Merge branch 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / ds.c
1 #include <linux/bitops.h>
2 #include <linux/types.h>
3 #include <linux/slab.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 /* The size of a BTS record in bytes: */
11 #define BTS_RECORD_SIZE         24
12
13 #define BTS_BUFFER_SIZE         (PAGE_SIZE << 4)
14 #define PEBS_BUFFER_SIZE        (PAGE_SIZE << 4)
15 #define PEBS_FIXUP_SIZE         PAGE_SIZE
16
17 /*
18  * pebs_record_32 for p4 and core not supported
19
20 struct pebs_record_32 {
21         u32 flags, ip;
22         u32 ax, bc, cx, dx;
23         u32 si, di, bp, sp;
24 };
25
26  */
27
28 union intel_x86_pebs_dse {
29         u64 val;
30         struct {
31                 unsigned int ld_dse:4;
32                 unsigned int ld_stlb_miss:1;
33                 unsigned int ld_locked:1;
34                 unsigned int ld_reserved:26;
35         };
36         struct {
37                 unsigned int st_l1d_hit:1;
38                 unsigned int st_reserved1:3;
39                 unsigned int st_stlb_miss:1;
40                 unsigned int st_locked:1;
41                 unsigned int st_reserved2:26;
42         };
43 };
44
45
46 /*
47  * Map PEBS Load Latency Data Source encodings to generic
48  * memory data source information
49  */
50 #define P(a, b) PERF_MEM_S(a, b)
51 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
52 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
53
54 /* Version for Sandy Bridge and later */
55 static u64 pebs_data_source[] = {
56         P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
57         OP_LH | P(LVL, L1)  | P(SNOOP, NONE),   /* 0x01: L1 local */
58         OP_LH | P(LVL, LFB) | P(SNOOP, NONE),   /* 0x02: LFB hit */
59         OP_LH | P(LVL, L2)  | P(SNOOP, NONE),   /* 0x03: L2 hit */
60         OP_LH | P(LVL, L3)  | P(SNOOP, NONE),   /* 0x04: L3 hit */
61         OP_LH | P(LVL, L3)  | P(SNOOP, MISS),   /* 0x05: L3 hit, snoop miss */
62         OP_LH | P(LVL, L3)  | P(SNOOP, HIT),    /* 0x06: L3 hit, snoop hit */
63         OP_LH | P(LVL, L3)  | P(SNOOP, HITM),   /* 0x07: L3 hit, snoop hitm */
64         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
65         OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
66         OP_LH | P(LVL, LOC_RAM)  | P(SNOOP, HIT),  /* 0x0a: L3 miss, shared */
67         OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
68         OP_LH | P(LVL, LOC_RAM)  | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
69         OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
70         OP_LH | P(LVL, IO)  | P(SNOOP, NONE), /* 0x0e: I/O */
71         OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
72 };
73
74 /* Patch up minor differences in the bits */
75 void __init intel_pmu_pebs_data_source_nhm(void)
76 {
77         pebs_data_source[0x05] = OP_LH | P(LVL, L3)  | P(SNOOP, HIT);
78         pebs_data_source[0x06] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
79         pebs_data_source[0x07] = OP_LH | P(LVL, L3)  | P(SNOOP, HITM);
80 }
81
82 static u64 precise_store_data(u64 status)
83 {
84         union intel_x86_pebs_dse dse;
85         u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
86
87         dse.val = status;
88
89         /*
90          * bit 4: TLB access
91          * 1 = stored missed 2nd level TLB
92          *
93          * so it either hit the walker or the OS
94          * otherwise hit 2nd level TLB
95          */
96         if (dse.st_stlb_miss)
97                 val |= P(TLB, MISS);
98         else
99                 val |= P(TLB, HIT);
100
101         /*
102          * bit 0: hit L1 data cache
103          * if not set, then all we know is that
104          * it missed L1D
105          */
106         if (dse.st_l1d_hit)
107                 val |= P(LVL, HIT);
108         else
109                 val |= P(LVL, MISS);
110
111         /*
112          * bit 5: Locked prefix
113          */
114         if (dse.st_locked)
115                 val |= P(LOCK, LOCKED);
116
117         return val;
118 }
119
120 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
121 {
122         union perf_mem_data_src dse;
123
124         dse.val = PERF_MEM_NA;
125
126         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
127                 dse.mem_op = PERF_MEM_OP_STORE;
128         else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
129                 dse.mem_op = PERF_MEM_OP_LOAD;
130
131         /*
132          * L1 info only valid for following events:
133          *
134          * MEM_UOPS_RETIRED.STLB_MISS_STORES
135          * MEM_UOPS_RETIRED.LOCK_STORES
136          * MEM_UOPS_RETIRED.SPLIT_STORES
137          * MEM_UOPS_RETIRED.ALL_STORES
138          */
139         if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
140                 if (status & 1)
141                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
142                 else
143                         dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
144         }
145         return dse.val;
146 }
147
148 static u64 load_latency_data(u64 status)
149 {
150         union intel_x86_pebs_dse dse;
151         u64 val;
152         int model = boot_cpu_data.x86_model;
153         int fam = boot_cpu_data.x86;
154
155         dse.val = status;
156
157         /*
158          * use the mapping table for bit 0-3
159          */
160         val = pebs_data_source[dse.ld_dse];
161
162         /*
163          * Nehalem models do not support TLB, Lock infos
164          */
165         if (fam == 0x6 && (model == 26 || model == 30
166             || model == 31 || model == 46)) {
167                 val |= P(TLB, NA) | P(LOCK, NA);
168                 return val;
169         }
170         /*
171          * bit 4: TLB access
172          * 0 = did not miss 2nd level TLB
173          * 1 = missed 2nd level TLB
174          */
175         if (dse.ld_stlb_miss)
176                 val |= P(TLB, MISS) | P(TLB, L2);
177         else
178                 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
179
180         /*
181          * bit 5: locked prefix
182          */
183         if (dse.ld_locked)
184                 val |= P(LOCK, LOCKED);
185
186         return val;
187 }
188
189 struct pebs_record_core {
190         u64 flags, ip;
191         u64 ax, bx, cx, dx;
192         u64 si, di, bp, sp;
193         u64 r8,  r9,  r10, r11;
194         u64 r12, r13, r14, r15;
195 };
196
197 struct pebs_record_nhm {
198         u64 flags, ip;
199         u64 ax, bx, cx, dx;
200         u64 si, di, bp, sp;
201         u64 r8,  r9,  r10, r11;
202         u64 r12, r13, r14, r15;
203         u64 status, dla, dse, lat;
204 };
205
206 /*
207  * Same as pebs_record_nhm, with two additional fields.
208  */
209 struct pebs_record_hsw {
210         u64 flags, ip;
211         u64 ax, bx, cx, dx;
212         u64 si, di, bp, sp;
213         u64 r8,  r9,  r10, r11;
214         u64 r12, r13, r14, r15;
215         u64 status, dla, dse, lat;
216         u64 real_ip, tsx_tuning;
217 };
218
219 union hsw_tsx_tuning {
220         struct {
221                 u32 cycles_last_block     : 32,
222                     hle_abort             : 1,
223                     rtm_abort             : 1,
224                     instruction_abort     : 1,
225                     non_instruction_abort : 1,
226                     retry                 : 1,
227                     data_conflict         : 1,
228                     capacity_writes       : 1,
229                     capacity_reads        : 1;
230         };
231         u64         value;
232 };
233
234 #define PEBS_HSW_TSX_FLAGS      0xff00000000ULL
235
236 /* Same as HSW, plus TSC */
237
238 struct pebs_record_skl {
239         u64 flags, ip;
240         u64 ax, bx, cx, dx;
241         u64 si, di, bp, sp;
242         u64 r8,  r9,  r10, r11;
243         u64 r12, r13, r14, r15;
244         u64 status, dla, dse, lat;
245         u64 real_ip, tsx_tuning;
246         u64 tsc;
247 };
248
249 void init_debug_store_on_cpu(int cpu)
250 {
251         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
252
253         if (!ds)
254                 return;
255
256         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
257                      (u32)((u64)(unsigned long)ds),
258                      (u32)((u64)(unsigned long)ds >> 32));
259 }
260
261 void fini_debug_store_on_cpu(int cpu)
262 {
263         if (!per_cpu(cpu_hw_events, cpu).ds)
264                 return;
265
266         wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
267 }
268
269 static DEFINE_PER_CPU(void *, insn_buffer);
270
271 static int alloc_pebs_buffer(int cpu)
272 {
273         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
274         int node = cpu_to_node(cpu);
275         int max;
276         void *buffer, *ibuffer;
277
278         if (!x86_pmu.pebs)
279                 return 0;
280
281         buffer = kzalloc_node(x86_pmu.pebs_buffer_size, GFP_KERNEL, node);
282         if (unlikely(!buffer))
283                 return -ENOMEM;
284
285         /*
286          * HSW+ already provides us the eventing ip; no need to allocate this
287          * buffer then.
288          */
289         if (x86_pmu.intel_cap.pebs_format < 2) {
290                 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
291                 if (!ibuffer) {
292                         kfree(buffer);
293                         return -ENOMEM;
294                 }
295                 per_cpu(insn_buffer, cpu) = ibuffer;
296         }
297
298         max = x86_pmu.pebs_buffer_size / x86_pmu.pebs_record_size;
299
300         ds->pebs_buffer_base = (u64)(unsigned long)buffer;
301         ds->pebs_index = ds->pebs_buffer_base;
302         ds->pebs_absolute_maximum = ds->pebs_buffer_base +
303                 max * x86_pmu.pebs_record_size;
304
305         return 0;
306 }
307
308 static void release_pebs_buffer(int cpu)
309 {
310         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
311
312         if (!ds || !x86_pmu.pebs)
313                 return;
314
315         kfree(per_cpu(insn_buffer, cpu));
316         per_cpu(insn_buffer, cpu) = NULL;
317
318         kfree((void *)(unsigned long)ds->pebs_buffer_base);
319         ds->pebs_buffer_base = 0;
320 }
321
322 static int alloc_bts_buffer(int cpu)
323 {
324         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
325         int node = cpu_to_node(cpu);
326         int max, thresh;
327         void *buffer;
328
329         if (!x86_pmu.bts)
330                 return 0;
331
332         buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
333         if (unlikely(!buffer)) {
334                 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
335                 return -ENOMEM;
336         }
337
338         max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
339         thresh = max / 16;
340
341         ds->bts_buffer_base = (u64)(unsigned long)buffer;
342         ds->bts_index = ds->bts_buffer_base;
343         ds->bts_absolute_maximum = ds->bts_buffer_base +
344                 max * BTS_RECORD_SIZE;
345         ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
346                 thresh * BTS_RECORD_SIZE;
347
348         return 0;
349 }
350
351 static void release_bts_buffer(int cpu)
352 {
353         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
354
355         if (!ds || !x86_pmu.bts)
356                 return;
357
358         kfree((void *)(unsigned long)ds->bts_buffer_base);
359         ds->bts_buffer_base = 0;
360 }
361
362 static int alloc_ds_buffer(int cpu)
363 {
364         int node = cpu_to_node(cpu);
365         struct debug_store *ds;
366
367         ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
368         if (unlikely(!ds))
369                 return -ENOMEM;
370
371         per_cpu(cpu_hw_events, cpu).ds = ds;
372
373         return 0;
374 }
375
376 static void release_ds_buffer(int cpu)
377 {
378         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
379
380         if (!ds)
381                 return;
382
383         per_cpu(cpu_hw_events, cpu).ds = NULL;
384         kfree(ds);
385 }
386
387 void release_ds_buffers(void)
388 {
389         int cpu;
390
391         if (!x86_pmu.bts && !x86_pmu.pebs)
392                 return;
393
394         get_online_cpus();
395         for_each_online_cpu(cpu)
396                 fini_debug_store_on_cpu(cpu);
397
398         for_each_possible_cpu(cpu) {
399                 release_pebs_buffer(cpu);
400                 release_bts_buffer(cpu);
401                 release_ds_buffer(cpu);
402         }
403         put_online_cpus();
404 }
405
406 void reserve_ds_buffers(void)
407 {
408         int bts_err = 0, pebs_err = 0;
409         int cpu;
410
411         x86_pmu.bts_active = 0;
412         x86_pmu.pebs_active = 0;
413
414         if (!x86_pmu.bts && !x86_pmu.pebs)
415                 return;
416
417         if (!x86_pmu.bts)
418                 bts_err = 1;
419
420         if (!x86_pmu.pebs)
421                 pebs_err = 1;
422
423         get_online_cpus();
424
425         for_each_possible_cpu(cpu) {
426                 if (alloc_ds_buffer(cpu)) {
427                         bts_err = 1;
428                         pebs_err = 1;
429                 }
430
431                 if (!bts_err && alloc_bts_buffer(cpu))
432                         bts_err = 1;
433
434                 if (!pebs_err && alloc_pebs_buffer(cpu))
435                         pebs_err = 1;
436
437                 if (bts_err && pebs_err)
438                         break;
439         }
440
441         if (bts_err) {
442                 for_each_possible_cpu(cpu)
443                         release_bts_buffer(cpu);
444         }
445
446         if (pebs_err) {
447                 for_each_possible_cpu(cpu)
448                         release_pebs_buffer(cpu);
449         }
450
451         if (bts_err && pebs_err) {
452                 for_each_possible_cpu(cpu)
453                         release_ds_buffer(cpu);
454         } else {
455                 if (x86_pmu.bts && !bts_err)
456                         x86_pmu.bts_active = 1;
457
458                 if (x86_pmu.pebs && !pebs_err)
459                         x86_pmu.pebs_active = 1;
460
461                 for_each_online_cpu(cpu)
462                         init_debug_store_on_cpu(cpu);
463         }
464
465         put_online_cpus();
466 }
467
468 /*
469  * BTS
470  */
471
472 struct event_constraint bts_constraint =
473         EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
474
475 void intel_pmu_enable_bts(u64 config)
476 {
477         unsigned long debugctlmsr;
478
479         debugctlmsr = get_debugctlmsr();
480
481         debugctlmsr |= DEBUGCTLMSR_TR;
482         debugctlmsr |= DEBUGCTLMSR_BTS;
483         if (config & ARCH_PERFMON_EVENTSEL_INT)
484                 debugctlmsr |= DEBUGCTLMSR_BTINT;
485
486         if (!(config & ARCH_PERFMON_EVENTSEL_OS))
487                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
488
489         if (!(config & ARCH_PERFMON_EVENTSEL_USR))
490                 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
491
492         update_debugctlmsr(debugctlmsr);
493 }
494
495 void intel_pmu_disable_bts(void)
496 {
497         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
498         unsigned long debugctlmsr;
499
500         if (!cpuc->ds)
501                 return;
502
503         debugctlmsr = get_debugctlmsr();
504
505         debugctlmsr &=
506                 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
507                   DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
508
509         update_debugctlmsr(debugctlmsr);
510 }
511
512 int intel_pmu_drain_bts_buffer(void)
513 {
514         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
515         struct debug_store *ds = cpuc->ds;
516         struct bts_record {
517                 u64     from;
518                 u64     to;
519                 u64     flags;
520         };
521         struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
522         struct bts_record *at, *base, *top;
523         struct perf_output_handle handle;
524         struct perf_event_header header;
525         struct perf_sample_data data;
526         unsigned long skip = 0;
527         struct pt_regs regs;
528
529         if (!event)
530                 return 0;
531
532         if (!x86_pmu.bts_active)
533                 return 0;
534
535         base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
536         top  = (struct bts_record *)(unsigned long)ds->bts_index;
537
538         if (top <= base)
539                 return 0;
540
541         memset(&regs, 0, sizeof(regs));
542
543         ds->bts_index = ds->bts_buffer_base;
544
545         perf_sample_data_init(&data, 0, event->hw.last_period);
546
547         /*
548          * BTS leaks kernel addresses in branches across the cpl boundary,
549          * such as traps or system calls, so unless the user is asking for
550          * kernel tracing (and right now it's not possible), we'd need to
551          * filter them out. But first we need to count how many of those we
552          * have in the current batch. This is an extra O(n) pass, however,
553          * it's much faster than the other one especially considering that
554          * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
555          * alloc_bts_buffer()).
556          */
557         for (at = base; at < top; at++) {
558                 /*
559                  * Note that right now *this* BTS code only works if
560                  * attr::exclude_kernel is set, but let's keep this extra
561                  * check here in case that changes.
562                  */
563                 if (event->attr.exclude_kernel &&
564                     (kernel_ip(at->from) || kernel_ip(at->to)))
565                         skip++;
566         }
567
568         /*
569          * Prepare a generic sample, i.e. fill in the invariant fields.
570          * We will overwrite the from and to address before we output
571          * the sample.
572          */
573         rcu_read_lock();
574         perf_prepare_sample(&header, &data, event, &regs);
575
576         if (perf_output_begin(&handle, event, header.size *
577                               (top - base - skip)))
578                 goto unlock;
579
580         for (at = base; at < top; at++) {
581                 /* Filter out any records that contain kernel addresses. */
582                 if (event->attr.exclude_kernel &&
583                     (kernel_ip(at->from) || kernel_ip(at->to)))
584                         continue;
585
586                 data.ip         = at->from;
587                 data.addr       = at->to;
588
589                 perf_output_sample(&handle, &header, &data, event);
590         }
591
592         perf_output_end(&handle);
593
594         /* There's new data available. */
595         event->hw.interrupts++;
596         event->pending_kill = POLL_IN;
597 unlock:
598         rcu_read_unlock();
599         return 1;
600 }
601
602 static inline void intel_pmu_drain_pebs_buffer(void)
603 {
604         struct pt_regs regs;
605
606         x86_pmu.drain_pebs(&regs);
607 }
608
609 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
610 {
611         if (!sched_in)
612                 intel_pmu_drain_pebs_buffer();
613 }
614
615 /*
616  * PEBS
617  */
618 struct event_constraint intel_core2_pebs_event_constraints[] = {
619         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
620         INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
621         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
622         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
623         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
624         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
625         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
626         EVENT_CONSTRAINT_END
627 };
628
629 struct event_constraint intel_atom_pebs_event_constraints[] = {
630         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
631         INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
632         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
633         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
634         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
635         /* Allow all events as PEBS with no flags */
636         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
637         EVENT_CONSTRAINT_END
638 };
639
640 struct event_constraint intel_slm_pebs_event_constraints[] = {
641         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
642         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
643         /* Allow all events as PEBS with no flags */
644         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
645         EVENT_CONSTRAINT_END
646 };
647
648 struct event_constraint intel_glm_pebs_event_constraints[] = {
649         /* Allow all events as PEBS with no flags */
650         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
651         EVENT_CONSTRAINT_END
652 };
653
654 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
655         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
656         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
657         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
658         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
659         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
660         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
661         INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
662         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
663         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
664         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
665         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
666         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
667         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
668         EVENT_CONSTRAINT_END
669 };
670
671 struct event_constraint intel_westmere_pebs_event_constraints[] = {
672         INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
673         INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
674         INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
675         INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
676         INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
677         INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
678         INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
679         INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
680         INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
681         INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
682         INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
683         /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
684         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
685         EVENT_CONSTRAINT_END
686 };
687
688 struct event_constraint intel_snb_pebs_event_constraints[] = {
689         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
690         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
691         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
692         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
693         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
694         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
695         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
696         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
697         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
698         /* Allow all events as PEBS with no flags */
699         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
700         EVENT_CONSTRAINT_END
701 };
702
703 struct event_constraint intel_ivb_pebs_event_constraints[] = {
704         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
705         INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
706         INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
707         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
708         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
709         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
710         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
711         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
712         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
713         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
714         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
715         /* Allow all events as PEBS with no flags */
716         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
717         EVENT_CONSTRAINT_END
718 };
719
720 struct event_constraint intel_hsw_pebs_event_constraints[] = {
721         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
722         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
723         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
724         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
725         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
726         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
727         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
728         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
729         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
730         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
731         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
732         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
733         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
734         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
735         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
736         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
737         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
738         /* Allow all events as PEBS with no flags */
739         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
740         EVENT_CONSTRAINT_END
741 };
742
743 struct event_constraint intel_bdw_pebs_event_constraints[] = {
744         INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
745         INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
746         /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
747         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
748         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
749         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
750         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
751         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
752         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
753         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
754         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
755         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
756         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
757         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
758         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
759         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
760         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
761         /* Allow all events as PEBS with no flags */
762         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
763         EVENT_CONSTRAINT_END
764 };
765
766
767 struct event_constraint intel_skl_pebs_event_constraints[] = {
768         INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),      /* INST_RETIRED.PREC_DIST */
769         /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
770         INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
771         /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
772         INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
773         INTEL_PLD_CONSTRAINT(0x1cd, 0xf),                     /* MEM_TRANS_RETIRED.* */
774         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
775         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
776         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
777         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
778         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
779         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
780         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
781         INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
782         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
783         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
784         INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
785         /* Allow all events as PEBS with no flags */
786         INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
787         EVENT_CONSTRAINT_END
788 };
789
790 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
791 {
792         struct event_constraint *c;
793
794         if (!event->attr.precise_ip)
795                 return NULL;
796
797         if (x86_pmu.pebs_constraints) {
798                 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
799                         if ((event->hw.config & c->cmask) == c->code) {
800                                 event->hw.flags |= c->flags;
801                                 return c;
802                         }
803                 }
804         }
805
806         return &emptyconstraint;
807 }
808
809 /*
810  * We need the sched_task callback even for per-cpu events when we use
811  * the large interrupt threshold, such that we can provide PID and TID
812  * to PEBS samples.
813  */
814 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
815 {
816         return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
817 }
818
819 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
820 {
821         struct debug_store *ds = cpuc->ds;
822         u64 threshold;
823
824         if (cpuc->n_pebs == cpuc->n_large_pebs) {
825                 threshold = ds->pebs_absolute_maximum -
826                         x86_pmu.max_pebs_events * x86_pmu.pebs_record_size;
827         } else {
828                 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
829         }
830
831         ds->pebs_interrupt_threshold = threshold;
832 }
833
834 static void
835 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
836 {
837         /*
838          * Make sure we get updated with the first PEBS
839          * event. It will trigger also during removal, but
840          * that does not hurt:
841          */
842         bool update = cpuc->n_pebs == 1;
843
844         if (needed_cb != pebs_needs_sched_cb(cpuc)) {
845                 if (!needed_cb)
846                         perf_sched_cb_inc(pmu);
847                 else
848                         perf_sched_cb_dec(pmu);
849
850                 update = true;
851         }
852
853         if (update)
854                 pebs_update_threshold(cpuc);
855 }
856
857 void intel_pmu_pebs_add(struct perf_event *event)
858 {
859         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
860         struct hw_perf_event *hwc = &event->hw;
861         bool needed_cb = pebs_needs_sched_cb(cpuc);
862
863         cpuc->n_pebs++;
864         if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
865                 cpuc->n_large_pebs++;
866
867         pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
868 }
869
870 void intel_pmu_pebs_enable(struct perf_event *event)
871 {
872         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
873         struct hw_perf_event *hwc = &event->hw;
874         struct debug_store *ds = cpuc->ds;
875
876         hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
877
878         cpuc->pebs_enabled |= 1ULL << hwc->idx;
879
880         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
881                 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
882         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
883                 cpuc->pebs_enabled |= 1ULL << 63;
884
885         /*
886          * Use auto-reload if possible to save a MSR write in the PMI.
887          * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
888          */
889         if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
890                 ds->pebs_event_reset[hwc->idx] =
891                         (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
892         }
893 }
894
895 void intel_pmu_pebs_del(struct perf_event *event)
896 {
897         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
898         struct hw_perf_event *hwc = &event->hw;
899         bool needed_cb = pebs_needs_sched_cb(cpuc);
900
901         cpuc->n_pebs--;
902         if (hwc->flags & PERF_X86_EVENT_FREERUNNING)
903                 cpuc->n_large_pebs--;
904
905         pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
906 }
907
908 void intel_pmu_pebs_disable(struct perf_event *event)
909 {
910         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
911         struct hw_perf_event *hwc = &event->hw;
912
913         if (cpuc->n_pebs == cpuc->n_large_pebs)
914                 intel_pmu_drain_pebs_buffer();
915
916         cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
917
918         if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
919                 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
920         else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
921                 cpuc->pebs_enabled &= ~(1ULL << 63);
922
923         if (cpuc->enabled)
924                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
925
926         hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
927 }
928
929 void intel_pmu_pebs_enable_all(void)
930 {
931         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
932
933         if (cpuc->pebs_enabled)
934                 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
935 }
936
937 void intel_pmu_pebs_disable_all(void)
938 {
939         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
940
941         if (cpuc->pebs_enabled)
942                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
943 }
944
945 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
946 {
947         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
948         unsigned long from = cpuc->lbr_entries[0].from;
949         unsigned long old_to, to = cpuc->lbr_entries[0].to;
950         unsigned long ip = regs->ip;
951         int is_64bit = 0;
952         void *kaddr;
953         int size;
954
955         /*
956          * We don't need to fixup if the PEBS assist is fault like
957          */
958         if (!x86_pmu.intel_cap.pebs_trap)
959                 return 1;
960
961         /*
962          * No LBR entry, no basic block, no rewinding
963          */
964         if (!cpuc->lbr_stack.nr || !from || !to)
965                 return 0;
966
967         /*
968          * Basic blocks should never cross user/kernel boundaries
969          */
970         if (kernel_ip(ip) != kernel_ip(to))
971                 return 0;
972
973         /*
974          * unsigned math, either ip is before the start (impossible) or
975          * the basic block is larger than 1 page (sanity)
976          */
977         if ((ip - to) > PEBS_FIXUP_SIZE)
978                 return 0;
979
980         /*
981          * We sampled a branch insn, rewind using the LBR stack
982          */
983         if (ip == to) {
984                 set_linear_ip(regs, from);
985                 return 1;
986         }
987
988         size = ip - to;
989         if (!kernel_ip(ip)) {
990                 int bytes;
991                 u8 *buf = this_cpu_read(insn_buffer);
992
993                 /* 'size' must fit our buffer, see above */
994                 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
995                 if (bytes != 0)
996                         return 0;
997
998                 kaddr = buf;
999         } else {
1000                 kaddr = (void *)to;
1001         }
1002
1003         do {
1004                 struct insn insn;
1005
1006                 old_to = to;
1007
1008 #ifdef CONFIG_X86_64
1009                 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1010 #endif
1011                 insn_init(&insn, kaddr, size, is_64bit);
1012                 insn_get_length(&insn);
1013                 /*
1014                  * Make sure there was not a problem decoding the
1015                  * instruction and getting the length.  This is
1016                  * doubly important because we have an infinite
1017                  * loop if insn.length=0.
1018                  */
1019                 if (!insn.length)
1020                         break;
1021
1022                 to += insn.length;
1023                 kaddr += insn.length;
1024                 size -= insn.length;
1025         } while (to < ip);
1026
1027         if (to == ip) {
1028                 set_linear_ip(regs, old_to);
1029                 return 1;
1030         }
1031
1032         /*
1033          * Even though we decoded the basic block, the instruction stream
1034          * never matched the given IP, either the TO or the IP got corrupted.
1035          */
1036         return 0;
1037 }
1038
1039 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1040 {
1041         if (pebs->tsx_tuning) {
1042                 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1043                 return tsx.cycles_last_block;
1044         }
1045         return 0;
1046 }
1047
1048 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1049 {
1050         u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1051
1052         /* For RTM XABORTs also log the abort code from AX */
1053         if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1054                 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1055         return txn;
1056 }
1057
1058 static void setup_pebs_sample_data(struct perf_event *event,
1059                                    struct pt_regs *iregs, void *__pebs,
1060                                    struct perf_sample_data *data,
1061                                    struct pt_regs *regs)
1062 {
1063 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1064                 (PERF_X86_EVENT_PEBS_ST_HSW | \
1065                  PERF_X86_EVENT_PEBS_LD_HSW | \
1066                  PERF_X86_EVENT_PEBS_NA_HSW)
1067         /*
1068          * We cast to the biggest pebs_record but are careful not to
1069          * unconditionally access the 'extra' entries.
1070          */
1071         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1072         struct pebs_record_skl *pebs = __pebs;
1073         u64 sample_type;
1074         int fll, fst, dsrc;
1075         int fl = event->hw.flags;
1076
1077         if (pebs == NULL)
1078                 return;
1079
1080         sample_type = event->attr.sample_type;
1081         dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1082
1083         fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1084         fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1085
1086         perf_sample_data_init(data, 0, event->hw.last_period);
1087
1088         data->period = event->hw.last_period;
1089
1090         /*
1091          * Use latency for weight (only avail with PEBS-LL)
1092          */
1093         if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1094                 data->weight = pebs->lat;
1095
1096         /*
1097          * data.data_src encodes the data source
1098          */
1099         if (dsrc) {
1100                 u64 val = PERF_MEM_NA;
1101                 if (fll)
1102                         val = load_latency_data(pebs->dse);
1103                 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1104                         val = precise_datala_hsw(event, pebs->dse);
1105                 else if (fst)
1106                         val = precise_store_data(pebs->dse);
1107                 data->data_src.val = val;
1108         }
1109
1110         /*
1111          * We use the interrupt regs as a base because the PEBS record does not
1112          * contain a full regs set, specifically it seems to lack segment
1113          * descriptors, which get used by things like user_mode().
1114          *
1115          * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1116          *
1117          * We must however always use BP,SP from iregs for the unwinder to stay
1118          * sane; the record BP,SP can point into thin air when the record is
1119          * from a previous PMI context or an (I)RET happend between the record
1120          * and PMI.
1121          */
1122         *regs = *iregs;
1123         regs->flags = pebs->flags;
1124         set_linear_ip(regs, pebs->ip);
1125
1126         if (sample_type & PERF_SAMPLE_REGS_INTR) {
1127                 regs->ax = pebs->ax;
1128                 regs->bx = pebs->bx;
1129                 regs->cx = pebs->cx;
1130                 regs->dx = pebs->dx;
1131                 regs->si = pebs->si;
1132                 regs->di = pebs->di;
1133
1134                 /*
1135                  * Per the above; only set BP,SP if we don't need callchains.
1136                  *
1137                  * XXX: does this make sense?
1138                  */
1139                 if (!(sample_type & PERF_SAMPLE_CALLCHAIN)) {
1140                         regs->bp = pebs->bp;
1141                         regs->sp = pebs->sp;
1142                 }
1143
1144                 /*
1145                  * Preserve PERF_EFLAGS_VM from set_linear_ip().
1146                  */
1147                 regs->flags = pebs->flags | (regs->flags & PERF_EFLAGS_VM);
1148 #ifndef CONFIG_X86_32
1149                 regs->r8 = pebs->r8;
1150                 regs->r9 = pebs->r9;
1151                 regs->r10 = pebs->r10;
1152                 regs->r11 = pebs->r11;
1153                 regs->r12 = pebs->r12;
1154                 regs->r13 = pebs->r13;
1155                 regs->r14 = pebs->r14;
1156                 regs->r15 = pebs->r15;
1157 #endif
1158         }
1159
1160         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
1161                 regs->ip = pebs->real_ip;
1162                 regs->flags |= PERF_EFLAGS_EXACT;
1163         } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs))
1164                 regs->flags |= PERF_EFLAGS_EXACT;
1165         else
1166                 regs->flags &= ~PERF_EFLAGS_EXACT;
1167
1168         if ((sample_type & PERF_SAMPLE_ADDR) &&
1169             x86_pmu.intel_cap.pebs_format >= 1)
1170                 data->addr = pebs->dla;
1171
1172         if (x86_pmu.intel_cap.pebs_format >= 2) {
1173                 /* Only set the TSX weight when no memory weight. */
1174                 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1175                         data->weight = intel_hsw_weight(pebs);
1176
1177                 if (sample_type & PERF_SAMPLE_TRANSACTION)
1178                         data->txn = intel_hsw_transaction(pebs);
1179         }
1180
1181         /*
1182          * v3 supplies an accurate time stamp, so we use that
1183          * for the time stamp.
1184          *
1185          * We can only do this for the default trace clock.
1186          */
1187         if (x86_pmu.intel_cap.pebs_format >= 3 &&
1188                 event->attr.use_clockid == 0)
1189                 data->time = native_sched_clock_from_tsc(pebs->tsc);
1190
1191         if (has_branch_stack(event))
1192                 data->br_stack = &cpuc->lbr_stack;
1193 }
1194
1195 static inline void *
1196 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1197 {
1198         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1199         void *at;
1200         u64 pebs_status;
1201
1202         /*
1203          * fmt0 does not have a status bitfield (does not use
1204          * perf_record_nhm format)
1205          */
1206         if (x86_pmu.intel_cap.pebs_format < 1)
1207                 return base;
1208
1209         if (base == NULL)
1210                 return NULL;
1211
1212         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1213                 struct pebs_record_nhm *p = at;
1214
1215                 if (test_bit(bit, (unsigned long *)&p->status)) {
1216                         /* PEBS v3 has accurate status bits */
1217                         if (x86_pmu.intel_cap.pebs_format >= 3)
1218                                 return at;
1219
1220                         if (p->status == (1 << bit))
1221                                 return at;
1222
1223                         /* clear non-PEBS bit and re-check */
1224                         pebs_status = p->status & cpuc->pebs_enabled;
1225                         pebs_status &= (1ULL << MAX_PEBS_EVENTS) - 1;
1226                         if (pebs_status == (1 << bit))
1227                                 return at;
1228                 }
1229         }
1230         return NULL;
1231 }
1232
1233 static void __intel_pmu_pebs_event(struct perf_event *event,
1234                                    struct pt_regs *iregs,
1235                                    void *base, void *top,
1236                                    int bit, int count)
1237 {
1238         struct perf_sample_data data;
1239         struct pt_regs regs;
1240         void *at = get_next_pebs_record_by_bit(base, top, bit);
1241
1242         if (!intel_pmu_save_and_restart(event) &&
1243             !(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD))
1244                 return;
1245
1246         while (count > 1) {
1247                 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1248                 perf_event_output(event, &data, &regs);
1249                 at += x86_pmu.pebs_record_size;
1250                 at = get_next_pebs_record_by_bit(at, top, bit);
1251                 count--;
1252         }
1253
1254         setup_pebs_sample_data(event, iregs, at, &data, &regs);
1255
1256         /*
1257          * All but the last records are processed.
1258          * The last one is left to be able to call the overflow handler.
1259          */
1260         if (perf_event_overflow(event, &data, &regs)) {
1261                 x86_pmu_stop(event, 0);
1262                 return;
1263         }
1264
1265 }
1266
1267 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1268 {
1269         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1270         struct debug_store *ds = cpuc->ds;
1271         struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1272         struct pebs_record_core *at, *top;
1273         int n;
1274
1275         if (!x86_pmu.pebs_active)
1276                 return;
1277
1278         at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1279         top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1280
1281         /*
1282          * Whatever else happens, drain the thing
1283          */
1284         ds->pebs_index = ds->pebs_buffer_base;
1285
1286         if (!test_bit(0, cpuc->active_mask))
1287                 return;
1288
1289         WARN_ON_ONCE(!event);
1290
1291         if (!event->attr.precise_ip)
1292                 return;
1293
1294         n = top - at;
1295         if (n <= 0)
1296                 return;
1297
1298         __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1299 }
1300
1301 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1302 {
1303         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1304         struct debug_store *ds = cpuc->ds;
1305         struct perf_event *event;
1306         void *base, *at, *top;
1307         short counts[MAX_PEBS_EVENTS] = {};
1308         short error[MAX_PEBS_EVENTS] = {};
1309         int bit, i;
1310
1311         if (!x86_pmu.pebs_active)
1312                 return;
1313
1314         base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1315         top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1316
1317         ds->pebs_index = ds->pebs_buffer_base;
1318
1319         if (unlikely(base >= top))
1320                 return;
1321
1322         for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1323                 struct pebs_record_nhm *p = at;
1324                 u64 pebs_status;
1325
1326                 pebs_status = p->status & cpuc->pebs_enabled;
1327                 pebs_status &= (1ULL << x86_pmu.max_pebs_events) - 1;
1328
1329                 /* PEBS v3 has more accurate status bits */
1330                 if (x86_pmu.intel_cap.pebs_format >= 3) {
1331                         for_each_set_bit(bit, (unsigned long *)&pebs_status,
1332                                          x86_pmu.max_pebs_events)
1333                                 counts[bit]++;
1334
1335                         continue;
1336                 }
1337
1338                 /*
1339                  * On some CPUs the PEBS status can be zero when PEBS is
1340                  * racing with clearing of GLOBAL_STATUS.
1341                  *
1342                  * Normally we would drop that record, but in the
1343                  * case when there is only a single active PEBS event
1344                  * we can assume it's for that event.
1345                  */
1346                 if (!pebs_status && cpuc->pebs_enabled &&
1347                         !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1348                         pebs_status = cpuc->pebs_enabled;
1349
1350                 bit = find_first_bit((unsigned long *)&pebs_status,
1351                                         x86_pmu.max_pebs_events);
1352                 if (bit >= x86_pmu.max_pebs_events)
1353                         continue;
1354
1355                 /*
1356                  * The PEBS hardware does not deal well with the situation
1357                  * when events happen near to each other and multiple bits
1358                  * are set. But it should happen rarely.
1359                  *
1360                  * If these events include one PEBS and multiple non-PEBS
1361                  * events, it doesn't impact PEBS record. The record will
1362                  * be handled normally. (slow path)
1363                  *
1364                  * If these events include two or more PEBS events, the
1365                  * records for the events can be collapsed into a single
1366                  * one, and it's not possible to reconstruct all events
1367                  * that caused the PEBS record. It's called collision.
1368                  * If collision happened, the record will be dropped.
1369                  */
1370                 if (p->status != (1ULL << bit)) {
1371                         for_each_set_bit(i, (unsigned long *)&pebs_status,
1372                                          x86_pmu.max_pebs_events)
1373                                 error[i]++;
1374                         continue;
1375                 }
1376
1377                 counts[bit]++;
1378         }
1379
1380         for (bit = 0; bit < x86_pmu.max_pebs_events; bit++) {
1381                 if ((counts[bit] == 0) && (error[bit] == 0))
1382                         continue;
1383
1384                 event = cpuc->events[bit];
1385                 if (WARN_ON_ONCE(!event))
1386                         continue;
1387
1388                 if (WARN_ON_ONCE(!event->attr.precise_ip))
1389                         continue;
1390
1391                 /* log dropped samples number */
1392                 if (error[bit]) {
1393                         perf_log_lost_samples(event, error[bit]);
1394
1395                         if (perf_event_account_interrupt(event))
1396                                 x86_pmu_stop(event, 0);
1397                 }
1398
1399                 if (counts[bit]) {
1400                         __intel_pmu_pebs_event(event, iregs, base,
1401                                                top, bit, counts[bit]);
1402                 }
1403         }
1404 }
1405
1406 /*
1407  * BTS, PEBS probe and setup
1408  */
1409
1410 void __init intel_ds_init(void)
1411 {
1412         /*
1413          * No support for 32bit formats
1414          */
1415         if (!boot_cpu_has(X86_FEATURE_DTES64))
1416                 return;
1417
1418         x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
1419         x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1420         x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1421         if (x86_pmu.pebs) {
1422                 char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
1423                 int format = x86_pmu.intel_cap.pebs_format;
1424
1425                 switch (format) {
1426                 case 0:
1427                         pr_cont("PEBS fmt0%c, ", pebs_type);
1428                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1429                         /*
1430                          * Using >PAGE_SIZE buffers makes the WRMSR to
1431                          * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1432                          * mysteriously hang on Core2.
1433                          *
1434                          * As a workaround, we don't do this.
1435                          */
1436                         x86_pmu.pebs_buffer_size = PAGE_SIZE;
1437                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1438                         break;
1439
1440                 case 1:
1441                         pr_cont("PEBS fmt1%c, ", pebs_type);
1442                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1443                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1444                         break;
1445
1446                 case 2:
1447                         pr_cont("PEBS fmt2%c, ", pebs_type);
1448                         x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1449                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1450                         break;
1451
1452                 case 3:
1453                         pr_cont("PEBS fmt3%c, ", pebs_type);
1454                         x86_pmu.pebs_record_size =
1455                                                 sizeof(struct pebs_record_skl);
1456                         x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1457                         x86_pmu.free_running_flags |= PERF_SAMPLE_TIME;
1458                         break;
1459
1460                 default:
1461                         pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1462                         x86_pmu.pebs = 0;
1463                 }
1464         }
1465 }
1466
1467 void perf_restore_debug_store(void)
1468 {
1469         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1470
1471         if (!x86_pmu.bts && !x86_pmu.pebs)
1472                 return;
1473
1474         wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
1475 }