Merge remote-tracking branches 'spi/topic/atmel', 'spi/topic/bcm63xx', 'spi/topic...
[sfrench/cifs-2.6.git] / arch / x86 / include / asm / pgtable.h
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/e820.h>
6
7 #include <asm/pgtable_types.h>
8
9 /*
10  * Macro to mark a page protection value as UC-
11  */
12 #define pgprot_noncached(prot)                                          \
13         ((boot_cpu_data.x86 > 3)                                        \
14          ? (__pgprot(pgprot_val(prot) |                                 \
15                      cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))     \
16          : (prot))
17
18 #ifndef __ASSEMBLY__
19 #include <asm/x86_init.h>
20
21 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
22 void ptdump_walk_pgd_level_checkwx(void);
23
24 #ifdef CONFIG_DEBUG_WX
25 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
26 #else
27 #define debug_checkwx() do { } while (0)
28 #endif
29
30 /*
31  * ZERO_PAGE is a global shared page that is always zero: used
32  * for zero-mapped memory areas etc..
33  */
34 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
35         __visible;
36 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
37
38 extern spinlock_t pgd_lock;
39 extern struct list_head pgd_list;
40
41 extern struct mm_struct *pgd_page_get_mm(struct page *page);
42
43 #ifdef CONFIG_PARAVIRT
44 #include <asm/paravirt.h>
45 #else  /* !CONFIG_PARAVIRT */
46 #define set_pte(ptep, pte)              native_set_pte(ptep, pte)
47 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
48 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
49 #define set_pud_at(mm, addr, pudp, pud) native_set_pud_at(mm, addr, pudp, pud)
50
51 #define set_pte_atomic(ptep, pte)                                       \
52         native_set_pte_atomic(ptep, pte)
53
54 #define set_pmd(pmdp, pmd)              native_set_pmd(pmdp, pmd)
55
56 #ifndef __PAGETABLE_PUD_FOLDED
57 #define set_pgd(pgdp, pgd)              native_set_pgd(pgdp, pgd)
58 #define pgd_clear(pgd)                  native_pgd_clear(pgd)
59 #endif
60
61 #ifndef set_pud
62 # define set_pud(pudp, pud)             native_set_pud(pudp, pud)
63 #endif
64
65 #ifndef __PAGETABLE_PUD_FOLDED
66 #define pud_clear(pud)                  native_pud_clear(pud)
67 #endif
68
69 #define pte_clear(mm, addr, ptep)       native_pte_clear(mm, addr, ptep)
70 #define pmd_clear(pmd)                  native_pmd_clear(pmd)
71
72 #define pte_update(mm, addr, ptep)              do { } while (0)
73
74 #define pgd_val(x)      native_pgd_val(x)
75 #define __pgd(x)        native_make_pgd(x)
76
77 #ifndef __PAGETABLE_PUD_FOLDED
78 #define pud_val(x)      native_pud_val(x)
79 #define __pud(x)        native_make_pud(x)
80 #endif
81
82 #ifndef __PAGETABLE_PMD_FOLDED
83 #define pmd_val(x)      native_pmd_val(x)
84 #define __pmd(x)        native_make_pmd(x)
85 #endif
86
87 #define pte_val(x)      native_pte_val(x)
88 #define __pte(x)        native_make_pte(x)
89
90 #define arch_end_context_switch(prev)   do {} while(0)
91
92 #endif  /* CONFIG_PARAVIRT */
93
94 /*
95  * The following only work if pte_present() is true.
96  * Undefined behaviour if not..
97  */
98 static inline int pte_dirty(pte_t pte)
99 {
100         return pte_flags(pte) & _PAGE_DIRTY;
101 }
102
103
104 static inline u32 read_pkru(void)
105 {
106         if (boot_cpu_has(X86_FEATURE_OSPKE))
107                 return __read_pkru();
108         return 0;
109 }
110
111 static inline void write_pkru(u32 pkru)
112 {
113         if (boot_cpu_has(X86_FEATURE_OSPKE))
114                 __write_pkru(pkru);
115 }
116
117 static inline int pte_young(pte_t pte)
118 {
119         return pte_flags(pte) & _PAGE_ACCESSED;
120 }
121
122 static inline int pmd_dirty(pmd_t pmd)
123 {
124         return pmd_flags(pmd) & _PAGE_DIRTY;
125 }
126
127 static inline int pmd_young(pmd_t pmd)
128 {
129         return pmd_flags(pmd) & _PAGE_ACCESSED;
130 }
131
132 static inline int pud_dirty(pud_t pud)
133 {
134         return pud_flags(pud) & _PAGE_DIRTY;
135 }
136
137 static inline int pud_young(pud_t pud)
138 {
139         return pud_flags(pud) & _PAGE_ACCESSED;
140 }
141
142 static inline int pte_write(pte_t pte)
143 {
144         return pte_flags(pte) & _PAGE_RW;
145 }
146
147 static inline int pte_huge(pte_t pte)
148 {
149         return pte_flags(pte) & _PAGE_PSE;
150 }
151
152 static inline int pte_global(pte_t pte)
153 {
154         return pte_flags(pte) & _PAGE_GLOBAL;
155 }
156
157 static inline int pte_exec(pte_t pte)
158 {
159         return !(pte_flags(pte) & _PAGE_NX);
160 }
161
162 static inline int pte_special(pte_t pte)
163 {
164         return pte_flags(pte) & _PAGE_SPECIAL;
165 }
166
167 static inline unsigned long pte_pfn(pte_t pte)
168 {
169         return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
170 }
171
172 static inline unsigned long pmd_pfn(pmd_t pmd)
173 {
174         return (pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
175 }
176
177 static inline unsigned long pud_pfn(pud_t pud)
178 {
179         return (pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT;
180 }
181
182 #define pte_page(pte)   pfn_to_page(pte_pfn(pte))
183
184 static inline int pmd_large(pmd_t pte)
185 {
186         return pmd_flags(pte) & _PAGE_PSE;
187 }
188
189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
190 static inline int pmd_trans_huge(pmd_t pmd)
191 {
192         return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
193 }
194
195 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
196 static inline int pud_trans_huge(pud_t pud)
197 {
198         return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
199 }
200 #endif
201
202 #define has_transparent_hugepage has_transparent_hugepage
203 static inline int has_transparent_hugepage(void)
204 {
205         return boot_cpu_has(X86_FEATURE_PSE);
206 }
207
208 #ifdef __HAVE_ARCH_PTE_DEVMAP
209 static inline int pmd_devmap(pmd_t pmd)
210 {
211         return !!(pmd_val(pmd) & _PAGE_DEVMAP);
212 }
213
214 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
215 static inline int pud_devmap(pud_t pud)
216 {
217         return !!(pud_val(pud) & _PAGE_DEVMAP);
218 }
219 #else
220 static inline int pud_devmap(pud_t pud)
221 {
222         return 0;
223 }
224 #endif
225 #endif
226 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
227
228 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
229 {
230         pteval_t v = native_pte_val(pte);
231
232         return native_make_pte(v | set);
233 }
234
235 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
236 {
237         pteval_t v = native_pte_val(pte);
238
239         return native_make_pte(v & ~clear);
240 }
241
242 static inline pte_t pte_mkclean(pte_t pte)
243 {
244         return pte_clear_flags(pte, _PAGE_DIRTY);
245 }
246
247 static inline pte_t pte_mkold(pte_t pte)
248 {
249         return pte_clear_flags(pte, _PAGE_ACCESSED);
250 }
251
252 static inline pte_t pte_wrprotect(pte_t pte)
253 {
254         return pte_clear_flags(pte, _PAGE_RW);
255 }
256
257 static inline pte_t pte_mkexec(pte_t pte)
258 {
259         return pte_clear_flags(pte, _PAGE_NX);
260 }
261
262 static inline pte_t pte_mkdirty(pte_t pte)
263 {
264         return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
265 }
266
267 static inline pte_t pte_mkyoung(pte_t pte)
268 {
269         return pte_set_flags(pte, _PAGE_ACCESSED);
270 }
271
272 static inline pte_t pte_mkwrite(pte_t pte)
273 {
274         return pte_set_flags(pte, _PAGE_RW);
275 }
276
277 static inline pte_t pte_mkhuge(pte_t pte)
278 {
279         return pte_set_flags(pte, _PAGE_PSE);
280 }
281
282 static inline pte_t pte_clrhuge(pte_t pte)
283 {
284         return pte_clear_flags(pte, _PAGE_PSE);
285 }
286
287 static inline pte_t pte_mkglobal(pte_t pte)
288 {
289         return pte_set_flags(pte, _PAGE_GLOBAL);
290 }
291
292 static inline pte_t pte_clrglobal(pte_t pte)
293 {
294         return pte_clear_flags(pte, _PAGE_GLOBAL);
295 }
296
297 static inline pte_t pte_mkspecial(pte_t pte)
298 {
299         return pte_set_flags(pte, _PAGE_SPECIAL);
300 }
301
302 static inline pte_t pte_mkdevmap(pte_t pte)
303 {
304         return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
305 }
306
307 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
308 {
309         pmdval_t v = native_pmd_val(pmd);
310
311         return __pmd(v | set);
312 }
313
314 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
315 {
316         pmdval_t v = native_pmd_val(pmd);
317
318         return __pmd(v & ~clear);
319 }
320
321 static inline pmd_t pmd_mkold(pmd_t pmd)
322 {
323         return pmd_clear_flags(pmd, _PAGE_ACCESSED);
324 }
325
326 static inline pmd_t pmd_mkclean(pmd_t pmd)
327 {
328         return pmd_clear_flags(pmd, _PAGE_DIRTY);
329 }
330
331 static inline pmd_t pmd_wrprotect(pmd_t pmd)
332 {
333         return pmd_clear_flags(pmd, _PAGE_RW);
334 }
335
336 static inline pmd_t pmd_mkdirty(pmd_t pmd)
337 {
338         return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
339 }
340
341 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
342 {
343         return pmd_set_flags(pmd, _PAGE_DEVMAP);
344 }
345
346 static inline pmd_t pmd_mkhuge(pmd_t pmd)
347 {
348         return pmd_set_flags(pmd, _PAGE_PSE);
349 }
350
351 static inline pmd_t pmd_mkyoung(pmd_t pmd)
352 {
353         return pmd_set_flags(pmd, _PAGE_ACCESSED);
354 }
355
356 static inline pmd_t pmd_mkwrite(pmd_t pmd)
357 {
358         return pmd_set_flags(pmd, _PAGE_RW);
359 }
360
361 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
362 {
363         return pmd_clear_flags(pmd, _PAGE_PRESENT | _PAGE_PROTNONE);
364 }
365
366 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
367 {
368         pudval_t v = native_pud_val(pud);
369
370         return __pud(v | set);
371 }
372
373 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
374 {
375         pudval_t v = native_pud_val(pud);
376
377         return __pud(v & ~clear);
378 }
379
380 static inline pud_t pud_mkold(pud_t pud)
381 {
382         return pud_clear_flags(pud, _PAGE_ACCESSED);
383 }
384
385 static inline pud_t pud_mkclean(pud_t pud)
386 {
387         return pud_clear_flags(pud, _PAGE_DIRTY);
388 }
389
390 static inline pud_t pud_wrprotect(pud_t pud)
391 {
392         return pud_clear_flags(pud, _PAGE_RW);
393 }
394
395 static inline pud_t pud_mkdirty(pud_t pud)
396 {
397         return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
398 }
399
400 static inline pud_t pud_mkdevmap(pud_t pud)
401 {
402         return pud_set_flags(pud, _PAGE_DEVMAP);
403 }
404
405 static inline pud_t pud_mkhuge(pud_t pud)
406 {
407         return pud_set_flags(pud, _PAGE_PSE);
408 }
409
410 static inline pud_t pud_mkyoung(pud_t pud)
411 {
412         return pud_set_flags(pud, _PAGE_ACCESSED);
413 }
414
415 static inline pud_t pud_mkwrite(pud_t pud)
416 {
417         return pud_set_flags(pud, _PAGE_RW);
418 }
419
420 static inline pud_t pud_mknotpresent(pud_t pud)
421 {
422         return pud_clear_flags(pud, _PAGE_PRESENT | _PAGE_PROTNONE);
423 }
424
425 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
426 static inline int pte_soft_dirty(pte_t pte)
427 {
428         return pte_flags(pte) & _PAGE_SOFT_DIRTY;
429 }
430
431 static inline int pmd_soft_dirty(pmd_t pmd)
432 {
433         return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
434 }
435
436 static inline int pud_soft_dirty(pud_t pud)
437 {
438         return pud_flags(pud) & _PAGE_SOFT_DIRTY;
439 }
440
441 static inline pte_t pte_mksoft_dirty(pte_t pte)
442 {
443         return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
444 }
445
446 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
447 {
448         return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
449 }
450
451 static inline pud_t pud_mksoft_dirty(pud_t pud)
452 {
453         return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
454 }
455
456 static inline pte_t pte_clear_soft_dirty(pte_t pte)
457 {
458         return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
459 }
460
461 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
462 {
463         return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
464 }
465
466 static inline pud_t pud_clear_soft_dirty(pud_t pud)
467 {
468         return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
469 }
470
471 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
472
473 /*
474  * Mask out unsupported bits in a present pgprot.  Non-present pgprots
475  * can use those bits for other purposes, so leave them be.
476  */
477 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
478 {
479         pgprotval_t protval = pgprot_val(pgprot);
480
481         if (protval & _PAGE_PRESENT)
482                 protval &= __supported_pte_mask;
483
484         return protval;
485 }
486
487 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
488 {
489         return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
490                      massage_pgprot(pgprot));
491 }
492
493 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
494 {
495         return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
496                      massage_pgprot(pgprot));
497 }
498
499 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
500 {
501         return __pud(((phys_addr_t)page_nr << PAGE_SHIFT) |
502                      massage_pgprot(pgprot));
503 }
504
505 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
506 {
507         pteval_t val = pte_val(pte);
508
509         /*
510          * Chop off the NX bit (if present), and add the NX portion of
511          * the newprot (if present):
512          */
513         val &= _PAGE_CHG_MASK;
514         val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
515
516         return __pte(val);
517 }
518
519 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
520 {
521         pmdval_t val = pmd_val(pmd);
522
523         val &= _HPAGE_CHG_MASK;
524         val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
525
526         return __pmd(val);
527 }
528
529 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
530 #define pgprot_modify pgprot_modify
531 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
532 {
533         pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
534         pgprotval_t addbits = pgprot_val(newprot);
535         return __pgprot(preservebits | addbits);
536 }
537
538 #define pte_pgprot(x) __pgprot(pte_flags(x))
539 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
540 #define pud_pgprot(x) __pgprot(pud_flags(x))
541
542 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
543
544 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
545                                          enum page_cache_mode pcm,
546                                          enum page_cache_mode new_pcm)
547 {
548         /*
549          * PAT type is always WB for untracked ranges, so no need to check.
550          */
551         if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
552                 return 1;
553
554         /*
555          * Certain new memtypes are not allowed with certain
556          * requested memtype:
557          * - request is uncached, return cannot be write-back
558          * - request is write-combine, return cannot be write-back
559          * - request is write-through, return cannot be write-back
560          * - request is write-through, return cannot be write-combine
561          */
562         if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
563              new_pcm == _PAGE_CACHE_MODE_WB) ||
564             (pcm == _PAGE_CACHE_MODE_WC &&
565              new_pcm == _PAGE_CACHE_MODE_WB) ||
566             (pcm == _PAGE_CACHE_MODE_WT &&
567              new_pcm == _PAGE_CACHE_MODE_WB) ||
568             (pcm == _PAGE_CACHE_MODE_WT &&
569              new_pcm == _PAGE_CACHE_MODE_WC)) {
570                 return 0;
571         }
572
573         return 1;
574 }
575
576 pmd_t *populate_extra_pmd(unsigned long vaddr);
577 pte_t *populate_extra_pte(unsigned long vaddr);
578 #endif  /* __ASSEMBLY__ */
579
580 #ifdef CONFIG_X86_32
581 # include <asm/pgtable_32.h>
582 #else
583 # include <asm/pgtable_64.h>
584 #endif
585
586 #ifndef __ASSEMBLY__
587 #include <linux/mm_types.h>
588 #include <linux/mmdebug.h>
589 #include <linux/log2.h>
590
591 static inline int pte_none(pte_t pte)
592 {
593         return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
594 }
595
596 #define __HAVE_ARCH_PTE_SAME
597 static inline int pte_same(pte_t a, pte_t b)
598 {
599         return a.pte == b.pte;
600 }
601
602 static inline int pte_present(pte_t a)
603 {
604         return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
605 }
606
607 #ifdef __HAVE_ARCH_PTE_DEVMAP
608 static inline int pte_devmap(pte_t a)
609 {
610         return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
611 }
612 #endif
613
614 #define pte_accessible pte_accessible
615 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
616 {
617         if (pte_flags(a) & _PAGE_PRESENT)
618                 return true;
619
620         if ((pte_flags(a) & _PAGE_PROTNONE) &&
621                         mm_tlb_flush_pending(mm))
622                 return true;
623
624         return false;
625 }
626
627 static inline int pte_hidden(pte_t pte)
628 {
629         return pte_flags(pte) & _PAGE_HIDDEN;
630 }
631
632 static inline int pmd_present(pmd_t pmd)
633 {
634         /*
635          * Checking for _PAGE_PSE is needed too because
636          * split_huge_page will temporarily clear the present bit (but
637          * the _PAGE_PSE flag will remain set at all times while the
638          * _PAGE_PRESENT bit is clear).
639          */
640         return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
641 }
642
643 #ifdef CONFIG_NUMA_BALANCING
644 /*
645  * These work without NUMA balancing but the kernel does not care. See the
646  * comment in include/asm-generic/pgtable.h
647  */
648 static inline int pte_protnone(pte_t pte)
649 {
650         return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
651                 == _PAGE_PROTNONE;
652 }
653
654 static inline int pmd_protnone(pmd_t pmd)
655 {
656         return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
657                 == _PAGE_PROTNONE;
658 }
659 #endif /* CONFIG_NUMA_BALANCING */
660
661 static inline int pmd_none(pmd_t pmd)
662 {
663         /* Only check low word on 32-bit platforms, since it might be
664            out of sync with upper half. */
665         unsigned long val = native_pmd_val(pmd);
666         return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
667 }
668
669 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
670 {
671         return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
672 }
673
674 /*
675  * Currently stuck as a macro due to indirect forward reference to
676  * linux/mmzone.h's __section_mem_map_addr() definition:
677  */
678 #define pmd_page(pmd)           \
679         pfn_to_page((pmd_val(pmd) & pmd_pfn_mask(pmd)) >> PAGE_SHIFT)
680
681 /*
682  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
683  *
684  * this macro returns the index of the entry in the pmd page which would
685  * control the given virtual address
686  */
687 static inline unsigned long pmd_index(unsigned long address)
688 {
689         return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
690 }
691
692 /*
693  * Conversion functions: convert a page and protection to a page entry,
694  * and a page entry and page directory to the page they refer to.
695  *
696  * (Currently stuck as a macro because of indirect forward reference
697  * to linux/mm.h:page_to_nid())
698  */
699 #define mk_pte(page, pgprot)   pfn_pte(page_to_pfn(page), (pgprot))
700
701 /*
702  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
703  *
704  * this function returns the index of the entry in the pte page which would
705  * control the given virtual address
706  */
707 static inline unsigned long pte_index(unsigned long address)
708 {
709         return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
710 }
711
712 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
713 {
714         return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
715 }
716
717 static inline int pmd_bad(pmd_t pmd)
718 {
719         return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
720 }
721
722 static inline unsigned long pages_to_mb(unsigned long npg)
723 {
724         return npg >> (20 - PAGE_SHIFT);
725 }
726
727 #if CONFIG_PGTABLE_LEVELS > 2
728 static inline int pud_none(pud_t pud)
729 {
730         return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
731 }
732
733 static inline int pud_present(pud_t pud)
734 {
735         return pud_flags(pud) & _PAGE_PRESENT;
736 }
737
738 static inline unsigned long pud_page_vaddr(pud_t pud)
739 {
740         return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
741 }
742
743 /*
744  * Currently stuck as a macro due to indirect forward reference to
745  * linux/mmzone.h's __section_mem_map_addr() definition:
746  */
747 #define pud_page(pud)           \
748         pfn_to_page((pud_val(pud) & pud_pfn_mask(pud)) >> PAGE_SHIFT)
749
750 /* Find an entry in the second-level page table.. */
751 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
752 {
753         return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
754 }
755
756 static inline int pud_large(pud_t pud)
757 {
758         return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
759                 (_PAGE_PSE | _PAGE_PRESENT);
760 }
761
762 static inline int pud_bad(pud_t pud)
763 {
764         return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
765 }
766 #else
767 static inline int pud_large(pud_t pud)
768 {
769         return 0;
770 }
771 #endif  /* CONFIG_PGTABLE_LEVELS > 2 */
772
773 #if CONFIG_PGTABLE_LEVELS > 3
774 static inline int pgd_present(pgd_t pgd)
775 {
776         return pgd_flags(pgd) & _PAGE_PRESENT;
777 }
778
779 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
780 {
781         return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
782 }
783
784 /*
785  * Currently stuck as a macro due to indirect forward reference to
786  * linux/mmzone.h's __section_mem_map_addr() definition:
787  */
788 #define pgd_page(pgd)           pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
789
790 /* to find an entry in a page-table-directory. */
791 static inline unsigned long pud_index(unsigned long address)
792 {
793         return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
794 }
795
796 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
797 {
798         return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
799 }
800
801 static inline int pgd_bad(pgd_t pgd)
802 {
803         return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
804 }
805
806 static inline int pgd_none(pgd_t pgd)
807 {
808         /*
809          * There is no need to do a workaround for the KNL stray
810          * A/D bit erratum here.  PGDs only point to page tables
811          * except on 32-bit non-PAE which is not supported on
812          * KNL.
813          */
814         return !native_pgd_val(pgd);
815 }
816 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
817
818 #endif  /* __ASSEMBLY__ */
819
820 /*
821  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
822  *
823  * this macro returns the index of the entry in the pgd page which would
824  * control the given virtual address
825  */
826 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
827
828 /*
829  * pgd_offset() returns a (pgd_t *)
830  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
831  */
832 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
833 /*
834  * a shortcut which implies the use of the kernel's pgd, instead
835  * of a process's
836  */
837 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
838
839
840 #define KERNEL_PGD_BOUNDARY     pgd_index(PAGE_OFFSET)
841 #define KERNEL_PGD_PTRS         (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
842
843 #ifndef __ASSEMBLY__
844
845 extern int direct_gbpages;
846 void init_mem_mapping(void);
847 void early_alloc_pgt_buf(void);
848
849 #ifdef CONFIG_X86_64
850 /* Realmode trampoline initialization. */
851 extern pgd_t trampoline_pgd_entry;
852 static inline void __meminit init_trampoline_default(void)
853 {
854         /* Default trampoline pgd value */
855         trampoline_pgd_entry = init_level4_pgt[pgd_index(__PAGE_OFFSET)];
856 }
857 # ifdef CONFIG_RANDOMIZE_MEMORY
858 void __meminit init_trampoline(void);
859 # else
860 #  define init_trampoline init_trampoline_default
861 # endif
862 #else
863 static inline void init_trampoline(void) { }
864 #endif
865
866 /* local pte updates need not use xchg for locking */
867 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
868 {
869         pte_t res = *ptep;
870
871         /* Pure native function needs no input for mm, addr */
872         native_pte_clear(NULL, 0, ptep);
873         return res;
874 }
875
876 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
877 {
878         pmd_t res = *pmdp;
879
880         native_pmd_clear(pmdp);
881         return res;
882 }
883
884 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
885 {
886         pud_t res = *pudp;
887
888         native_pud_clear(pudp);
889         return res;
890 }
891
892 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
893                                      pte_t *ptep , pte_t pte)
894 {
895         native_set_pte(ptep, pte);
896 }
897
898 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
899                                      pmd_t *pmdp , pmd_t pmd)
900 {
901         native_set_pmd(pmdp, pmd);
902 }
903
904 static inline void native_set_pud_at(struct mm_struct *mm, unsigned long addr,
905                                      pud_t *pudp, pud_t pud)
906 {
907         native_set_pud(pudp, pud);
908 }
909
910 #ifndef CONFIG_PARAVIRT
911 /*
912  * Rules for using pte_update - it must be called after any PTE update which
913  * has not been done using the set_pte / clear_pte interfaces.  It is used by
914  * shadow mode hypervisors to resynchronize the shadow page tables.  Kernel PTE
915  * updates should either be sets, clears, or set_pte_atomic for P->P
916  * transitions, which means this hook should only be called for user PTEs.
917  * This hook implies a P->P protection or access change has taken place, which
918  * requires a subsequent TLB flush.
919  */
920 #define pte_update(mm, addr, ptep)              do { } while (0)
921 #endif
922
923 /*
924  * We only update the dirty/accessed state if we set
925  * the dirty bit by hand in the kernel, since the hardware
926  * will do the accessed bit for us, and we don't want to
927  * race with other CPU's that might be updating the dirty
928  * bit at the same time.
929  */
930 struct vm_area_struct;
931
932 #define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
933 extern int ptep_set_access_flags(struct vm_area_struct *vma,
934                                  unsigned long address, pte_t *ptep,
935                                  pte_t entry, int dirty);
936
937 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
938 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
939                                      unsigned long addr, pte_t *ptep);
940
941 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
942 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
943                                   unsigned long address, pte_t *ptep);
944
945 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
946 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
947                                        pte_t *ptep)
948 {
949         pte_t pte = native_ptep_get_and_clear(ptep);
950         pte_update(mm, addr, ptep);
951         return pte;
952 }
953
954 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
955 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
956                                             unsigned long addr, pte_t *ptep,
957                                             int full)
958 {
959         pte_t pte;
960         if (full) {
961                 /*
962                  * Full address destruction in progress; paravirt does not
963                  * care about updates and native needs no locking
964                  */
965                 pte = native_local_ptep_get_and_clear(ptep);
966         } else {
967                 pte = ptep_get_and_clear(mm, addr, ptep);
968         }
969         return pte;
970 }
971
972 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
973 static inline void ptep_set_wrprotect(struct mm_struct *mm,
974                                       unsigned long addr, pte_t *ptep)
975 {
976         clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
977         pte_update(mm, addr, ptep);
978 }
979
980 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
981
982 #define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
983
984 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
985 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
986                                  unsigned long address, pmd_t *pmdp,
987                                  pmd_t entry, int dirty);
988 extern int pudp_set_access_flags(struct vm_area_struct *vma,
989                                  unsigned long address, pud_t *pudp,
990                                  pud_t entry, int dirty);
991
992 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
993 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
994                                      unsigned long addr, pmd_t *pmdp);
995 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
996                                      unsigned long addr, pud_t *pudp);
997
998 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
999 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1000                                   unsigned long address, pmd_t *pmdp);
1001
1002
1003 #define __HAVE_ARCH_PMD_WRITE
1004 static inline int pmd_write(pmd_t pmd)
1005 {
1006         return pmd_flags(pmd) & _PAGE_RW;
1007 }
1008
1009 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1010 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1011                                        pmd_t *pmdp)
1012 {
1013         return native_pmdp_get_and_clear(pmdp);
1014 }
1015
1016 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1017 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1018                                         unsigned long addr, pud_t *pudp)
1019 {
1020         return native_pudp_get_and_clear(pudp);
1021 }
1022
1023 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1024 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1025                                       unsigned long addr, pmd_t *pmdp)
1026 {
1027         clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1028 }
1029
1030 /*
1031  * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1032  *
1033  *  dst - pointer to pgd range anwhere on a pgd page
1034  *  src - ""
1035  *  count - the number of pgds to copy.
1036  *
1037  * dst and src can be on the same page, but the range must not overlap,
1038  * and must not cross a page boundary.
1039  */
1040 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1041 {
1042        memcpy(dst, src, count * sizeof(pgd_t));
1043 }
1044
1045 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
1046 static inline int page_level_shift(enum pg_level level)
1047 {
1048         return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1049 }
1050 static inline unsigned long page_level_size(enum pg_level level)
1051 {
1052         return 1UL << page_level_shift(level);
1053 }
1054 static inline unsigned long page_level_mask(enum pg_level level)
1055 {
1056         return ~(page_level_size(level) - 1);
1057 }
1058
1059 /*
1060  * The x86 doesn't have any external MMU info: the kernel page
1061  * tables contain all the necessary information.
1062  */
1063 static inline void update_mmu_cache(struct vm_area_struct *vma,
1064                 unsigned long addr, pte_t *ptep)
1065 {
1066 }
1067 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1068                 unsigned long addr, pmd_t *pmd)
1069 {
1070 }
1071 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1072                 unsigned long addr, pud_t *pud)
1073 {
1074 }
1075
1076 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1077 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1078 {
1079         return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1080 }
1081
1082 static inline int pte_swp_soft_dirty(pte_t pte)
1083 {
1084         return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1085 }
1086
1087 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1088 {
1089         return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1090 }
1091 #endif
1092
1093 #define PKRU_AD_BIT 0x1
1094 #define PKRU_WD_BIT 0x2
1095 #define PKRU_BITS_PER_PKEY 2
1096
1097 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1098 {
1099         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1100         return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1101 }
1102
1103 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1104 {
1105         int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1106         /*
1107          * Access-disable disables writes too so we need to check
1108          * both bits here.
1109          */
1110         return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1111 }
1112
1113 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1114 {
1115 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1116         /* ifdef to avoid doing 59-bit shift on 32-bit values */
1117         return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1118 #else
1119         return 0;
1120 #endif
1121 }
1122
1123 #include <asm-generic/pgtable.h>
1124 #endif  /* __ASSEMBLY__ */
1125
1126 #endif /* _ASM_X86_PGTABLE_H */