Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
[sfrench/cifs-2.6.git] / arch / x86 / include / asm / irq_vectors.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_IRQ_VECTORS_H
3 #define _ASM_X86_IRQ_VECTORS_H
4
5 #include <linux/threads.h>
6 /*
7  * Linux IRQ vector layout.
8  *
9  * There are 256 IDT entries (per CPU - each entry is 8 bytes) which can
10  * be defined by Linux. They are used as a jump table by the CPU when a
11  * given vector is triggered - by a CPU-external, CPU-internal or
12  * software-triggered event.
13  *
14  * Linux sets the kernel code address each entry jumps to early during
15  * bootup, and never changes them. This is the general layout of the
16  * IDT entries:
17  *
18  *  Vectors   0 ...  31 : system traps and exceptions - hardcoded events
19  *  Vectors  32 ... 127 : device interrupts
20  *  Vector  128         : legacy int80 syscall interface
21  *  Vectors 129 ... LOCAL_TIMER_VECTOR-1
22  *  Vectors LOCAL_TIMER_VECTOR ... 255 : special interrupts
23  *
24  * 64-bit x86 has per CPU IDT tables, 32-bit has one shared IDT table.
25  *
26  * This file enumerates the exact layout of them:
27  */
28
29 #define NMI_VECTOR                      0x02
30 #define MCE_VECTOR                      0x12
31
32 /*
33  * IDT vectors usable for external interrupt sources start at 0x20.
34  * (0x80 is the syscall vector, 0x30-0x3f are for ISA)
35  */
36 #define FIRST_EXTERNAL_VECTOR           0x20
37
38 /*
39  * Reserve the lowest usable vector (and hence lowest priority)  0x20 for
40  * triggering cleanup after irq migration. 0x21-0x2f will still be used
41  * for device interrupts.
42  */
43 #define IRQ_MOVE_CLEANUP_VECTOR         FIRST_EXTERNAL_VECTOR
44
45 #define IA32_SYSCALL_VECTOR             0x80
46
47 /*
48  * Vectors 0x30-0x3f are used for ISA interrupts.
49  *   round up to the next 16-vector boundary
50  */
51 #define ISA_IRQ_VECTOR(irq)             (((FIRST_EXTERNAL_VECTOR + 16) & ~15) + irq)
52
53 /*
54  * Special IRQ vectors used by the SMP architecture, 0xf0-0xff
55  *
56  *  some of the following vectors are 'rare', they are merged
57  *  into a single vector (CALL_FUNCTION_VECTOR) to save vector space.
58  *  TLB, reschedule and local APIC vectors are performance-critical.
59  */
60
61 #define SPURIOUS_APIC_VECTOR            0xff
62 /*
63  * Sanity check
64  */
65 #if ((SPURIOUS_APIC_VECTOR & 0x0F) != 0x0F)
66 # error SPURIOUS_APIC_VECTOR definition error
67 #endif
68
69 #define ERROR_APIC_VECTOR               0xfe
70 #define RESCHEDULE_VECTOR               0xfd
71 #define CALL_FUNCTION_VECTOR            0xfc
72 #define CALL_FUNCTION_SINGLE_VECTOR     0xfb
73 #define THERMAL_APIC_VECTOR             0xfa
74 #define THRESHOLD_APIC_VECTOR           0xf9
75 #define REBOOT_VECTOR                   0xf8
76
77 /*
78  * Generic system vector for platform specific use
79  */
80 #define X86_PLATFORM_IPI_VECTOR         0xf7
81
82 /*
83  * IRQ work vector:
84  */
85 #define IRQ_WORK_VECTOR                 0xf6
86
87 #define UV_BAU_MESSAGE                  0xf5
88 #define DEFERRED_ERROR_VECTOR           0xf4
89
90 /* Vector on which hypervisor callbacks will be delivered */
91 #define HYPERVISOR_CALLBACK_VECTOR      0xf3
92
93 /* Vector for KVM to deliver posted interrupt IPI */
94 #ifdef CONFIG_HAVE_KVM
95 #define POSTED_INTR_VECTOR              0xf2
96 #define POSTED_INTR_WAKEUP_VECTOR       0xf1
97 #define POSTED_INTR_NESTED_VECTOR       0xf0
98 #endif
99
100 #define MANAGED_IRQ_SHUTDOWN_VECTOR     0xef
101
102 #if IS_ENABLED(CONFIG_HYPERV)
103 #define HYPERV_REENLIGHTENMENT_VECTOR   0xee
104 #define HYPERV_STIMER0_VECTOR           0xed
105 #endif
106
107 #define LOCAL_TIMER_VECTOR              0xec
108
109 #define NR_VECTORS                       256
110
111 #ifdef CONFIG_X86_LOCAL_APIC
112 #define FIRST_SYSTEM_VECTOR             LOCAL_TIMER_VECTOR
113 #else
114 #define FIRST_SYSTEM_VECTOR             NR_VECTORS
115 #endif
116
117 /*
118  * Size the maximum number of interrupts.
119  *
120  * If the irq_desc[] array has a sparse layout, we can size things
121  * generously - it scales up linearly with the maximum number of CPUs,
122  * and the maximum number of IO-APICs, whichever is higher.
123  *
124  * In other cases we size more conservatively, to not create too large
125  * static arrays.
126  */
127
128 #define NR_IRQS_LEGACY                  16
129
130 #define CPU_VECTOR_LIMIT                (64 * NR_CPUS)
131 #define IO_APIC_VECTOR_LIMIT            (32 * MAX_IO_APICS)
132
133 #if defined(CONFIG_X86_IO_APIC) && defined(CONFIG_PCI_MSI)
134 #define NR_IRQS                                         \
135         (CPU_VECTOR_LIMIT > IO_APIC_VECTOR_LIMIT ?      \
136                 (NR_VECTORS + CPU_VECTOR_LIMIT)  :      \
137                 (NR_VECTORS + IO_APIC_VECTOR_LIMIT))
138 #elif defined(CONFIG_X86_IO_APIC)
139 #define NR_IRQS                         (NR_VECTORS + IO_APIC_VECTOR_LIMIT)
140 #elif defined(CONFIG_PCI_MSI)
141 #define NR_IRQS                         (NR_VECTORS + CPU_VECTOR_LIMIT)
142 #else
143 #define NR_IRQS                         NR_IRQS_LEGACY
144 #endif
145
146 #endif /* _ASM_X86_IRQ_VECTORS_H */