Merge branch 'akpm' (patches from Andrew Morton)
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/debugreg.h>
23 #include <asm/sections.h>
24 #include <asm/vsyscall.h>
25 #include <linux/topology.h>
26 #include <linux/cpumask.h>
27 #include <asm/pgtable.h>
28 #include <linux/atomic.h>
29 #include <asm/proto.h>
30 #include <asm/setup.h>
31 #include <asm/apic.h>
32 #include <asm/desc.h>
33 #include <asm/i387.h>
34 #include <asm/fpu-internal.h>
35 #include <asm/mtrr.h>
36 #include <linux/numa.h>
37 #include <asm/asm.h>
38 #include <asm/cpu.h>
39 #include <asm/mce.h>
40 #include <asm/msr.h>
41 #include <asm/pat.h>
42 #include <asm/microcode.h>
43 #include <asm/microcode_intel.h>
44
45 #ifdef CONFIG_X86_LOCAL_APIC
46 #include <asm/uv/uv.h>
47 #endif
48
49 #include "cpu.h"
50
51 /* all of these masks are initialized in setup_cpu_local_masks() */
52 cpumask_var_t cpu_initialized_mask;
53 cpumask_var_t cpu_callout_mask;
54 cpumask_var_t cpu_callin_mask;
55
56 /* representing cpus for which sibling maps can be computed */
57 cpumask_var_t cpu_sibling_setup_mask;
58
59 /* correctly size the local cpu masks */
60 void __init setup_cpu_local_masks(void)
61 {
62         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
63         alloc_bootmem_cpumask_var(&cpu_callin_mask);
64         alloc_bootmem_cpumask_var(&cpu_callout_mask);
65         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
66 }
67
68 static void default_init(struct cpuinfo_x86 *c)
69 {
70 #ifdef CONFIG_X86_64
71         cpu_detect_cache_sizes(c);
72 #else
73         /* Not much we can do here... */
74         /* Check if at least it has cpuid */
75         if (c->cpuid_level == -1) {
76                 /* No cpuid. It must be an ancient CPU */
77                 if (c->x86 == 4)
78                         strcpy(c->x86_model_id, "486");
79                 else if (c->x86 == 3)
80                         strcpy(c->x86_model_id, "386");
81         }
82 #endif
83 }
84
85 static const struct cpu_dev default_cpu = {
86         .c_init         = default_init,
87         .c_vendor       = "Unknown",
88         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
89 };
90
91 static const struct cpu_dev *this_cpu = &default_cpu;
92
93 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
94 #ifdef CONFIG_X86_64
95         /*
96          * We need valid kernel segments for data and code in long mode too
97          * IRET will check the segment types  kkeil 2000/10/28
98          * Also sysret mandates a special GDT layout
99          *
100          * TLS descriptors are currently at a different place compared to i386.
101          * Hopefully nobody expects them at a fixed place (Wine?)
102          */
103         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
104         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
105         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
106         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
107         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
108         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
109 #else
110         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
111         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
112         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
113         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
114         /*
115          * Segments used for calling PnP BIOS have byte granularity.
116          * They code segments and data segments have fixed 64k limits,
117          * the transfer segment sizes are set at run time.
118          */
119         /* 32-bit code */
120         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
121         /* 16-bit code */
122         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
123         /* 16-bit data */
124         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
125         /* 16-bit data */
126         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
127         /* 16-bit data */
128         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
129         /*
130          * The APM segments have byte granularity and their bases
131          * are set at run time.  All have 64k limits.
132          */
133         /* 32-bit code */
134         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
135         /* 16-bit code */
136         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
137         /* data */
138         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
139
140         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
141         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142         GDT_STACK_CANARY_INIT
143 #endif
144 } };
145 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
146
147 static int __init x86_xsave_setup(char *s)
148 {
149         setup_clear_cpu_cap(X86_FEATURE_XSAVE);
150         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
151         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
152         setup_clear_cpu_cap(X86_FEATURE_AVX);
153         setup_clear_cpu_cap(X86_FEATURE_AVX2);
154         return 1;
155 }
156 __setup("noxsave", x86_xsave_setup);
157
158 static int __init x86_xsaveopt_setup(char *s)
159 {
160         setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
161         return 1;
162 }
163 __setup("noxsaveopt", x86_xsaveopt_setup);
164
165 static int __init x86_xsaves_setup(char *s)
166 {
167         setup_clear_cpu_cap(X86_FEATURE_XSAVES);
168         return 1;
169 }
170 __setup("noxsaves", x86_xsaves_setup);
171
172 #ifdef CONFIG_X86_32
173 static int cachesize_override = -1;
174 static int disable_x86_serial_nr = 1;
175
176 static int __init cachesize_setup(char *str)
177 {
178         get_option(&str, &cachesize_override);
179         return 1;
180 }
181 __setup("cachesize=", cachesize_setup);
182
183 static int __init x86_fxsr_setup(char *s)
184 {
185         setup_clear_cpu_cap(X86_FEATURE_FXSR);
186         setup_clear_cpu_cap(X86_FEATURE_XMM);
187         return 1;
188 }
189 __setup("nofxsr", x86_fxsr_setup);
190
191 static int __init x86_sep_setup(char *s)
192 {
193         setup_clear_cpu_cap(X86_FEATURE_SEP);
194         return 1;
195 }
196 __setup("nosep", x86_sep_setup);
197
198 /* Standard macro to see if a specific flag is changeable */
199 static inline int flag_is_changeable_p(u32 flag)
200 {
201         u32 f1, f2;
202
203         /*
204          * Cyrix and IDT cpus allow disabling of CPUID
205          * so the code below may return different results
206          * when it is executed before and after enabling
207          * the CPUID. Add "volatile" to not allow gcc to
208          * optimize the subsequent calls to this function.
209          */
210         asm volatile ("pushfl           \n\t"
211                       "pushfl           \n\t"
212                       "popl %0          \n\t"
213                       "movl %0, %1      \n\t"
214                       "xorl %2, %0      \n\t"
215                       "pushl %0         \n\t"
216                       "popfl            \n\t"
217                       "pushfl           \n\t"
218                       "popl %0          \n\t"
219                       "popfl            \n\t"
220
221                       : "=&r" (f1), "=&r" (f2)
222                       : "ir" (flag));
223
224         return ((f1^f2) & flag) != 0;
225 }
226
227 /* Probe for the CPUID instruction */
228 int have_cpuid_p(void)
229 {
230         return flag_is_changeable_p(X86_EFLAGS_ID);
231 }
232
233 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
234 {
235         unsigned long lo, hi;
236
237         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
238                 return;
239
240         /* Disable processor serial number: */
241
242         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
243         lo |= 0x200000;
244         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245
246         printk(KERN_NOTICE "CPU serial number disabled.\n");
247         clear_cpu_cap(c, X86_FEATURE_PN);
248
249         /* Disabling the serial number may affect the cpuid level */
250         c->cpuid_level = cpuid_eax(0);
251 }
252
253 static int __init x86_serial_nr_setup(char *s)
254 {
255         disable_x86_serial_nr = 0;
256         return 1;
257 }
258 __setup("serialnumber", x86_serial_nr_setup);
259 #else
260 static inline int flag_is_changeable_p(u32 flag)
261 {
262         return 1;
263 }
264 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
265 {
266 }
267 #endif
268
269 static __init int setup_disable_smep(char *arg)
270 {
271         setup_clear_cpu_cap(X86_FEATURE_SMEP);
272         return 1;
273 }
274 __setup("nosmep", setup_disable_smep);
275
276 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
277 {
278         if (cpu_has(c, X86_FEATURE_SMEP))
279                 set_in_cr4(X86_CR4_SMEP);
280 }
281
282 static __init int setup_disable_smap(char *arg)
283 {
284         setup_clear_cpu_cap(X86_FEATURE_SMAP);
285         return 1;
286 }
287 __setup("nosmap", setup_disable_smap);
288
289 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
290 {
291         unsigned long eflags;
292
293         /* This should have been cleared long ago */
294         raw_local_save_flags(eflags);
295         BUG_ON(eflags & X86_EFLAGS_AC);
296
297         if (cpu_has(c, X86_FEATURE_SMAP)) {
298 #ifdef CONFIG_X86_SMAP
299                 set_in_cr4(X86_CR4_SMAP);
300 #else
301                 clear_in_cr4(X86_CR4_SMAP);
302 #endif
303         }
304 }
305
306 /*
307  * Some CPU features depend on higher CPUID levels, which may not always
308  * be available due to CPUID level capping or broken virtualization
309  * software.  Add those features to this table to auto-disable them.
310  */
311 struct cpuid_dependent_feature {
312         u32 feature;
313         u32 level;
314 };
315
316 static const struct cpuid_dependent_feature
317 cpuid_dependent_features[] = {
318         { X86_FEATURE_MWAIT,            0x00000005 },
319         { X86_FEATURE_DCA,              0x00000009 },
320         { X86_FEATURE_XSAVE,            0x0000000d },
321         { 0, 0 }
322 };
323
324 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
325 {
326         const struct cpuid_dependent_feature *df;
327
328         for (df = cpuid_dependent_features; df->feature; df++) {
329
330                 if (!cpu_has(c, df->feature))
331                         continue;
332                 /*
333                  * Note: cpuid_level is set to -1 if unavailable, but
334                  * extended_extended_level is set to 0 if unavailable
335                  * and the legitimate extended levels are all negative
336                  * when signed; hence the weird messing around with
337                  * signs here...
338                  */
339                 if (!((s32)df->level < 0 ?
340                      (u32)df->level > (u32)c->extended_cpuid_level :
341                      (s32)df->level > (s32)c->cpuid_level))
342                         continue;
343
344                 clear_cpu_cap(c, df->feature);
345                 if (!warn)
346                         continue;
347
348                 printk(KERN_WARNING
349                        "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
350                                 x86_cap_flag(df->feature), df->level);
351         }
352 }
353
354 /*
355  * Naming convention should be: <Name> [(<Codename>)]
356  * This table only is used unless init_<vendor>() below doesn't set it;
357  * in particular, if CPUID levels 0x80000002..4 are supported, this
358  * isn't used
359  */
360
361 /* Look up CPU names by table lookup. */
362 static const char *table_lookup_model(struct cpuinfo_x86 *c)
363 {
364 #ifdef CONFIG_X86_32
365         const struct legacy_cpu_model_info *info;
366
367         if (c->x86_model >= 16)
368                 return NULL;    /* Range check */
369
370         if (!this_cpu)
371                 return NULL;
372
373         info = this_cpu->legacy_models;
374
375         while (info->family) {
376                 if (info->family == c->x86)
377                         return info->model_names[c->x86_model];
378                 info++;
379         }
380 #endif
381         return NULL;            /* Not found */
382 }
383
384 __u32 cpu_caps_cleared[NCAPINTS];
385 __u32 cpu_caps_set[NCAPINTS];
386
387 void load_percpu_segment(int cpu)
388 {
389 #ifdef CONFIG_X86_32
390         loadsegment(fs, __KERNEL_PERCPU);
391 #else
392         loadsegment(gs, 0);
393         wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
394 #endif
395         load_stack_canary_segment();
396 }
397
398 /*
399  * Current gdt points %fs at the "master" per-cpu area: after this,
400  * it's on the real one.
401  */
402 void switch_to_new_gdt(int cpu)
403 {
404         struct desc_ptr gdt_descr;
405
406         gdt_descr.address = (long)get_cpu_gdt_table(cpu);
407         gdt_descr.size = GDT_SIZE - 1;
408         load_gdt(&gdt_descr);
409         /* Reload the per-cpu base */
410
411         load_percpu_segment(cpu);
412 }
413
414 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
415
416 static void get_model_name(struct cpuinfo_x86 *c)
417 {
418         unsigned int *v;
419         char *p, *q;
420
421         if (c->extended_cpuid_level < 0x80000004)
422                 return;
423
424         v = (unsigned int *)c->x86_model_id;
425         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
426         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
427         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
428         c->x86_model_id[48] = 0;
429
430         /*
431          * Intel chips right-justify this string for some dumb reason;
432          * undo that brain damage:
433          */
434         p = q = &c->x86_model_id[0];
435         while (*p == ' ')
436                 p++;
437         if (p != q) {
438                 while (*p)
439                         *q++ = *p++;
440                 while (q <= &c->x86_model_id[48])
441                         *q++ = '\0';    /* Zero-pad the rest */
442         }
443 }
444
445 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
446 {
447         unsigned int n, dummy, ebx, ecx, edx, l2size;
448
449         n = c->extended_cpuid_level;
450
451         if (n >= 0x80000005) {
452                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
453                 c->x86_cache_size = (ecx>>24) + (edx>>24);
454 #ifdef CONFIG_X86_64
455                 /* On K8 L1 TLB is inclusive, so don't count it */
456                 c->x86_tlbsize = 0;
457 #endif
458         }
459
460         if (n < 0x80000006)     /* Some chips just has a large L1. */
461                 return;
462
463         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
464         l2size = ecx >> 16;
465
466 #ifdef CONFIG_X86_64
467         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
468 #else
469         /* do processor-specific cache resizing */
470         if (this_cpu->legacy_cache_size)
471                 l2size = this_cpu->legacy_cache_size(c, l2size);
472
473         /* Allow user to override all this if necessary. */
474         if (cachesize_override != -1)
475                 l2size = cachesize_override;
476
477         if (l2size == 0)
478                 return;         /* Again, no L2 cache is possible */
479 #endif
480
481         c->x86_cache_size = l2size;
482 }
483
484 u16 __read_mostly tlb_lli_4k[NR_INFO];
485 u16 __read_mostly tlb_lli_2m[NR_INFO];
486 u16 __read_mostly tlb_lli_4m[NR_INFO];
487 u16 __read_mostly tlb_lld_4k[NR_INFO];
488 u16 __read_mostly tlb_lld_2m[NR_INFO];
489 u16 __read_mostly tlb_lld_4m[NR_INFO];
490 u16 __read_mostly tlb_lld_1g[NR_INFO];
491
492 void cpu_detect_tlb(struct cpuinfo_x86 *c)
493 {
494         if (this_cpu->c_detect_tlb)
495                 this_cpu->c_detect_tlb(c);
496
497         printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n"
498                 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
499                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
500                 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
501                 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
502                 tlb_lld_1g[ENTRIES]);
503 }
504
505 void detect_ht(struct cpuinfo_x86 *c)
506 {
507 #ifdef CONFIG_X86_HT
508         u32 eax, ebx, ecx, edx;
509         int index_msb, core_bits;
510         static bool printed;
511
512         if (!cpu_has(c, X86_FEATURE_HT))
513                 return;
514
515         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
516                 goto out;
517
518         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
519                 return;
520
521         cpuid(1, &eax, &ebx, &ecx, &edx);
522
523         smp_num_siblings = (ebx & 0xff0000) >> 16;
524
525         if (smp_num_siblings == 1) {
526                 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
527                 goto out;
528         }
529
530         if (smp_num_siblings <= 1)
531                 goto out;
532
533         index_msb = get_count_order(smp_num_siblings);
534         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
535
536         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
537
538         index_msb = get_count_order(smp_num_siblings);
539
540         core_bits = get_count_order(c->x86_max_cores);
541
542         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
543                                        ((1 << core_bits) - 1);
544
545 out:
546         if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
547                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
548                        c->phys_proc_id);
549                 printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
550                        c->cpu_core_id);
551                 printed = 1;
552         }
553 #endif
554 }
555
556 static void get_cpu_vendor(struct cpuinfo_x86 *c)
557 {
558         char *v = c->x86_vendor_id;
559         int i;
560
561         for (i = 0; i < X86_VENDOR_NUM; i++) {
562                 if (!cpu_devs[i])
563                         break;
564
565                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
566                     (cpu_devs[i]->c_ident[1] &&
567                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
568
569                         this_cpu = cpu_devs[i];
570                         c->x86_vendor = this_cpu->c_x86_vendor;
571                         return;
572                 }
573         }
574
575         printk_once(KERN_ERR
576                         "CPU: vendor_id '%s' unknown, using generic init.\n" \
577                         "CPU: Your system may be unstable.\n", v);
578
579         c->x86_vendor = X86_VENDOR_UNKNOWN;
580         this_cpu = &default_cpu;
581 }
582
583 void cpu_detect(struct cpuinfo_x86 *c)
584 {
585         /* Get vendor name */
586         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
587               (unsigned int *)&c->x86_vendor_id[0],
588               (unsigned int *)&c->x86_vendor_id[8],
589               (unsigned int *)&c->x86_vendor_id[4]);
590
591         c->x86 = 4;
592         /* Intel-defined flags: level 0x00000001 */
593         if (c->cpuid_level >= 0x00000001) {
594                 u32 junk, tfms, cap0, misc;
595
596                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
597                 c->x86 = (tfms >> 8) & 0xf;
598                 c->x86_model = (tfms >> 4) & 0xf;
599                 c->x86_mask = tfms & 0xf;
600
601                 if (c->x86 == 0xf)
602                         c->x86 += (tfms >> 20) & 0xff;
603                 if (c->x86 >= 0x6)
604                         c->x86_model += ((tfms >> 16) & 0xf) << 4;
605
606                 if (cap0 & (1<<19)) {
607                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
608                         c->x86_cache_alignment = c->x86_clflush_size;
609                 }
610         }
611 }
612
613 void get_cpu_cap(struct cpuinfo_x86 *c)
614 {
615         u32 tfms, xlvl;
616         u32 ebx;
617
618         /* Intel-defined flags: level 0x00000001 */
619         if (c->cpuid_level >= 0x00000001) {
620                 u32 capability, excap;
621
622                 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
623                 c->x86_capability[0] = capability;
624                 c->x86_capability[4] = excap;
625         }
626
627         /* Additional Intel-defined flags: level 0x00000007 */
628         if (c->cpuid_level >= 0x00000007) {
629                 u32 eax, ebx, ecx, edx;
630
631                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
632
633                 c->x86_capability[9] = ebx;
634         }
635
636         /* Extended state features: level 0x0000000d */
637         if (c->cpuid_level >= 0x0000000d) {
638                 u32 eax, ebx, ecx, edx;
639
640                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
641
642                 c->x86_capability[10] = eax;
643         }
644
645         /* AMD-defined flags: level 0x80000001 */
646         xlvl = cpuid_eax(0x80000000);
647         c->extended_cpuid_level = xlvl;
648
649         if ((xlvl & 0xffff0000) == 0x80000000) {
650                 if (xlvl >= 0x80000001) {
651                         c->x86_capability[1] = cpuid_edx(0x80000001);
652                         c->x86_capability[6] = cpuid_ecx(0x80000001);
653                 }
654         }
655
656         if (c->extended_cpuid_level >= 0x80000008) {
657                 u32 eax = cpuid_eax(0x80000008);
658
659                 c->x86_virt_bits = (eax >> 8) & 0xff;
660                 c->x86_phys_bits = eax & 0xff;
661         }
662 #ifdef CONFIG_X86_32
663         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
664                 c->x86_phys_bits = 36;
665 #endif
666
667         if (c->extended_cpuid_level >= 0x80000007)
668                 c->x86_power = cpuid_edx(0x80000007);
669
670         init_scattered_cpuid_features(c);
671 }
672
673 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
674 {
675 #ifdef CONFIG_X86_32
676         int i;
677
678         /*
679          * First of all, decide if this is a 486 or higher
680          * It's a 486 if we can modify the AC flag
681          */
682         if (flag_is_changeable_p(X86_EFLAGS_AC))
683                 c->x86 = 4;
684         else
685                 c->x86 = 3;
686
687         for (i = 0; i < X86_VENDOR_NUM; i++)
688                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
689                         c->x86_vendor_id[0] = 0;
690                         cpu_devs[i]->c_identify(c);
691                         if (c->x86_vendor_id[0]) {
692                                 get_cpu_vendor(c);
693                                 break;
694                         }
695                 }
696 #endif
697 }
698
699 /*
700  * Do minimum CPU detection early.
701  * Fields really needed: vendor, cpuid_level, family, model, mask,
702  * cache alignment.
703  * The others are not touched to avoid unwanted side effects.
704  *
705  * WARNING: this function is only called on the BP.  Don't add code here
706  * that is supposed to run on all CPUs.
707  */
708 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
709 {
710 #ifdef CONFIG_X86_64
711         c->x86_clflush_size = 64;
712         c->x86_phys_bits = 36;
713         c->x86_virt_bits = 48;
714 #else
715         c->x86_clflush_size = 32;
716         c->x86_phys_bits = 32;
717         c->x86_virt_bits = 32;
718 #endif
719         c->x86_cache_alignment = c->x86_clflush_size;
720
721         memset(&c->x86_capability, 0, sizeof c->x86_capability);
722         c->extended_cpuid_level = 0;
723
724         if (!have_cpuid_p())
725                 identify_cpu_without_cpuid(c);
726
727         /* cyrix could have cpuid enabled via c_identify()*/
728         if (!have_cpuid_p())
729                 return;
730
731         cpu_detect(c);
732         get_cpu_vendor(c);
733         get_cpu_cap(c);
734         fpu_detect(c);
735
736         if (this_cpu->c_early_init)
737                 this_cpu->c_early_init(c);
738
739         c->cpu_index = 0;
740         filter_cpuid_features(c, false);
741
742         if (this_cpu->c_bsp_init)
743                 this_cpu->c_bsp_init(c);
744
745         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
746 }
747
748 void __init early_cpu_init(void)
749 {
750         const struct cpu_dev *const *cdev;
751         int count = 0;
752
753 #ifdef CONFIG_PROCESSOR_SELECT
754         printk(KERN_INFO "KERNEL supported cpus:\n");
755 #endif
756
757         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
758                 const struct cpu_dev *cpudev = *cdev;
759
760                 if (count >= X86_VENDOR_NUM)
761                         break;
762                 cpu_devs[count] = cpudev;
763                 count++;
764
765 #ifdef CONFIG_PROCESSOR_SELECT
766                 {
767                         unsigned int j;
768
769                         for (j = 0; j < 2; j++) {
770                                 if (!cpudev->c_ident[j])
771                                         continue;
772                                 printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
773                                         cpudev->c_ident[j]);
774                         }
775                 }
776 #endif
777         }
778         early_identify_cpu(&boot_cpu_data);
779 }
780
781 /*
782  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
783  * unfortunately, that's not true in practice because of early VIA
784  * chips and (more importantly) broken virtualizers that are not easy
785  * to detect. In the latter case it doesn't even *fail* reliably, so
786  * probing for it doesn't even work. Disable it completely on 32-bit
787  * unless we can find a reliable way to detect all the broken cases.
788  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
789  */
790 static void detect_nopl(struct cpuinfo_x86 *c)
791 {
792 #ifdef CONFIG_X86_32
793         clear_cpu_cap(c, X86_FEATURE_NOPL);
794 #else
795         set_cpu_cap(c, X86_FEATURE_NOPL);
796 #endif
797 }
798
799 static void generic_identify(struct cpuinfo_x86 *c)
800 {
801         c->extended_cpuid_level = 0;
802
803         if (!have_cpuid_p())
804                 identify_cpu_without_cpuid(c);
805
806         /* cyrix could have cpuid enabled via c_identify()*/
807         if (!have_cpuid_p())
808                 return;
809
810         cpu_detect(c);
811
812         get_cpu_vendor(c);
813
814         get_cpu_cap(c);
815
816         if (c->cpuid_level >= 0x00000001) {
817                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
818 #ifdef CONFIG_X86_32
819 # ifdef CONFIG_X86_HT
820                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
821 # else
822                 c->apicid = c->initial_apicid;
823 # endif
824 #endif
825                 c->phys_proc_id = c->initial_apicid;
826         }
827
828         get_model_name(c); /* Default name */
829
830         detect_nopl(c);
831 }
832
833 /*
834  * This does the hard work of actually picking apart the CPU stuff...
835  */
836 static void identify_cpu(struct cpuinfo_x86 *c)
837 {
838         int i;
839
840         c->loops_per_jiffy = loops_per_jiffy;
841         c->x86_cache_size = -1;
842         c->x86_vendor = X86_VENDOR_UNKNOWN;
843         c->x86_model = c->x86_mask = 0; /* So far unknown... */
844         c->x86_vendor_id[0] = '\0'; /* Unset */
845         c->x86_model_id[0] = '\0';  /* Unset */
846         c->x86_max_cores = 1;
847         c->x86_coreid_bits = 0;
848 #ifdef CONFIG_X86_64
849         c->x86_clflush_size = 64;
850         c->x86_phys_bits = 36;
851         c->x86_virt_bits = 48;
852 #else
853         c->cpuid_level = -1;    /* CPUID not detected */
854         c->x86_clflush_size = 32;
855         c->x86_phys_bits = 32;
856         c->x86_virt_bits = 32;
857 #endif
858         c->x86_cache_alignment = c->x86_clflush_size;
859         memset(&c->x86_capability, 0, sizeof c->x86_capability);
860
861         generic_identify(c);
862
863         if (this_cpu->c_identify)
864                 this_cpu->c_identify(c);
865
866         /* Clear/Set all flags overriden by options, after probe */
867         for (i = 0; i < NCAPINTS; i++) {
868                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
869                 c->x86_capability[i] |= cpu_caps_set[i];
870         }
871
872 #ifdef CONFIG_X86_64
873         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
874 #endif
875
876         /*
877          * Vendor-specific initialization.  In this section we
878          * canonicalize the feature flags, meaning if there are
879          * features a certain CPU supports which CPUID doesn't
880          * tell us, CPUID claiming incorrect flags, or other bugs,
881          * we handle them here.
882          *
883          * At the end of this section, c->x86_capability better
884          * indicate the features this CPU genuinely supports!
885          */
886         if (this_cpu->c_init)
887                 this_cpu->c_init(c);
888
889         /* Disable the PN if appropriate */
890         squash_the_stupid_serial_number(c);
891
892         /* Set up SMEP/SMAP */
893         setup_smep(c);
894         setup_smap(c);
895
896         /*
897          * The vendor-specific functions might have changed features.
898          * Now we do "generic changes."
899          */
900
901         /* Filter out anything that depends on CPUID levels we don't have */
902         filter_cpuid_features(c, true);
903
904         /* If the model name is still unset, do table lookup. */
905         if (!c->x86_model_id[0]) {
906                 const char *p;
907                 p = table_lookup_model(c);
908                 if (p)
909                         strcpy(c->x86_model_id, p);
910                 else
911                         /* Last resort... */
912                         sprintf(c->x86_model_id, "%02x/%02x",
913                                 c->x86, c->x86_model);
914         }
915
916 #ifdef CONFIG_X86_64
917         detect_ht(c);
918 #endif
919
920         init_hypervisor(c);
921         x86_init_rdrand(c);
922
923         /*
924          * Clear/Set all flags overriden by options, need do it
925          * before following smp all cpus cap AND.
926          */
927         for (i = 0; i < NCAPINTS; i++) {
928                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
929                 c->x86_capability[i] |= cpu_caps_set[i];
930         }
931
932         /*
933          * On SMP, boot_cpu_data holds the common feature set between
934          * all CPUs; so make sure that we indicate which features are
935          * common between the CPUs.  The first time this routine gets
936          * executed, c == &boot_cpu_data.
937          */
938         if (c != &boot_cpu_data) {
939                 /* AND the already accumulated flags with these */
940                 for (i = 0; i < NCAPINTS; i++)
941                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
942
943                 /* OR, i.e. replicate the bug flags */
944                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
945                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
946         }
947
948         /* Init Machine Check Exception if available. */
949         mcheck_cpu_init(c);
950
951         select_idle_routine(c);
952
953 #ifdef CONFIG_NUMA
954         numa_add_cpu(smp_processor_id());
955 #endif
956 }
957
958 #ifdef CONFIG_X86_64
959 static void vgetcpu_set_mode(void)
960 {
961         if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
962                 vgetcpu_mode = VGETCPU_RDTSCP;
963         else
964                 vgetcpu_mode = VGETCPU_LSL;
965 }
966
967 #ifdef CONFIG_IA32_EMULATION
968 /* May not be __init: called during resume */
969 static void syscall32_cpu_init(void)
970 {
971         /* Load these always in case some future AMD CPU supports
972            SYSENTER from compat mode too. */
973         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
974         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
975         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
976
977         wrmsrl(MSR_CSTAR, ia32_cstar_target);
978 }
979 #endif          /* CONFIG_IA32_EMULATION */
980 #endif          /* CONFIG_X86_64 */
981
982 #ifdef CONFIG_X86_32
983 void enable_sep_cpu(void)
984 {
985         int cpu = get_cpu();
986         struct tss_struct *tss = &per_cpu(init_tss, cpu);
987
988         if (!boot_cpu_has(X86_FEATURE_SEP)) {
989                 put_cpu();
990                 return;
991         }
992
993         tss->x86_tss.ss1 = __KERNEL_CS;
994         tss->x86_tss.sp1 = sizeof(struct tss_struct) + (unsigned long) tss;
995         wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
996         wrmsr(MSR_IA32_SYSENTER_ESP, tss->x86_tss.sp1, 0);
997         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) ia32_sysenter_target, 0);
998         put_cpu();
999 }
1000 #endif
1001
1002 void __init identify_boot_cpu(void)
1003 {
1004         identify_cpu(&boot_cpu_data);
1005         init_amd_e400_c1e_mask();
1006 #ifdef CONFIG_X86_32
1007         sysenter_setup();
1008         enable_sep_cpu();
1009 #else
1010         vgetcpu_set_mode();
1011 #endif
1012         cpu_detect_tlb(&boot_cpu_data);
1013 }
1014
1015 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1016 {
1017         BUG_ON(c == &boot_cpu_data);
1018         identify_cpu(c);
1019 #ifdef CONFIG_X86_32
1020         enable_sep_cpu();
1021 #endif
1022         mtrr_ap_init();
1023 }
1024
1025 struct msr_range {
1026         unsigned        min;
1027         unsigned        max;
1028 };
1029
1030 static const struct msr_range msr_range_array[] = {
1031         { 0x00000000, 0x00000418},
1032         { 0xc0000000, 0xc000040b},
1033         { 0xc0010000, 0xc0010142},
1034         { 0xc0011000, 0xc001103b},
1035 };
1036
1037 static void __print_cpu_msr(void)
1038 {
1039         unsigned index_min, index_max;
1040         unsigned index;
1041         u64 val;
1042         int i;
1043
1044         for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1045                 index_min = msr_range_array[i].min;
1046                 index_max = msr_range_array[i].max;
1047
1048                 for (index = index_min; index < index_max; index++) {
1049                         if (rdmsrl_safe(index, &val))
1050                                 continue;
1051                         printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1052                 }
1053         }
1054 }
1055
1056 static int show_msr;
1057
1058 static __init int setup_show_msr(char *arg)
1059 {
1060         int num;
1061
1062         get_option(&arg, &num);
1063
1064         if (num > 0)
1065                 show_msr = num;
1066         return 1;
1067 }
1068 __setup("show_msr=", setup_show_msr);
1069
1070 static __init int setup_noclflush(char *arg)
1071 {
1072         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1073         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1074         return 1;
1075 }
1076 __setup("noclflush", setup_noclflush);
1077
1078 void print_cpu_info(struct cpuinfo_x86 *c)
1079 {
1080         const char *vendor = NULL;
1081
1082         if (c->x86_vendor < X86_VENDOR_NUM) {
1083                 vendor = this_cpu->c_vendor;
1084         } else {
1085                 if (c->cpuid_level >= 0)
1086                         vendor = c->x86_vendor_id;
1087         }
1088
1089         if (vendor && !strstr(c->x86_model_id, vendor))
1090                 printk(KERN_CONT "%s ", vendor);
1091
1092         if (c->x86_model_id[0])
1093                 printk(KERN_CONT "%s", strim(c->x86_model_id));
1094         else
1095                 printk(KERN_CONT "%d86", c->x86);
1096
1097         printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1098
1099         if (c->x86_mask || c->cpuid_level >= 0)
1100                 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1101         else
1102                 printk(KERN_CONT ")\n");
1103
1104         print_cpu_msr(c);
1105 }
1106
1107 void print_cpu_msr(struct cpuinfo_x86 *c)
1108 {
1109         if (c->cpu_index < show_msr)
1110                 __print_cpu_msr();
1111 }
1112
1113 static __init int setup_disablecpuid(char *arg)
1114 {
1115         int bit;
1116
1117         if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1118                 setup_clear_cpu_cap(bit);
1119         else
1120                 return 0;
1121
1122         return 1;
1123 }
1124 __setup("clearcpuid=", setup_disablecpuid);
1125
1126 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1127         (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1128 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1129
1130 #ifdef CONFIG_X86_64
1131 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1132 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1133                                     (unsigned long) debug_idt_table };
1134
1135 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1136                      irq_stack_union) __aligned(PAGE_SIZE) __visible;
1137
1138 /*
1139  * The following four percpu variables are hot.  Align current_task to
1140  * cacheline size such that all four fall in the same cacheline.
1141  */
1142 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1143         &init_task;
1144 EXPORT_PER_CPU_SYMBOL(current_task);
1145
1146 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1147         init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1148
1149 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1150
1151 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1152 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1153
1154 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1155
1156 /*
1157  * Special IST stacks which the CPU switches to when it calls
1158  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1159  * limit), all of them are 4K, except the debug stack which
1160  * is 8K.
1161  */
1162 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1163           [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1164           [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1165 };
1166
1167 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1168         [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1169
1170 /* May not be marked __init: used by software suspend */
1171 void syscall_init(void)
1172 {
1173         /*
1174          * LSTAR and STAR live in a bit strange symbiosis.
1175          * They both write to the same internal register. STAR allows to
1176          * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1177          */
1178         wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1179         wrmsrl(MSR_LSTAR, system_call);
1180         wrmsrl(MSR_CSTAR, ignore_sysret);
1181
1182 #ifdef CONFIG_IA32_EMULATION
1183         syscall32_cpu_init();
1184 #endif
1185
1186         /* Flags to clear on syscall */
1187         wrmsrl(MSR_SYSCALL_MASK,
1188                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1189                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1190 }
1191
1192 /*
1193  * Copies of the original ist values from the tss are only accessed during
1194  * debugging, no special alignment required.
1195  */
1196 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1197
1198 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1199 DEFINE_PER_CPU(int, debug_stack_usage);
1200
1201 int is_debug_stack(unsigned long addr)
1202 {
1203         return __get_cpu_var(debug_stack_usage) ||
1204                 (addr <= __get_cpu_var(debug_stack_addr) &&
1205                  addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1206 }
1207 NOKPROBE_SYMBOL(is_debug_stack);
1208
1209 DEFINE_PER_CPU(u32, debug_idt_ctr);
1210
1211 void debug_stack_set_zero(void)
1212 {
1213         this_cpu_inc(debug_idt_ctr);
1214         load_current_idt();
1215 }
1216 NOKPROBE_SYMBOL(debug_stack_set_zero);
1217
1218 void debug_stack_reset(void)
1219 {
1220         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1221                 return;
1222         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1223                 load_current_idt();
1224 }
1225 NOKPROBE_SYMBOL(debug_stack_reset);
1226
1227 #else   /* CONFIG_X86_64 */
1228
1229 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1230 EXPORT_PER_CPU_SYMBOL(current_task);
1231 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1232 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1233 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1234
1235 #ifdef CONFIG_CC_STACKPROTECTOR
1236 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1237 #endif
1238
1239 #endif  /* CONFIG_X86_64 */
1240
1241 /*
1242  * Clear all 6 debug registers:
1243  */
1244 static void clear_all_debug_regs(void)
1245 {
1246         int i;
1247
1248         for (i = 0; i < 8; i++) {
1249                 /* Ignore db4, db5 */
1250                 if ((i == 4) || (i == 5))
1251                         continue;
1252
1253                 set_debugreg(0, i);
1254         }
1255 }
1256
1257 #ifdef CONFIG_KGDB
1258 /*
1259  * Restore debug regs if using kgdbwait and you have a kernel debugger
1260  * connection established.
1261  */
1262 static void dbg_restore_debug_regs(void)
1263 {
1264         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1265                 arch_kgdb_ops.correct_hw_break();
1266 }
1267 #else /* ! CONFIG_KGDB */
1268 #define dbg_restore_debug_regs()
1269 #endif /* ! CONFIG_KGDB */
1270
1271 static void wait_for_master_cpu(int cpu)
1272 {
1273 #ifdef CONFIG_SMP
1274         /*
1275          * wait for ACK from master CPU before continuing
1276          * with AP initialization
1277          */
1278         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1279         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1280                 cpu_relax();
1281 #endif
1282 }
1283
1284 /*
1285  * cpu_init() initializes state that is per-CPU. Some data is already
1286  * initialized (naturally) in the bootstrap process, such as the GDT
1287  * and IDT. We reload them nevertheless, this function acts as a
1288  * 'CPU state barrier', nothing should get across.
1289  * A lot of state is already set up in PDA init for 64 bit
1290  */
1291 #ifdef CONFIG_X86_64
1292
1293 void cpu_init(void)
1294 {
1295         struct orig_ist *oist;
1296         struct task_struct *me;
1297         struct tss_struct *t;
1298         unsigned long v;
1299         int cpu = stack_smp_processor_id();
1300         int i;
1301
1302         wait_for_master_cpu(cpu);
1303
1304         /*
1305          * Load microcode on this cpu if a valid microcode is available.
1306          * This is early microcode loading procedure.
1307          */
1308         load_ucode_ap();
1309
1310         t = &per_cpu(init_tss, cpu);
1311         oist = &per_cpu(orig_ist, cpu);
1312
1313 #ifdef CONFIG_NUMA
1314         if (this_cpu_read(numa_node) == 0 &&
1315             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1316                 set_numa_node(early_cpu_to_node(cpu));
1317 #endif
1318
1319         me = current;
1320
1321         pr_debug("Initializing CPU#%d\n", cpu);
1322
1323         clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1324
1325         /*
1326          * Initialize the per-CPU GDT with the boot GDT,
1327          * and set up the GDT descriptor:
1328          */
1329
1330         switch_to_new_gdt(cpu);
1331         loadsegment(fs, 0);
1332
1333         load_current_idt();
1334
1335         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1336         syscall_init();
1337
1338         wrmsrl(MSR_FS_BASE, 0);
1339         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1340         barrier();
1341
1342         x86_configure_nx();
1343         enable_x2apic();
1344
1345         /*
1346          * set up and load the per-CPU TSS
1347          */
1348         if (!oist->ist[0]) {
1349                 char *estacks = per_cpu(exception_stacks, cpu);
1350
1351                 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1352                         estacks += exception_stack_sizes[v];
1353                         oist->ist[v] = t->x86_tss.ist[v] =
1354                                         (unsigned long)estacks;
1355                         if (v == DEBUG_STACK-1)
1356                                 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1357                 }
1358         }
1359
1360         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1361
1362         /*
1363          * <= is required because the CPU will access up to
1364          * 8 bits beyond the end of the IO permission bitmap.
1365          */
1366         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1367                 t->io_bitmap[i] = ~0UL;
1368
1369         atomic_inc(&init_mm.mm_count);
1370         me->active_mm = &init_mm;
1371         BUG_ON(me->mm);
1372         enter_lazy_tlb(&init_mm, me);
1373
1374         load_sp0(t, &current->thread);
1375         set_tss_desc(cpu, t);
1376         load_TR_desc();
1377         load_LDT(&init_mm.context);
1378
1379         clear_all_debug_regs();
1380         dbg_restore_debug_regs();
1381
1382         fpu_init();
1383
1384         if (is_uv_system())
1385                 uv_cpu_init();
1386 }
1387
1388 #else
1389
1390 void cpu_init(void)
1391 {
1392         int cpu = smp_processor_id();
1393         struct task_struct *curr = current;
1394         struct tss_struct *t = &per_cpu(init_tss, cpu);
1395         struct thread_struct *thread = &curr->thread;
1396
1397         wait_for_master_cpu(cpu);
1398
1399         show_ucode_info_early();
1400
1401         printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1402
1403         if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1404                 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1405
1406         load_current_idt();
1407         switch_to_new_gdt(cpu);
1408
1409         /*
1410          * Set up and load the per-CPU TSS and LDT
1411          */
1412         atomic_inc(&init_mm.mm_count);
1413         curr->active_mm = &init_mm;
1414         BUG_ON(curr->mm);
1415         enter_lazy_tlb(&init_mm, curr);
1416
1417         load_sp0(t, thread);
1418         set_tss_desc(cpu, t);
1419         load_TR_desc();
1420         load_LDT(&init_mm.context);
1421
1422         t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1423
1424 #ifdef CONFIG_DOUBLEFAULT
1425         /* Set up doublefault TSS pointer in the GDT */
1426         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1427 #endif
1428
1429         clear_all_debug_regs();
1430         dbg_restore_debug_regs();
1431
1432         fpu_init();
1433 }
1434 #endif
1435
1436 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1437 void warn_pre_alternatives(void)
1438 {
1439         WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1440 }
1441 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1442 #endif
1443
1444 inline bool __static_cpu_has_safe(u16 bit)
1445 {
1446         return boot_cpu_has(bit);
1447 }
1448 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);