CONFIG_X86_32
1564         enable_sep_cpu();
1565 #endif
1566         mtrr_ap_init();
1567         validate_apic_and_package_id(c);
1568         x86_spec_ctrl_setup_ap();
1569 }
1570
1571 static __init int setup_noclflush(char *arg)
1572 {
1573         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1574         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1575         return 1;
1576 }
1577 __setup("noclflush", setup_noclflush);
1578
1579 void print_cpu_info(struct cpuinfo_x86 *c)
1580 {
1581         const char *vendor = NULL;
1582
1583         if (c->x86_vendor < X86_VENDOR_NUM) {
1584                 vendor = this_cpu->c_vendor;
1585         } else {
1586                 if (c->cpuid_level >= 0)
1587                         vendor = c->x86_vendor_id;
1588         }
1589
1590         if (vendor && !strstr(c->x86_model_id, vendor))
1591                 pr_cont("%s ", vendor);
1592
1593         if (c->x86_model_id[0])
1594                 pr_cont("%s", c->x86_model_id);
1595         else
1596                 pr_cont("%d86", c->x86);
1597
1598         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1599
1600         if (c->x86_stepping || c->cpuid_level >= 0)
1601                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1602         else
1603                 pr_cont(")\n");
1604 }
1605
1606 /*
1607  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1608  * But we need to keep a dummy __setup around otherwise it would
1609  * show up as an environment variable for init.
1610  */
1611 static __init int setup_clearcpuid(char *arg)
1612 {
1613         return 1;
1614 }
1615 __setup("clearcpuid=", setup_clearcpuid);
1616
1617 #ifdef CONFIG_X86_64
1618 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1619                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1620 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1621
1622 /*
1623  * The following percpu variables are hot.  Align current_task to
1624  * cacheline size such that they fall in the same cacheline.
1625  */
1626 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1627         &init_task;
1628 EXPORT_PER_CPU_SYMBOL(current_task);
1629
1630 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1631 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1632
1633 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1634 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1635
1636 /* May not be marked __init: used by software suspend */
1637 void syscall_init(void)
1638 {
1639         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1640         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1641
1642 #ifdef CONFIG_IA32_EMULATION
1643         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1644         /*
1645          * This only works on Intel CPUs.
1646          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1647          * This does not cause SYSENTER to jump to the wrong location, because
1648          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1649          */
1650         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1651         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1652                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1653         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1654 #else
1655         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1656         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1657         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1658         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1659 #endif
1660
1661         /* Flags to clear on syscall */
1662         wrmsrl(MSR_SYSCALL_MASK,
1663                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1664                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1665 }
1666
1667 DEFINE_PER_CPU(int, debug_stack_usage);
1668 DEFINE_PER_CPU(u32, debug_idt_ctr);
1669
1670 void debug_stack_set_zero(void)
1671 {
1672         this_cpu_inc(debug_idt_ctr);
1673         load_current_idt();
1674 }
1675 NOKPROBE_SYMBOL(debug_stack_set_zero);
1676
1677 void debug_stack_reset(void)
1678 {
1679         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1680                 return;
1681         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1682                 load_current_idt();
1683 }
1684 NOKPROBE_SYMBOL(debug_stack_reset);
1685
1686 #else   /* CONFIG_X86_64 */
1687
1688 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1689 EXPORT_PER_CPU_SYMBOL(current_task);
1690 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1691 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1692
1693 /*
1694  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1695  * the top of the kernel stack.  Use an extra percpu variable to track the
1696  * top of the kernel stack directly.
1697  */
1698 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1699         (unsigned long)&init_thread_union + THREAD_SIZE;
1700 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1701
1702 #ifdef CONFIG_STACKPROTECTOR
1703 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1704 #endif
1705
1706 #endif  /* CONFIG_X86_64 */
1707
1708 /*
1709  * Clear all 6 debug registers:
1710  */
1711 static void clear_all_debug_regs(void)
1712 {
1713         int i;
1714
1715         for (i = 0; i < 8; i++) {
1716                 /* Ignore db4, db5 */
1717                 if ((i == 4) || (i == 5))
1718                         continue;
1719
1720                 set_debugreg(0, i);
1721         }
1722 }
1723
1724 #ifdef CONFIG_KGDB
1725 /*
1726  * Restore debug regs if using kgdbwait and you have a kernel debugger
1727  * connection established.
1728  */
1729 static void dbg_restore_debug_regs(void)
1730 {
1731         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1732                 arch_kgdb_ops.correct_hw_break();
1733 }
1734 #else /* ! CONFIG_KGDB */
1735 #define dbg_restore_debug_regs()
1736 #endif /* ! CONFIG_KGDB */
1737
1738 static void wait_for_master_cpu(int cpu)
1739 {
1740 #ifdef CONFIG_SMP
1741         /*
1742          * wait for ACK from master CPU before continuing
1743          * with AP initialization
1744          */
1745         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1746         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1747                 cpu_relax();
1748 #endif
1749 }
1750
1751 #ifdef CONFIG_X86_64
1752 static void setup_getcpu(int cpu)
1753 {
1754         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1755         struct desc_struct d = { };
1756
1757         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1758                 write_rdtscp_aux(cpudata);
1759
1760         /* Store CPU and node number in limit. */
1761         d.limit0 = cpudata;
1762         d.limit1 = cpudata >> 16;
1763
1764         d.type = 5;             /* RO data, expand down, accessed */
1765         d.dpl = 3;              /* Visible to user code */
1766         d.s = 1;                /* Not a system segment */
1767         d.p = 1;                /* Present */
1768         d.d = 1;                /* 32-bit */
1769
1770         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1771 }
1772 #endif
1773
1774 /*
1775  * cpu_init() initializes state that is per-CPU. Some data is already
1776  * initialized (naturally) in the bootstrap process, such as the GDT
1777  * and IDT. We reload them nevertheless, this function acts as a
1778  * 'CPU state barrier', nothing should get across.
1779  */
1780 #ifdef CONFIG_X86_64
1781
1782 void cpu_init(void)
1783 {
1784         int cpu = raw_smp_processor_id();
1785         struct task_struct *me;
1786         struct tss_struct *t;
1787         int i;
1788
1789         wait_for_master_cpu(cpu);
1790
1791         if (cpu)
1792                 load_ucode_ap();
1793
1794         t = &per_cpu(cpu_tss_rw, cpu);
1795
1796 #ifdef CONFIG_NUMA
1797         if (this_cpu_read(numa_node) == 0 &&
1798             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1799                 set_numa_node(early_cpu_to_node(cpu));
1800 #endif
1801         setup_getcpu(cpu);
1802
1803         me = current;
1804
1805         pr_debug("Initializing CPU#%d\n", cpu);
1806
1807         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1808
1809         /*
1810          * Initialize the per-CPU GDT with the boot GDT,
1811          * and set up the GDT descriptor:
1812          */
1813
1814         switch_to_new_gdt(cpu);
1815         loadsegment(fs, 0);
1816
1817         load_current_idt();
1818
1819         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1820         syscall_init();
1821
1822         wrmsrl(MSR_FS_BASE, 0);
1823         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1824         barrier();
1825
1826         x86_configure_nx();
1827         x2apic_setup();
1828
1829         /*
1830          * set up and load the per-CPU TSS
1831          */
1832         if (!t->x86_tss.ist[0]) {
1833                 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1834                 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1835                 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1836                 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1837         }
1838
1839         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1840
1841         /*
1842          * <= is required because the CPU will access up to
1843          * 8 bits beyond the end of the IO permission bitmap.
1844          */
1845         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1846                 t->io_bitmap[i] = ~0UL;
1847
1848         mmgrab(&init_mm);
1849         me->active_mm = &init_mm;
1850         BUG_ON(me->mm);
1851         initialize_tlbstate_and_flush();
1852         enter_lazy_tlb(&init_mm, me);
1853
1854         /*
1855          * Initialize the TSS.  sp0 points to the entry trampoline stack
1856          * regardless of what task is running.
1857          */
1858         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1859         load_TR_desc();
1860         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1861
1862         load_mm_ldt(&init_mm);
1863
1864         clear_all_debug_regs();
1865         dbg_restore_debug_regs();
1866
1867         fpu__init_cpu();
1868
1869         if (is_uv_system())
1870                 uv_cpu_init();
1871
1872         load_fixmap_gdt(cpu);
1873 }
1874
1875 #else
1876
1877 void cpu_init(void)
1878 {
1879         int cpu = smp_processor_id();
1880         struct task_struct *curr = current;
1881         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1882
1883         wait_for_master_cpu(cpu);
1884
1885         show_ucode_info_early();
1886
1887         pr_info("Initializing CPU#%d\n", cpu);
1888
1889         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1890             boot_cpu_has(X86_FEATURE_TSC) ||
1891             boot_cpu_has(X86_FEATURE_DE))
1892                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1893
1894         load_current_idt();
1895         switch_to_new_gdt(cpu);
1896
1897         /*
1898          * Set up and load the per-CPU TSS and LDT
1899          */
1900         mmgrab(&init_mm);
1901         curr->active_mm = &init_mm;
1902         BUG_ON(curr->mm);
1903         initialize_tlbstate_and_flush();
1904         enter_lazy_tlb(&init_mm, curr);
1905
1906         /*
1907          * Initialize the TSS.  sp0 points to the entry trampoline stack
1908          * regardless of what task is running.
1909          */
1910         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1911         load_TR_desc();
1912         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1913
1914         load_mm_ldt(&init_mm);
1915
1916         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1917
1918 #ifdef CONFIG_DOUBLEFAULT
1919         /* Set up doublefault TSS pointer in the GDT */
1920         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1921 #endif
1922
1923         clear_all_debug_regs();
1924         dbg_restore_debug_regs();
1925
1926         fpu__init_cpu();
1927
1928         load_fixmap_gdt(cpu);
1929 }
1930 #endif
1931
1932 /*
1933  * The microcode loader calls this upon late microcode load to recheck features,
1934  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1935  * hotplug lock.
1936  */
1937 void microcode_check(void)
1938 {
1939         struct cpuinfo_x86 info;
1940
1941         perf_check_microcode();
1942
1943         /* Reload CPUID max function as it might've changed. */
1944         info.cpuid_level = cpuid_eax(0);
1945
1946         /*
1947          * Copy all capability leafs to pick up the synthetic ones so that
1948          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1949          * get overwritten in get_cpu_cap().
1950          */
1951         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1952
1953         get_cpu_cap(&info);
1954
1955         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1956                 return;
1957
1958         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1959         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1960 }
1961
1962 /*
1963  * Invoked from core CPU hotplug code after hotplug operations
1964  */
1965 void arch_smt_update(void)
1966 {
1967         /* Handle the speculative execution misfeatures */
1968         cpu_bugs_smt_update();
1969         /* Check whether IPI broadcasting can be enabled */
1970         apic_smt_update();
1971 }