Merge branches 'clk-renesas', 'clk-qcom', 'clk-mtk', 'clk-milbeaut' and 'clk-imx...
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59                                 [PERF_COUNT_HW_CACHE_MAX]
60                                 [PERF_COUNT_HW_CACHE_OP_MAX]
61                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70         struct hw_perf_event *hwc = &event->hw;
71         int shift = 64 - x86_pmu.cntval_bits;
72         u64 prev_raw_count, new_raw_count;
73         int idx = hwc->idx;
74         u64 delta;
75
76         if (idx == INTEL_PMC_IDX_FIXED_BTS)
77                 return 0;
78
79         /*
80          * Careful: an NMI might modify the previous event value.
81          *
82          * Our tactic to handle this is to first atomically read and
83          * exchange a new raw count - then add that new-prev delta
84          * count to the generic event atomically:
85          */
86 again:
87         prev_raw_count = local64_read(&hwc->prev_count);
88         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91                                         new_raw_count) != prev_raw_count)
92                 goto again;
93
94         /*
95          * Now we have the new raw value and have updated the prev
96          * timestamp already. We can now calculate the elapsed delta
97          * (event-)time and add that to the generic event.
98          *
99          * Careful, not all hw sign-extends above the physical width
100          * of the count.
101          */
102         delta = (new_raw_count << shift) - (prev_raw_count << shift);
103         delta >>= shift;
104
105         local64_add(delta, &event->count);
106         local64_sub(delta, &hwc->period_left);
107
108         return new_raw_count;
109 }
110
111 /*
112  * Find and validate any extra registers to set up.
113  */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116         struct hw_perf_event_extra *reg;
117         struct extra_reg *er;
118
119         reg = &event->hw.extra_reg;
120
121         if (!x86_pmu.extra_regs)
122                 return 0;
123
124         for (er = x86_pmu.extra_regs; er->msr; er++) {
125                 if (er->event != (config & er->config_mask))
126                         continue;
127                 if (event->attr.config1 & ~er->valid_mask)
128                         return -EINVAL;
129                 /* Check if the extra msrs can be safely accessed*/
130                 if (!er->extra_msr_access)
131                         return -ENXIO;
132
133                 reg->idx = er->idx;
134                 reg->config = event->attr.config1;
135                 reg->reg = er->msr;
136                 break;
137         }
138         return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149         int i;
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153                         goto perfctr_fail;
154         }
155
156         for (i = 0; i < x86_pmu.num_counters; i++) {
157                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158                         goto eventsel_fail;
159         }
160
161         return true;
162
163 eventsel_fail:
164         for (i--; i >= 0; i--)
165                 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167         i = x86_pmu.num_counters;
168
169 perfctr_fail:
170         for (i--; i >= 0; i--)
171                 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173         return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178         int i;
179
180         for (i = 0; i < x86_pmu.num_counters; i++) {
181                 release_perfctr_nmi(x86_pmu_event_addr(i));
182                 release_evntsel_nmi(x86_pmu_config_addr(i));
183         }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195         u64 val, val_fail = -1, val_new= ~0;
196         int i, reg, reg_fail = -1, ret = 0;
197         int bios_fail = 0;
198         int reg_safe = -1;
199
200         /*
201          * Check to see if the BIOS enabled any of the counters, if so
202          * complain and bail.
203          */
204         for (i = 0; i < x86_pmu.num_counters; i++) {
205                 reg = x86_pmu_config_addr(i);
206                 ret = rdmsrl_safe(reg, &val);
207                 if (ret)
208                         goto msr_fail;
209                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210                         bios_fail = 1;
211                         val_fail = val;
212                         reg_fail = reg;
213                 } else {
214                         reg_safe = i;
215                 }
216         }
217
218         if (x86_pmu.num_counters_fixed) {
219                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220                 ret = rdmsrl_safe(reg, &val);
221                 if (ret)
222                         goto msr_fail;
223                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224                         if (val & (0x03 << i*4)) {
225                                 bios_fail = 1;
226                                 val_fail = val;
227                                 reg_fail = reg;
228                         }
229                 }
230         }
231
232         /*
233          * If all the counters are enabled, the below test will always
234          * fail.  The tools will also become useless in this scenario.
235          * Just fail and disable the hardware counters.
236          */
237
238         if (reg_safe == -1) {
239                 reg = reg_safe;
240                 goto msr_fail;
241         }
242
243         /*
244          * Read the current value, change it and read it back to see if it
245          * matches, this is needed to detect certain hardware emulators
246          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247          */
248         reg = x86_pmu_event_addr(reg_safe);
249         if (rdmsrl_safe(reg, &val))
250                 goto msr_fail;
251         val ^= 0xffffUL;
252         ret = wrmsrl_safe(reg, val);
253         ret |= rdmsrl_safe(reg, &val_new);
254         if (ret || val != val_new)
255                 goto msr_fail;
256
257         /*
258          * We still allow the PMU driver to operate:
259          */
260         if (bios_fail) {
261                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263                               reg_fail, val_fail);
264         }
265
266         return true;
267
268 msr_fail:
269         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270                 pr_cont("PMU not available due to virtualization, using software events only.\n");
271         } else {
272                 pr_cont("Broken PMU hardware detected, using software events only.\n");
273                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274                        reg, val_new);
275         }
276
277         return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282         x86_release_hardware();
283         atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288         hw_perf_event_destroy(event);
289
290         /* undo the lbr/bts event accounting */
291         x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296         return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302         struct perf_event_attr *attr = &event->attr;
303         unsigned int cache_type, cache_op, cache_result;
304         u64 config, val;
305
306         config = attr->config;
307
308         cache_type = (config >> 0) & 0xff;
309         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310                 return -EINVAL;
311         cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313         cache_op = (config >>  8) & 0xff;
314         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315                 return -EINVAL;
316         cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318         cache_result = (config >> 16) & 0xff;
319         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320                 return -EINVAL;
321         cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325         if (val == 0)
326                 return -ENOENT;
327
328         if (val == -1)
329                 return -EINVAL;
330
331         hwc->config |= val;
332         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333         return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338         int err = 0;
339
340         if (!atomic_inc_not_zero(&pmc_refcount)) {
341                 mutex_lock(&pmc_reserve_mutex);
342                 if (atomic_read(&pmc_refcount) == 0) {
343                         if (!reserve_pmc_hardware())
344                                 err = -EBUSY;
345                         else
346                                 reserve_ds_buffers();
347                 }
348                 if (!err)
349                         atomic_inc(&pmc_refcount);
350                 mutex_unlock(&pmc_reserve_mutex);
351         }
352
353         return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359                 release_pmc_hardware();
360                 release_ds_buffers();
361                 mutex_unlock(&pmc_reserve_mutex);
362         }
363 }
364
365 /*
366  * Check if we can create event of a certain type (that no conflicting events
367  * are present).
368  */
369 int x86_add_exclusive(unsigned int what)
370 {
371         int i;
372
373         /*
374          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375          * LBR and BTS are still mutually exclusive.
376          */
377         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378                 return 0;
379
380         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381                 mutex_lock(&pmc_reserve_mutex);
382                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384                                 goto fail_unlock;
385                 }
386                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387                 mutex_unlock(&pmc_reserve_mutex);
388         }
389
390         atomic_inc(&active_events);
391         return 0;
392
393 fail_unlock:
394         mutex_unlock(&pmc_reserve_mutex);
395         return -EBUSY;
396 }
397
398 void x86_del_exclusive(unsigned int what)
399 {
400         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401                 return;
402
403         atomic_dec(&x86_pmu.lbr_exclusive[what]);
404         atomic_dec(&active_events);
405 }
406
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409         struct perf_event_attr *attr = &event->attr;
410         struct hw_perf_event *hwc = &event->hw;
411         u64 config;
412
413         if (!is_sampling_event(event)) {
414                 hwc->sample_period = x86_pmu.max_period;
415                 hwc->last_period = hwc->sample_period;
416                 local64_set(&hwc->period_left, hwc->sample_period);
417         }
418
419         if (attr->type == PERF_TYPE_RAW)
420                 return x86_pmu_extra_regs(event->attr.config, event);
421
422         if (attr->type == PERF_TYPE_HW_CACHE)
423                 return set_ext_hw_attr(hwc, event);
424
425         if (attr->config >= x86_pmu.max_events)
426                 return -EINVAL;
427
428         attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430         /*
431          * The generic map:
432          */
433         config = x86_pmu.event_map(attr->config);
434
435         if (config == 0)
436                 return -ENOENT;
437
438         if (config == -1LL)
439                 return -EINVAL;
440
441         hwc->config |= config;
442
443         return 0;
444 }
445
446 /*
447  * check that branch_sample_type is compatible with
448  * settings needed for precise_ip > 1 which implies
449  * using the LBR to capture ALL taken branches at the
450  * priv levels of the measurement
451  */
452 static inline int precise_br_compat(struct perf_event *event)
453 {
454         u64 m = event->attr.branch_sample_type;
455         u64 b = 0;
456
457         /* must capture all branches */
458         if (!(m & PERF_SAMPLE_BRANCH_ANY))
459                 return 0;
460
461         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462
463         if (!event->attr.exclude_user)
464                 b |= PERF_SAMPLE_BRANCH_USER;
465
466         if (!event->attr.exclude_kernel)
467                 b |= PERF_SAMPLE_BRANCH_KERNEL;
468
469         /*
470          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471          */
472
473         return m == b;
474 }
475
476 int x86_pmu_max_precise(void)
477 {
478         int precise = 0;
479
480         /* Support for constant skid */
481         if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482                 precise++;
483
484                 /* Support for IP fixup */
485                 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486                         precise++;
487
488                 if (x86_pmu.pebs_prec_dist)
489                         precise++;
490         }
491         return precise;
492 }
493
494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496         if (event->attr.precise_ip) {
497                 int precise = x86_pmu_max_precise();
498
499                 if (event->attr.precise_ip > precise)
500                         return -EOPNOTSUPP;
501
502                 /* There's no sense in having PEBS for non sampling events: */
503                 if (!is_sampling_event(event))
504                         return -EINVAL;
505         }
506         /*
507          * check that PEBS LBR correction does not conflict with
508          * whatever the user is asking with attr->branch_sample_type
509          */
510         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511                 u64 *br_type = &event->attr.branch_sample_type;
512
513                 if (has_branch_stack(event)) {
514                         if (!precise_br_compat(event))
515                                 return -EOPNOTSUPP;
516
517                         /* branch_sample_type is compatible */
518
519                 } else {
520                         /*
521                          * user did not specify  branch_sample_type
522                          *
523                          * For PEBS fixups, we capture all
524                          * the branches at the priv level of the
525                          * event.
526                          */
527                         *br_type = PERF_SAMPLE_BRANCH_ANY;
528
529                         if (!event->attr.exclude_user)
530                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
531
532                         if (!event->attr.exclude_kernel)
533                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534                 }
535         }
536
537         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538                 event->attach_state |= PERF_ATTACH_TASK_DATA;
539
540         /*
541          * Generate PMC IRQs:
542          * (keep 'enabled' bit clear for now)
543          */
544         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545
546         /*
547          * Count user and OS events unless requested not to
548          */
549         if (!event->attr.exclude_user)
550                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551         if (!event->attr.exclude_kernel)
552                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553
554         if (event->attr.type == PERF_TYPE_RAW)
555                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556
557         if (event->attr.sample_period && x86_pmu.limit_period) {
558                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559                                 event->attr.sample_period)
560                         return -EINVAL;
561         }
562
563         return x86_setup_perfctr(event);
564 }
565
566 /*
567  * Setup the hardware configuration for a given attr_type
568  */
569 static int __x86_pmu_event_init(struct perf_event *event)
570 {
571         int err;
572
573         if (!x86_pmu_initialized())
574                 return -ENODEV;
575
576         err = x86_reserve_hardware();
577         if (err)
578                 return err;
579
580         atomic_inc(&active_events);
581         event->destroy = hw_perf_event_destroy;
582
583         event->hw.idx = -1;
584         event->hw.last_cpu = -1;
585         event->hw.last_tag = ~0ULL;
586
587         /* mark unused */
588         event->hw.extra_reg.idx = EXTRA_REG_NONE;
589         event->hw.branch_reg.idx = EXTRA_REG_NONE;
590
591         return x86_pmu.hw_config(event);
592 }
593
594 void x86_pmu_disable_all(void)
595 {
596         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
597         int idx;
598
599         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
600                 u64 val;
601
602                 if (!test_bit(idx, cpuc->active_mask))
603                         continue;
604                 rdmsrl(x86_pmu_config_addr(idx), val);
605                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
606                         continue;
607                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
608                 wrmsrl(x86_pmu_config_addr(idx), val);
609         }
610 }
611
612 /*
613  * There may be PMI landing after enabled=0. The PMI hitting could be before or
614  * after disable_all.
615  *
616  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
617  * It will not be re-enabled in the NMI handler again, because enabled=0. After
618  * handling the NMI, disable_all will be called, which will not change the
619  * state either. If PMI hits after disable_all, the PMU is already disabled
620  * before entering NMI handler. The NMI handler will not change the state
621  * either.
622  *
623  * So either situation is harmless.
624  */
625 static void x86_pmu_disable(struct pmu *pmu)
626 {
627         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
628
629         if (!x86_pmu_initialized())
630                 return;
631
632         if (!cpuc->enabled)
633                 return;
634
635         cpuc->n_added = 0;
636         cpuc->enabled = 0;
637         barrier();
638
639         x86_pmu.disable_all();
640 }
641
642 void x86_pmu_enable_all(int added)
643 {
644         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
645         int idx;
646
647         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
648                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
649
650                 if (!test_bit(idx, cpuc->active_mask))
651                         continue;
652
653                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
654         }
655 }
656
657 static struct pmu pmu;
658
659 static inline int is_x86_event(struct perf_event *event)
660 {
661         return event->pmu == &pmu;
662 }
663
664 /*
665  * Event scheduler state:
666  *
667  * Assign events iterating over all events and counters, beginning
668  * with events with least weights first. Keep the current iterator
669  * state in struct sched_state.
670  */
671 struct sched_state {
672         int     weight;
673         int     event;          /* event index */
674         int     counter;        /* counter index */
675         int     unassigned;     /* number of events to be assigned left */
676         int     nr_gp;          /* number of GP counters used */
677         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
678 };
679
680 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
681 #define SCHED_STATES_MAX        2
682
683 struct perf_sched {
684         int                     max_weight;
685         int                     max_events;
686         int                     max_gp;
687         int                     saved_states;
688         struct event_constraint **constraints;
689         struct sched_state      state;
690         struct sched_state      saved[SCHED_STATES_MAX];
691 };
692
693 /*
694  * Initialize interator that runs through all events and counters.
695  */
696 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
697                             int num, int wmin, int wmax, int gpmax)
698 {
699         int idx;
700
701         memset(sched, 0, sizeof(*sched));
702         sched->max_events       = num;
703         sched->max_weight       = wmax;
704         sched->max_gp           = gpmax;
705         sched->constraints      = constraints;
706
707         for (idx = 0; idx < num; idx++) {
708                 if (constraints[idx]->weight == wmin)
709                         break;
710         }
711
712         sched->state.event      = idx;          /* start with min weight */
713         sched->state.weight     = wmin;
714         sched->state.unassigned = num;
715 }
716
717 static void perf_sched_save_state(struct perf_sched *sched)
718 {
719         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
720                 return;
721
722         sched->saved[sched->saved_states] = sched->state;
723         sched->saved_states++;
724 }
725
726 static bool perf_sched_restore_state(struct perf_sched *sched)
727 {
728         if (!sched->saved_states)
729                 return false;
730
731         sched->saved_states--;
732         sched->state = sched->saved[sched->saved_states];
733
734         /* continue with next counter: */
735         clear_bit(sched->state.counter++, sched->state.used);
736
737         return true;
738 }
739
740 /*
741  * Select a counter for the current event to schedule. Return true on
742  * success.
743  */
744 static bool __perf_sched_find_counter(struct perf_sched *sched)
745 {
746         struct event_constraint *c;
747         int idx;
748
749         if (!sched->state.unassigned)
750                 return false;
751
752         if (sched->state.event >= sched->max_events)
753                 return false;
754
755         c = sched->constraints[sched->state.event];
756         /* Prefer fixed purpose counters */
757         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
758                 idx = INTEL_PMC_IDX_FIXED;
759                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
760                         if (!__test_and_set_bit(idx, sched->state.used))
761                                 goto done;
762                 }
763         }
764
765         /* Grab the first unused counter starting with idx */
766         idx = sched->state.counter;
767         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
768                 if (!__test_and_set_bit(idx, sched->state.used)) {
769                         if (sched->state.nr_gp++ >= sched->max_gp)
770                                 return false;
771
772                         goto done;
773                 }
774         }
775
776         return false;
777
778 done:
779         sched->state.counter = idx;
780
781         if (c->overlap)
782                 perf_sched_save_state(sched);
783
784         return true;
785 }
786
787 static bool perf_sched_find_counter(struct perf_sched *sched)
788 {
789         while (!__perf_sched_find_counter(sched)) {
790                 if (!perf_sched_restore_state(sched))
791                         return false;
792         }
793
794         return true;
795 }
796
797 /*
798  * Go through all unassigned events and find the next one to schedule.
799  * Take events with the least weight first. Return true on success.
800  */
801 static bool perf_sched_next_event(struct perf_sched *sched)
802 {
803         struct event_constraint *c;
804
805         if (!sched->state.unassigned || !--sched->state.unassigned)
806                 return false;
807
808         do {
809                 /* next event */
810                 sched->state.event++;
811                 if (sched->state.event >= sched->max_events) {
812                         /* next weight */
813                         sched->state.event = 0;
814                         sched->state.weight++;
815                         if (sched->state.weight > sched->max_weight)
816                                 return false;
817                 }
818                 c = sched->constraints[sched->state.event];
819         } while (c->weight != sched->state.weight);
820
821         sched->state.counter = 0;       /* start with first counter */
822
823         return true;
824 }
825
826 /*
827  * Assign a counter for each event.
828  */
829 int perf_assign_events(struct event_constraint **constraints, int n,
830                         int wmin, int wmax, int gpmax, int *assign)
831 {
832         struct perf_sched sched;
833
834         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
835
836         do {
837                 if (!perf_sched_find_counter(&sched))
838                         break;  /* failed */
839                 if (assign)
840                         assign[sched.state.event] = sched.state.counter;
841         } while (perf_sched_next_event(&sched));
842
843         return sched.state.unassigned;
844 }
845 EXPORT_SYMBOL_GPL(perf_assign_events);
846
847 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
848 {
849         struct event_constraint *c;
850         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
851         struct perf_event *e;
852         int i, wmin, wmax, unsched = 0;
853         struct hw_perf_event *hwc;
854
855         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
856
857         if (x86_pmu.start_scheduling)
858                 x86_pmu.start_scheduling(cpuc);
859
860         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
861                 cpuc->event_constraint[i] = NULL;
862                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
863                 cpuc->event_constraint[i] = c;
864
865                 wmin = min(wmin, c->weight);
866                 wmax = max(wmax, c->weight);
867         }
868
869         /*
870          * fastpath, try to reuse previous register
871          */
872         for (i = 0; i < n; i++) {
873                 hwc = &cpuc->event_list[i]->hw;
874                 c = cpuc->event_constraint[i];
875
876                 /* never assigned */
877                 if (hwc->idx == -1)
878                         break;
879
880                 /* constraint still honored */
881                 if (!test_bit(hwc->idx, c->idxmsk))
882                         break;
883
884                 /* not already used */
885                 if (test_bit(hwc->idx, used_mask))
886                         break;
887
888                 __set_bit(hwc->idx, used_mask);
889                 if (assign)
890                         assign[i] = hwc->idx;
891         }
892
893         /* slow path */
894         if (i != n) {
895                 int gpmax = x86_pmu.num_counters;
896
897                 /*
898                  * Do not allow scheduling of more than half the available
899                  * generic counters.
900                  *
901                  * This helps avoid counter starvation of sibling thread by
902                  * ensuring at most half the counters cannot be in exclusive
903                  * mode. There is no designated counters for the limits. Any
904                  * N/2 counters can be used. This helps with events with
905                  * specific counter constraints.
906                  */
907                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
908                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
909                         gpmax /= 2;
910
911                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
912                                              wmax, gpmax, assign);
913         }
914
915         /*
916          * In case of success (unsched = 0), mark events as committed,
917          * so we do not put_constraint() in case new events are added
918          * and fail to be scheduled
919          *
920          * We invoke the lower level commit callback to lock the resource
921          *
922          * We do not need to do all of this in case we are called to
923          * validate an event group (assign == NULL)
924          */
925         if (!unsched && assign) {
926                 for (i = 0; i < n; i++) {
927                         e = cpuc->event_list[i];
928                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
929                         if (x86_pmu.commit_scheduling)
930                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
931                 }
932         } else {
933                 for (i = 0; i < n; i++) {
934                         e = cpuc->event_list[i];
935                         /*
936                          * do not put_constraint() on comitted events,
937                          * because they are good to go
938                          */
939                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
940                                 continue;
941
942                         /*
943                          * release events that failed scheduling
944                          */
945                         if (x86_pmu.put_event_constraints)
946                                 x86_pmu.put_event_constraints(cpuc, e);
947                 }
948         }
949
950         if (x86_pmu.stop_scheduling)
951                 x86_pmu.stop_scheduling(cpuc);
952
953         return unsched ? -EINVAL : 0;
954 }
955
956 /*
957  * dogrp: true if must collect siblings events (group)
958  * returns total number of events and error code
959  */
960 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
961 {
962         struct perf_event *event;
963         int n, max_count;
964
965         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
966
967         /* current number of events already accepted */
968         n = cpuc->n_events;
969
970         if (is_x86_event(leader)) {
971                 if (n >= max_count)
972                         return -EINVAL;
973                 cpuc->event_list[n] = leader;
974                 n++;
975         }
976         if (!dogrp)
977                 return n;
978
979         for_each_sibling_event(event, leader) {
980                 if (!is_x86_event(event) ||
981                     event->state <= PERF_EVENT_STATE_OFF)
982                         continue;
983
984                 if (n >= max_count)
985                         return -EINVAL;
986
987                 cpuc->event_list[n] = event;
988                 n++;
989         }
990         return n;
991 }
992
993 static inline void x86_assign_hw_event(struct perf_event *event,
994                                 struct cpu_hw_events *cpuc, int i)
995 {
996         struct hw_perf_event *hwc = &event->hw;
997
998         hwc->idx = cpuc->assign[i];
999         hwc->last_cpu = smp_processor_id();
1000         hwc->last_tag = ++cpuc->tags[i];
1001
1002         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1003                 hwc->config_base = 0;
1004                 hwc->event_base = 0;
1005         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1006                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1007                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1008                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1009         } else {
1010                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1011                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1012                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1013         }
1014 }
1015
1016 /**
1017  * x86_perf_rdpmc_index - Return PMC counter used for event
1018  * @event: the perf_event to which the PMC counter was assigned
1019  *
1020  * The counter assigned to this performance event may change if interrupts
1021  * are enabled. This counter should thus never be used while interrupts are
1022  * enabled. Before this function is used to obtain the assigned counter the
1023  * event should be checked for validity using, for example,
1024  * perf_event_read_local(), within the same interrupt disabled section in
1025  * which this counter is planned to be used.
1026  *
1027  * Return: The index of the performance monitoring counter assigned to
1028  * @perf_event.
1029  */
1030 int x86_perf_rdpmc_index(struct perf_event *event)
1031 {
1032         lockdep_assert_irqs_disabled();
1033
1034         return event->hw.event_base_rdpmc;
1035 }
1036
1037 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1038                                         struct cpu_hw_events *cpuc,
1039                                         int i)
1040 {
1041         return hwc->idx == cpuc->assign[i] &&
1042                 hwc->last_cpu == smp_processor_id() &&
1043                 hwc->last_tag == cpuc->tags[i];
1044 }
1045
1046 static void x86_pmu_start(struct perf_event *event, int flags);
1047
1048 static void x86_pmu_enable(struct pmu *pmu)
1049 {
1050         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1051         struct perf_event *event;
1052         struct hw_perf_event *hwc;
1053         int i, added = cpuc->n_added;
1054
1055         if (!x86_pmu_initialized())
1056                 return;
1057
1058         if (cpuc->enabled)
1059                 return;
1060
1061         if (cpuc->n_added) {
1062                 int n_running = cpuc->n_events - cpuc->n_added;
1063                 /*
1064                  * apply assignment obtained either from
1065                  * hw_perf_group_sched_in() or x86_pmu_enable()
1066                  *
1067                  * step1: save events moving to new counters
1068                  */
1069                 for (i = 0; i < n_running; i++) {
1070                         event = cpuc->event_list[i];
1071                         hwc = &event->hw;
1072
1073                         /*
1074                          * we can avoid reprogramming counter if:
1075                          * - assigned same counter as last time
1076                          * - running on same CPU as last time
1077                          * - no other event has used the counter since
1078                          */
1079                         if (hwc->idx == -1 ||
1080                             match_prev_assignment(hwc, cpuc, i))
1081                                 continue;
1082
1083                         /*
1084                          * Ensure we don't accidentally enable a stopped
1085                          * counter simply because we rescheduled.
1086                          */
1087                         if (hwc->state & PERF_HES_STOPPED)
1088                                 hwc->state |= PERF_HES_ARCH;
1089
1090                         x86_pmu_stop(event, PERF_EF_UPDATE);
1091                 }
1092
1093                 /*
1094                  * step2: reprogram moved events into new counters
1095                  */
1096                 for (i = 0; i < cpuc->n_events; i++) {
1097                         event = cpuc->event_list[i];
1098                         hwc = &event->hw;
1099
1100                         if (!match_prev_assignment(hwc, cpuc, i))
1101                                 x86_assign_hw_event(event, cpuc, i);
1102                         else if (i < n_running)
1103                                 continue;
1104
1105                         if (hwc->state & PERF_HES_ARCH)
1106                                 continue;
1107
1108                         x86_pmu_start(event, PERF_EF_RELOAD);
1109                 }
1110                 cpuc->n_added = 0;
1111                 perf_events_lapic_init();
1112         }
1113
1114         cpuc->enabled = 1;
1115         barrier();
1116
1117         x86_pmu.enable_all(added);
1118 }
1119
1120 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1121
1122 /*
1123  * Set the next IRQ period, based on the hwc->period_left value.
1124  * To be called with the event disabled in hw:
1125  */
1126 int x86_perf_event_set_period(struct perf_event *event)
1127 {
1128         struct hw_perf_event *hwc = &event->hw;
1129         s64 left = local64_read(&hwc->period_left);
1130         s64 period = hwc->sample_period;
1131         int ret = 0, idx = hwc->idx;
1132
1133         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1134                 return 0;
1135
1136         /*
1137          * If we are way outside a reasonable range then just skip forward:
1138          */
1139         if (unlikely(left <= -period)) {
1140                 left = period;
1141                 local64_set(&hwc->period_left, left);
1142                 hwc->last_period = period;
1143                 ret = 1;
1144         }
1145
1146         if (unlikely(left <= 0)) {
1147                 left += period;
1148                 local64_set(&hwc->period_left, left);
1149                 hwc->last_period = period;
1150                 ret = 1;
1151         }
1152         /*
1153          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1154          */
1155         if (unlikely(left < 2))
1156                 left = 2;
1157
1158         if (left > x86_pmu.max_period)
1159                 left = x86_pmu.max_period;
1160
1161         if (x86_pmu.limit_period)
1162                 left = x86_pmu.limit_period(event, left);
1163
1164         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1165
1166         /*
1167          * The hw event starts counting from this event offset,
1168          * mark it to be able to extra future deltas:
1169          */
1170         local64_set(&hwc->prev_count, (u64)-left);
1171
1172         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1173
1174         /*
1175          * Due to erratum on certan cpu we need
1176          * a second write to be sure the register
1177          * is updated properly
1178          */
1179         if (x86_pmu.perfctr_second_write) {
1180                 wrmsrl(hwc->event_base,
1181                         (u64)(-left) & x86_pmu.cntval_mask);
1182         }
1183
1184         perf_event_update_userpage(event);
1185
1186         return ret;
1187 }
1188
1189 void x86_pmu_enable_event(struct perf_event *event)
1190 {
1191         if (__this_cpu_read(cpu_hw_events.enabled))
1192                 __x86_pmu_enable_event(&event->hw,
1193                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1194 }
1195
1196 /*
1197  * Add a single event to the PMU.
1198  *
1199  * The event is added to the group of enabled events
1200  * but only if it can be scehduled with existing events.
1201  */
1202 static int x86_pmu_add(struct perf_event *event, int flags)
1203 {
1204         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1205         struct hw_perf_event *hwc;
1206         int assign[X86_PMC_IDX_MAX];
1207         int n, n0, ret;
1208
1209         hwc = &event->hw;
1210
1211         n0 = cpuc->n_events;
1212         ret = n = collect_events(cpuc, event, false);
1213         if (ret < 0)
1214                 goto out;
1215
1216         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1217         if (!(flags & PERF_EF_START))
1218                 hwc->state |= PERF_HES_ARCH;
1219
1220         /*
1221          * If group events scheduling transaction was started,
1222          * skip the schedulability test here, it will be performed
1223          * at commit time (->commit_txn) as a whole.
1224          *
1225          * If commit fails, we'll call ->del() on all events
1226          * for which ->add() was called.
1227          */
1228         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1229                 goto done_collect;
1230
1231         ret = x86_pmu.schedule_events(cpuc, n, assign);
1232         if (ret)
1233                 goto out;
1234         /*
1235          * copy new assignment, now we know it is possible
1236          * will be used by hw_perf_enable()
1237          */
1238         memcpy(cpuc->assign, assign, n*sizeof(int));
1239
1240 done_collect:
1241         /*
1242          * Commit the collect_events() state. See x86_pmu_del() and
1243          * x86_pmu_*_txn().
1244          */
1245         cpuc->n_events = n;
1246         cpuc->n_added += n - n0;
1247         cpuc->n_txn += n - n0;
1248
1249         if (x86_pmu.add) {
1250                 /*
1251                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1252                  * so we enable LBRs before an event needs them etc..
1253                  */
1254                 x86_pmu.add(event);
1255         }
1256
1257         ret = 0;
1258 out:
1259         return ret;
1260 }
1261
1262 static void x86_pmu_start(struct perf_event *event, int flags)
1263 {
1264         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265         int idx = event->hw.idx;
1266
1267         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1268                 return;
1269
1270         if (WARN_ON_ONCE(idx == -1))
1271                 return;
1272
1273         if (flags & PERF_EF_RELOAD) {
1274                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1275                 x86_perf_event_set_period(event);
1276         }
1277
1278         event->hw.state = 0;
1279
1280         cpuc->events[idx] = event;
1281         __set_bit(idx, cpuc->active_mask);
1282         __set_bit(idx, cpuc->running);
1283         x86_pmu.enable(event);
1284         perf_event_update_userpage(event);
1285 }
1286
1287 void perf_event_print_debug(void)
1288 {
1289         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1290         u64 pebs, debugctl;
1291         struct cpu_hw_events *cpuc;
1292         unsigned long flags;
1293         int cpu, idx;
1294
1295         if (!x86_pmu.num_counters)
1296                 return;
1297
1298         local_irq_save(flags);
1299
1300         cpu = smp_processor_id();
1301         cpuc = &per_cpu(cpu_hw_events, cpu);
1302
1303         if (x86_pmu.version >= 2) {
1304                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1305                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1306                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1307                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1308
1309                 pr_info("\n");
1310                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1311                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1312                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1313                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1314                 if (x86_pmu.pebs_constraints) {
1315                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1316                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1317                 }
1318                 if (x86_pmu.lbr_nr) {
1319                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1320                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1321                 }
1322         }
1323         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1324
1325         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1326                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1327                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1328
1329                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1330
1331                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1332                         cpu, idx, pmc_ctrl);
1333                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1334                         cpu, idx, pmc_count);
1335                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1336                         cpu, idx, prev_left);
1337         }
1338         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1339                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1340
1341                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1342                         cpu, idx, pmc_count);
1343         }
1344         local_irq_restore(flags);
1345 }
1346
1347 void x86_pmu_stop(struct perf_event *event, int flags)
1348 {
1349         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1350         struct hw_perf_event *hwc = &event->hw;
1351
1352         if (test_bit(hwc->idx, cpuc->active_mask)) {
1353                 x86_pmu.disable(event);
1354                 __clear_bit(hwc->idx, cpuc->active_mask);
1355                 cpuc->events[hwc->idx] = NULL;
1356                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1357                 hwc->state |= PERF_HES_STOPPED;
1358         }
1359
1360         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1361                 /*
1362                  * Drain the remaining delta count out of a event
1363                  * that we are disabling:
1364                  */
1365                 x86_perf_event_update(event);
1366                 hwc->state |= PERF_HES_UPTODATE;
1367         }
1368 }
1369
1370 static void x86_pmu_del(struct perf_event *event, int flags)
1371 {
1372         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1373         int i;
1374
1375         /*
1376          * event is descheduled
1377          */
1378         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1379
1380         /*
1381          * If we're called during a txn, we only need to undo x86_pmu.add.
1382          * The events never got scheduled and ->cancel_txn will truncate
1383          * the event_list.
1384          *
1385          * XXX assumes any ->del() called during a TXN will only be on
1386          * an event added during that same TXN.
1387          */
1388         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1389                 goto do_del;
1390
1391         /*
1392          * Not a TXN, therefore cleanup properly.
1393          */
1394         x86_pmu_stop(event, PERF_EF_UPDATE);
1395
1396         for (i = 0; i < cpuc->n_events; i++) {
1397                 if (event == cpuc->event_list[i])
1398                         break;
1399         }
1400
1401         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1402                 return;
1403
1404         /* If we have a newly added event; make sure to decrease n_added. */
1405         if (i >= cpuc->n_events - cpuc->n_added)
1406                 --cpuc->n_added;
1407
1408         if (x86_pmu.put_event_constraints)
1409                 x86_pmu.put_event_constraints(cpuc, event);
1410
1411         /* Delete the array entry. */
1412         while (++i < cpuc->n_events) {
1413                 cpuc->event_list[i-1] = cpuc->event_list[i];
1414                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1415         }
1416         --cpuc->n_events;
1417
1418         perf_event_update_userpage(event);
1419
1420 do_del:
1421         if (x86_pmu.del) {
1422                 /*
1423                  * This is after x86_pmu_stop(); so we disable LBRs after any
1424                  * event can need them etc..
1425                  */
1426                 x86_pmu.del(event);
1427         }
1428 }
1429
1430 int x86_pmu_handle_irq(struct pt_regs *regs)
1431 {
1432         struct perf_sample_data data;
1433         struct cpu_hw_events *cpuc;
1434         struct perf_event *event;
1435         int idx, handled = 0;
1436         u64 val;
1437
1438         cpuc = this_cpu_ptr(&cpu_hw_events);
1439
1440         /*
1441          * Some chipsets need to unmask the LVTPC in a particular spot
1442          * inside the nmi handler.  As a result, the unmasking was pushed
1443          * into all the nmi handlers.
1444          *
1445          * This generic handler doesn't seem to have any issues where the
1446          * unmasking occurs so it was left at the top.
1447          */
1448         apic_write(APIC_LVTPC, APIC_DM_NMI);
1449
1450         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1451                 if (!test_bit(idx, cpuc->active_mask))
1452                         continue;
1453
1454                 event = cpuc->events[idx];
1455
1456                 val = x86_perf_event_update(event);
1457                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1458                         continue;
1459
1460                 /*
1461                  * event overflow
1462                  */
1463                 handled++;
1464                 perf_sample_data_init(&data, 0, event->hw.last_period);
1465
1466                 if (!x86_perf_event_set_period(event))
1467                         continue;
1468
1469                 if (perf_event_overflow(event, &data, regs))
1470                         x86_pmu_stop(event, 0);
1471         }
1472
1473         if (handled)
1474                 inc_irq_stat(apic_perf_irqs);
1475
1476         return handled;
1477 }
1478
1479 void perf_events_lapic_init(void)
1480 {
1481         if (!x86_pmu.apic || !x86_pmu_initialized())
1482                 return;
1483
1484         /*
1485          * Always use NMI for PMU
1486          */
1487         apic_write(APIC_LVTPC, APIC_DM_NMI);
1488 }
1489
1490 static int
1491 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1492 {
1493         u64 start_clock;
1494         u64 finish_clock;
1495         int ret;
1496
1497         /*
1498          * All PMUs/events that share this PMI handler should make sure to
1499          * increment active_events for their events.
1500          */
1501         if (!atomic_read(&active_events))
1502                 return NMI_DONE;
1503
1504         start_clock = sched_clock();
1505         ret = x86_pmu.handle_irq(regs);
1506         finish_clock = sched_clock();
1507
1508         perf_sample_event_took(finish_clock - start_clock);
1509
1510         return ret;
1511 }
1512 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1513
1514 struct event_constraint emptyconstraint;
1515 struct event_constraint unconstrained;
1516
1517 static int x86_pmu_prepare_cpu(unsigned int cpu)
1518 {
1519         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1520         int i;
1521
1522         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1523                 cpuc->kfree_on_online[i] = NULL;
1524         if (x86_pmu.cpu_prepare)
1525                 return x86_pmu.cpu_prepare(cpu);
1526         return 0;
1527 }
1528
1529 static int x86_pmu_dead_cpu(unsigned int cpu)
1530 {
1531         if (x86_pmu.cpu_dead)
1532                 x86_pmu.cpu_dead(cpu);
1533         return 0;
1534 }
1535
1536 static int x86_pmu_online_cpu(unsigned int cpu)
1537 {
1538         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1539         int i;
1540
1541         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1542                 kfree(cpuc->kfree_on_online[i]);
1543                 cpuc->kfree_on_online[i] = NULL;
1544         }
1545         return 0;
1546 }
1547
1548 static int x86_pmu_starting_cpu(unsigned int cpu)
1549 {
1550         if (x86_pmu.cpu_starting)
1551                 x86_pmu.cpu_starting(cpu);
1552         return 0;
1553 }
1554
1555 static int x86_pmu_dying_cpu(unsigned int cpu)
1556 {
1557         if (x86_pmu.cpu_dying)
1558                 x86_pmu.cpu_dying(cpu);
1559         return 0;
1560 }
1561
1562 static void __init pmu_check_apic(void)
1563 {
1564         if (boot_cpu_has(X86_FEATURE_APIC))
1565                 return;
1566
1567         x86_pmu.apic = 0;
1568         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1569         pr_info("no hardware sampling interrupt available.\n");
1570
1571         /*
1572          * If we have a PMU initialized but no APIC
1573          * interrupts, we cannot sample hardware
1574          * events (user-space has to fall back and
1575          * sample via a hrtimer based software event):
1576          */
1577         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1578
1579 }
1580
1581 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1582         .name = "format",
1583         .attrs = NULL,
1584 };
1585
1586 /*
1587  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1588  * out of events_attr attributes.
1589  */
1590 static void __init filter_events(struct attribute **attrs)
1591 {
1592         struct device_attribute *d;
1593         struct perf_pmu_events_attr *pmu_attr;
1594         int offset = 0;
1595         int i, j;
1596
1597         for (i = 0; attrs[i]; i++) {
1598                 d = (struct device_attribute *)attrs[i];
1599                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1600                 /* str trumps id */
1601                 if (pmu_attr->event_str)
1602                         continue;
1603                 if (x86_pmu.event_map(i + offset))
1604                         continue;
1605
1606                 for (j = i; attrs[j]; j++)
1607                         attrs[j] = attrs[j + 1];
1608
1609                 /* Check the shifted attr. */
1610                 i--;
1611
1612                 /*
1613                  * event_map() is index based, the attrs array is organized
1614                  * by increasing event index. If we shift the events, then
1615                  * we need to compensate for the event_map(), otherwise
1616                  * we are looking up the wrong event in the map
1617                  */
1618                 offset++;
1619         }
1620 }
1621
1622 /* Merge two pointer arrays */
1623 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1624 {
1625         struct attribute **new;
1626         int j, i;
1627
1628         for (j = 0; a && a[j]; j++)
1629                 ;
1630         for (i = 0; b && b[i]; i++)
1631                 j++;
1632         j++;
1633
1634         new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1635         if (!new)
1636                 return NULL;
1637
1638         j = 0;
1639         for (i = 0; a && a[i]; i++)
1640                 new[j++] = a[i];
1641         for (i = 0; b && b[i]; i++)
1642                 new[j++] = b[i];
1643         new[j] = NULL;
1644
1645         return new;
1646 }
1647
1648 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1649 {
1650         struct perf_pmu_events_attr *pmu_attr = \
1651                 container_of(attr, struct perf_pmu_events_attr, attr);
1652         u64 config = x86_pmu.event_map(pmu_attr->id);
1653
1654         /* string trumps id */
1655         if (pmu_attr->event_str)
1656                 return sprintf(page, "%s", pmu_attr->event_str);
1657
1658         return x86_pmu.events_sysfs_show(page, config);
1659 }
1660 EXPORT_SYMBOL_GPL(events_sysfs_show);
1661
1662 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1663                           char *page)
1664 {
1665         struct perf_pmu_events_ht_attr *pmu_attr =
1666                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1667
1668         /*
1669          * Report conditional events depending on Hyper-Threading.
1670          *
1671          * This is overly conservative as usually the HT special
1672          * handling is not needed if the other CPU thread is idle.
1673          *
1674          * Note this does not (and cannot) handle the case when thread
1675          * siblings are invisible, for example with virtualization
1676          * if they are owned by some other guest.  The user tool
1677          * has to re-read when a thread sibling gets onlined later.
1678          */
1679         return sprintf(page, "%s",
1680                         topology_max_smt_threads() > 1 ?
1681                         pmu_attr->event_str_ht :
1682                         pmu_attr->event_str_noht);
1683 }
1684
1685 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1686 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1687 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1688 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1689 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1690 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1691 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1692 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1693 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1694 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1695
1696 static struct attribute *empty_attrs;
1697
1698 static struct attribute *events_attr[] = {
1699         EVENT_PTR(CPU_CYCLES),
1700         EVENT_PTR(INSTRUCTIONS),
1701         EVENT_PTR(CACHE_REFERENCES),
1702         EVENT_PTR(CACHE_MISSES),
1703         EVENT_PTR(BRANCH_INSTRUCTIONS),
1704         EVENT_PTR(BRANCH_MISSES),
1705         EVENT_PTR(BUS_CYCLES),
1706         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1707         EVENT_PTR(STALLED_CYCLES_BACKEND),
1708         EVENT_PTR(REF_CPU_CYCLES),
1709         NULL,
1710 };
1711
1712 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1713         .name = "events",
1714         .attrs = events_attr,
1715 };
1716
1717 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1718 {
1719         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1720         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1721         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1722         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1723         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1724         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1725         ssize_t ret;
1726
1727         /*
1728         * We have whole page size to spend and just little data
1729         * to write, so we can safely use sprintf.
1730         */
1731         ret = sprintf(page, "event=0x%02llx", event);
1732
1733         if (umask)
1734                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1735
1736         if (edge)
1737                 ret += sprintf(page + ret, ",edge");
1738
1739         if (pc)
1740                 ret += sprintf(page + ret, ",pc");
1741
1742         if (any)
1743                 ret += sprintf(page + ret, ",any");
1744
1745         if (inv)
1746                 ret += sprintf(page + ret, ",inv");
1747
1748         if (cmask)
1749                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1750
1751         ret += sprintf(page + ret, "\n");
1752
1753         return ret;
1754 }
1755
1756 static struct attribute_group x86_pmu_attr_group;
1757 static struct attribute_group x86_pmu_caps_group;
1758
1759 static int __init init_hw_perf_events(void)
1760 {
1761         struct x86_pmu_quirk *quirk;
1762         int err;
1763
1764         pr_info("Performance Events: ");
1765
1766         switch (boot_cpu_data.x86_vendor) {
1767         case X86_VENDOR_INTEL:
1768                 err = intel_pmu_init();
1769                 break;
1770         case X86_VENDOR_AMD:
1771                 err = amd_pmu_init();
1772                 break;
1773         case X86_VENDOR_HYGON:
1774                 err = amd_pmu_init();
1775                 x86_pmu.name = "HYGON";
1776                 break;
1777         default:
1778                 err = -ENOTSUPP;
1779         }
1780         if (err != 0) {
1781                 pr_cont("no PMU driver, software events only.\n");
1782                 return 0;
1783         }
1784
1785         pmu_check_apic();
1786
1787         /* sanity check that the hardware exists or is emulated */
1788         if (!check_hw_exists())
1789                 return 0;
1790
1791         pr_cont("%s PMU driver.\n", x86_pmu.name);
1792
1793         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1794
1795         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1796                 quirk->func();
1797
1798         if (!x86_pmu.intel_ctrl)
1799                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1800
1801         perf_events_lapic_init();
1802         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1803
1804         unconstrained = (struct event_constraint)
1805                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1806                                    0, x86_pmu.num_counters, 0, 0);
1807
1808         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1809
1810         if (x86_pmu.caps_attrs) {
1811                 struct attribute **tmp;
1812
1813                 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1814                 if (!WARN_ON(!tmp))
1815                         x86_pmu_caps_group.attrs = tmp;
1816         }
1817
1818         if (x86_pmu.event_attrs)
1819                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1820
1821         if (!x86_pmu.events_sysfs_show)
1822                 x86_pmu_events_group.attrs = &empty_attrs;
1823         else
1824                 filter_events(x86_pmu_events_group.attrs);
1825
1826         if (x86_pmu.cpu_events) {
1827                 struct attribute **tmp;
1828
1829                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1830                 if (!WARN_ON(!tmp))
1831                         x86_pmu_events_group.attrs = tmp;
1832         }
1833
1834         if (x86_pmu.attrs) {
1835                 struct attribute **tmp;
1836
1837                 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1838                 if (!WARN_ON(!tmp))
1839                         x86_pmu_attr_group.attrs = tmp;
1840         }
1841
1842         pr_info("... version:                %d\n",     x86_pmu.version);
1843         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1844         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1845         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1846         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1847         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1848         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1849
1850         /*
1851          * Install callbacks. Core will call them for each online
1852          * cpu.
1853          */
1854         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1855                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1856         if (err)
1857                 return err;
1858
1859         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1860                                 "perf/x86:starting", x86_pmu_starting_cpu,
1861                                 x86_pmu_dying_cpu);
1862         if (err)
1863                 goto out;
1864
1865         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1866                                 x86_pmu_online_cpu, NULL);
1867         if (err)
1868                 goto out1;
1869
1870         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1871         if (err)
1872                 goto out2;
1873
1874         return 0;
1875
1876 out2:
1877         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1878 out1:
1879         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1880 out:
1881         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1882         return err;
1883 }
1884 early_initcall(init_hw_perf_events);
1885
1886 static inline void x86_pmu_read(struct perf_event *event)
1887 {
1888         if (x86_pmu.read)
1889                 return x86_pmu.read(event);
1890         x86_perf_event_update(event);
1891 }
1892
1893 /*
1894  * Start group events scheduling transaction
1895  * Set the flag to make pmu::enable() not perform the
1896  * schedulability test, it will be performed at commit time
1897  *
1898  * We only support PERF_PMU_TXN_ADD transactions. Save the
1899  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1900  * transactions.
1901  */
1902 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1903 {
1904         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1905
1906         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1907
1908         cpuc->txn_flags = txn_flags;
1909         if (txn_flags & ~PERF_PMU_TXN_ADD)
1910                 return;
1911
1912         perf_pmu_disable(pmu);
1913         __this_cpu_write(cpu_hw_events.n_txn, 0);
1914 }
1915
1916 /*
1917  * Stop group events scheduling transaction
1918  * Clear the flag and pmu::enable() will perform the
1919  * schedulability test.
1920  */
1921 static void x86_pmu_cancel_txn(struct pmu *pmu)
1922 {
1923         unsigned int txn_flags;
1924         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1925
1926         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1927
1928         txn_flags = cpuc->txn_flags;
1929         cpuc->txn_flags = 0;
1930         if (txn_flags & ~PERF_PMU_TXN_ADD)
1931                 return;
1932
1933         /*
1934          * Truncate collected array by the number of events added in this
1935          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1936          */
1937         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1938         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1939         perf_pmu_enable(pmu);
1940 }
1941
1942 /*
1943  * Commit group events scheduling transaction
1944  * Perform the group schedulability test as a whole
1945  * Return 0 if success
1946  *
1947  * Does not cancel the transaction on failure; expects the caller to do this.
1948  */
1949 static int x86_pmu_commit_txn(struct pmu *pmu)
1950 {
1951         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952         int assign[X86_PMC_IDX_MAX];
1953         int n, ret;
1954
1955         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1956
1957         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1958                 cpuc->txn_flags = 0;
1959                 return 0;
1960         }
1961
1962         n = cpuc->n_events;
1963
1964         if (!x86_pmu_initialized())
1965                 return -EAGAIN;
1966
1967         ret = x86_pmu.schedule_events(cpuc, n, assign);
1968         if (ret)
1969                 return ret;
1970
1971         /*
1972          * copy new assignment, now we know it is possible
1973          * will be used by hw_perf_enable()
1974          */
1975         memcpy(cpuc->assign, assign, n*sizeof(int));
1976
1977         cpuc->txn_flags = 0;
1978         perf_pmu_enable(pmu);
1979         return 0;
1980 }
1981 /*
1982  * a fake_cpuc is used to validate event groups. Due to
1983  * the extra reg logic, we need to also allocate a fake
1984  * per_core and per_cpu structure. Otherwise, group events
1985  * using extra reg may conflict without the kernel being
1986  * able to catch this when the last event gets added to
1987  * the group.
1988  */
1989 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1990 {
1991         intel_cpuc_finish(cpuc);
1992         kfree(cpuc);
1993 }
1994
1995 static struct cpu_hw_events *allocate_fake_cpuc(void)
1996 {
1997         struct cpu_hw_events *cpuc;
1998         int cpu = raw_smp_processor_id();
1999
2000         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2001         if (!cpuc)
2002                 return ERR_PTR(-ENOMEM);
2003         cpuc->is_fake = 1;
2004
2005         if (intel_cpuc_prepare(cpuc, cpu))
2006                 goto error;
2007
2008         return cpuc;
2009 error:
2010         free_fake_cpuc(cpuc);
2011         return ERR_PTR(-ENOMEM);
2012 }
2013
2014 /*
2015  * validate that we can schedule this event
2016  */
2017 static int validate_event(struct perf_event *event)
2018 {
2019         struct cpu_hw_events *fake_cpuc;
2020         struct event_constraint *c;
2021         int ret = 0;
2022
2023         fake_cpuc = allocate_fake_cpuc();
2024         if (IS_ERR(fake_cpuc))
2025                 return PTR_ERR(fake_cpuc);
2026
2027         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2028
2029         if (!c || !c->weight)
2030                 ret = -EINVAL;
2031
2032         if (x86_pmu.put_event_constraints)
2033                 x86_pmu.put_event_constraints(fake_cpuc, event);
2034
2035         free_fake_cpuc(fake_cpuc);
2036
2037         return ret;
2038 }
2039
2040 /*
2041  * validate a single event group
2042  *
2043  * validation include:
2044  *      - check events are compatible which each other
2045  *      - events do not compete for the same counter
2046  *      - number of events <= number of counters
2047  *
2048  * validation ensures the group can be loaded onto the
2049  * PMU if it was the only group available.
2050  */
2051 static int validate_group(struct perf_event *event)
2052 {
2053         struct perf_event *leader = event->group_leader;
2054         struct cpu_hw_events *fake_cpuc;
2055         int ret = -EINVAL, n;
2056
2057         fake_cpuc = allocate_fake_cpuc();
2058         if (IS_ERR(fake_cpuc))
2059                 return PTR_ERR(fake_cpuc);
2060         /*
2061          * the event is not yet connected with its
2062          * siblings therefore we must first collect
2063          * existing siblings, then add the new event
2064          * before we can simulate the scheduling
2065          */
2066         n = collect_events(fake_cpuc, leader, true);
2067         if (n < 0)
2068                 goto out;
2069
2070         fake_cpuc->n_events = n;
2071         n = collect_events(fake_cpuc, event, false);
2072         if (n < 0)
2073                 goto out;
2074
2075         fake_cpuc->n_events = n;
2076
2077         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2078
2079 out:
2080         free_fake_cpuc(fake_cpuc);
2081         return ret;
2082 }
2083
2084 static int x86_pmu_event_init(struct perf_event *event)
2085 {
2086         struct pmu *tmp;
2087         int err;
2088
2089         switch (event->attr.type) {
2090         case PERF_TYPE_RAW:
2091         case PERF_TYPE_HARDWARE:
2092         case PERF_TYPE_HW_CACHE:
2093                 break;
2094
2095         default:
2096                 return -ENOENT;
2097         }
2098
2099         err = __x86_pmu_event_init(event);
2100         if (!err) {
2101                 /*
2102                  * we temporarily connect event to its pmu
2103                  * such that validate_group() can classify
2104                  * it as an x86 event using is_x86_event()
2105                  */
2106                 tmp = event->pmu;
2107                 event->pmu = &pmu;
2108
2109                 if (event->group_leader != event)
2110                         err = validate_group(event);
2111                 else
2112                         err = validate_event(event);
2113
2114                 event->pmu = tmp;
2115         }
2116         if (err) {
2117                 if (event->destroy)
2118                         event->destroy(event);
2119         }
2120
2121         if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2122             !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2123                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2124
2125         return err;
2126 }
2127
2128 static void refresh_pce(void *ignored)
2129 {
2130         load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2131 }
2132
2133 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2134 {
2135         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2136                 return;
2137
2138         /*
2139          * This function relies on not being called concurrently in two
2140          * tasks in the same mm.  Otherwise one task could observe
2141          * perf_rdpmc_allowed > 1 and return all the way back to
2142          * userspace with CR4.PCE clear while another task is still
2143          * doing on_each_cpu_mask() to propagate CR4.PCE.
2144          *
2145          * For now, this can't happen because all callers hold mmap_sem
2146          * for write.  If this changes, we'll need a different solution.
2147          */
2148         lockdep_assert_held_exclusive(&mm->mmap_sem);
2149
2150         if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2151                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2152 }
2153
2154 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2155 {
2156
2157         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2158                 return;
2159
2160         if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2161                 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2162 }
2163
2164 static int x86_pmu_event_idx(struct perf_event *event)
2165 {
2166         int idx = event->hw.idx;
2167
2168         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2169                 return 0;
2170
2171         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2172                 idx -= INTEL_PMC_IDX_FIXED;
2173                 idx |= 1 << 30;
2174         }
2175
2176         return idx + 1;
2177 }
2178
2179 static ssize_t get_attr_rdpmc(struct device *cdev,
2180                               struct device_attribute *attr,
2181                               char *buf)
2182 {
2183         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2184 }
2185
2186 static ssize_t set_attr_rdpmc(struct device *cdev,
2187                               struct device_attribute *attr,
2188                               const char *buf, size_t count)
2189 {
2190         unsigned long val;
2191         ssize_t ret;
2192
2193         ret = kstrtoul(buf, 0, &val);
2194         if (ret)
2195                 return ret;
2196
2197         if (val > 2)
2198                 return -EINVAL;
2199
2200         if (x86_pmu.attr_rdpmc_broken)
2201                 return -ENOTSUPP;
2202
2203         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2204                 /*
2205                  * Changing into or out of always available, aka
2206                  * perf-event-bypassing mode.  This path is extremely slow,
2207                  * but only root can trigger it, so it's okay.
2208                  */
2209                 if (val == 2)
2210                         static_branch_inc(&rdpmc_always_available_key);
2211                 else
2212                         static_branch_dec(&rdpmc_always_available_key);
2213                 on_each_cpu(refresh_pce, NULL, 1);
2214         }
2215
2216         x86_pmu.attr_rdpmc = val;
2217
2218         return count;
2219 }
2220
2221 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2222
2223 static struct attribute *x86_pmu_attrs[] = {
2224         &dev_attr_rdpmc.attr,
2225         NULL,
2226 };
2227
2228 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2229         .attrs = x86_pmu_attrs,
2230 };
2231
2232 static ssize_t max_precise_show(struct device *cdev,
2233                                   struct device_attribute *attr,
2234                                   char *buf)
2235 {
2236         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2237 }
2238
2239 static DEVICE_ATTR_RO(max_precise);
2240
2241 static struct attribute *x86_pmu_caps_attrs[] = {
2242         &dev_attr_max_precise.attr,
2243         NULL
2244 };
2245
2246 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2247         .name = "caps",
2248         .attrs = x86_pmu_caps_attrs,
2249 };
2250
2251 static const struct attribute_group *x86_pmu_attr_groups[] = {
2252         &x86_pmu_attr_group,
2253         &x86_pmu_format_group,
2254         &x86_pmu_events_group,
2255         &x86_pmu_caps_group,
2256         NULL,
2257 };
2258
2259 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2260 {
2261         if (x86_pmu.sched_task)
2262                 x86_pmu.sched_task(ctx, sched_in);
2263 }
2264
2265 void perf_check_microcode(void)
2266 {
2267         if (x86_pmu.check_microcode)
2268                 x86_pmu.check_microcode();
2269 }
2270
2271 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2272 {
2273         if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2274                 return -EINVAL;
2275
2276         if (value && x86_pmu.limit_period) {
2277                 if (x86_pmu.limit_period(event, value) > value)
2278                         return -EINVAL;
2279         }
2280
2281         return 0;
2282 }
2283
2284 static struct pmu pmu = {
2285         .pmu_enable             = x86_pmu_enable,
2286         .pmu_disable            = x86_pmu_disable,
2287
2288         .attr_groups            = x86_pmu_attr_groups,
2289
2290         .event_init             = x86_pmu_event_init,
2291
2292         .event_mapped           = x86_pmu_event_mapped,
2293         .event_unmapped         = x86_pmu_event_unmapped,
2294
2295         .add                    = x86_pmu_add,
2296         .del                    = x86_pmu_del,
2297         .start                  = x86_pmu_start,
2298         .stop                   = x86_pmu_stop,
2299         .read                   = x86_pmu_read,
2300
2301         .start_txn              = x86_pmu_start_txn,
2302         .cancel_txn             = x86_pmu_cancel_txn,
2303         .commit_txn             = x86_pmu_commit_txn,
2304
2305         .event_idx              = x86_pmu_event_idx,
2306         .sched_task             = x86_pmu_sched_task,
2307         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2308         .check_period           = x86_pmu_check_period,
2309 };
2310
2311 void arch_perf_update_userpage(struct perf_event *event,
2312                                struct perf_event_mmap_page *userpg, u64 now)
2313 {
2314         struct cyc2ns_data data;
2315         u64 offset;
2316
2317         userpg->cap_user_time = 0;
2318         userpg->cap_user_time_zero = 0;
2319         userpg->cap_user_rdpmc =
2320                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2321         userpg->pmc_width = x86_pmu.cntval_bits;
2322
2323         if (!using_native_sched_clock() || !sched_clock_stable())
2324                 return;
2325
2326         cyc2ns_read_begin(&data);
2327
2328         offset = data.cyc2ns_offset + __sched_clock_offset;
2329
2330         /*
2331          * Internal timekeeping for enabled/running/stopped times
2332          * is always in the local_clock domain.
2333          */
2334         userpg->cap_user_time = 1;
2335         userpg->time_mult = data.cyc2ns_mul;
2336         userpg->time_shift = data.cyc2ns_shift;
2337         userpg->time_offset = offset - now;
2338
2339         /*
2340          * cap_user_time_zero doesn't make sense when we're using a different
2341          * time base for the records.
2342          */
2343         if (!event->attr.use_clockid) {
2344                 userpg->cap_user_time_zero = 1;
2345                 userpg->time_zero = offset;
2346         }
2347
2348         cyc2ns_read_end();
2349 }
2350
2351 void
2352 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2353 {
2354         struct unwind_state state;
2355         unsigned long addr;
2356
2357         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2358                 /* TODO: We don't support guest os callchain now */
2359                 return;
2360         }
2361
2362         if (perf_callchain_store(entry, regs->ip))
2363                 return;
2364
2365         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2366              unwind_next_frame(&state)) {
2367                 addr = unwind_get_return_address(&state);
2368                 if (!addr || perf_callchain_store(entry, addr))
2369                         return;
2370         }
2371 }
2372
2373 static inline int
2374 valid_user_frame(const void __user *fp, unsigned long size)
2375 {
2376         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2377 }
2378
2379 static unsigned long get_segment_base(unsigned int segment)
2380 {
2381         struct desc_struct *desc;
2382         unsigned int idx = segment >> 3;
2383
2384         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2385 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2386                 struct ldt_struct *ldt;
2387
2388                 /* IRQs are off, so this synchronizes with smp_store_release */
2389                 ldt = READ_ONCE(current->active_mm->context.ldt);
2390                 if (!ldt || idx >= ldt->nr_entries)
2391                         return 0;
2392
2393                 desc = &ldt->entries[idx];
2394 #else
2395                 return 0;
2396 #endif
2397         } else {
2398                 if (idx >= GDT_ENTRIES)
2399                         return 0;
2400
2401                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2402         }
2403
2404         return get_desc_base(desc);
2405 }
2406
2407 #ifdef CONFIG_IA32_EMULATION
2408
2409 #include <linux/compat.h>
2410
2411 static inline int
2412 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2413 {
2414         /* 32-bit process in 64-bit kernel. */
2415         unsigned long ss_base, cs_base;
2416         struct stack_frame_ia32 frame;
2417         const void __user *fp;
2418
2419         if (!test_thread_flag(TIF_IA32))
2420                 return 0;
2421
2422         cs_base = get_segment_base(regs->cs);
2423         ss_base = get_segment_base(regs->ss);
2424
2425         fp = compat_ptr(ss_base + regs->bp);
2426         pagefault_disable();
2427         while (entry->nr < entry->max_stack) {
2428                 unsigned long bytes;
2429                 frame.next_frame     = 0;
2430                 frame.return_address = 0;
2431
2432                 if (!valid_user_frame(fp, sizeof(frame)))
2433                         break;
2434
2435                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2436                 if (bytes != 0)
2437                         break;
2438                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2439                 if (bytes != 0)
2440                         break;
2441
2442                 perf_callchain_store(entry, cs_base + frame.return_address);
2443                 fp = compat_ptr(ss_base + frame.next_frame);
2444         }
2445         pagefault_enable();
2446         return 1;
2447 }
2448 #else
2449 static inline int
2450 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2451 {
2452     return 0;
2453 }
2454 #endif
2455
2456 void
2457 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2458 {
2459         struct stack_frame frame;
2460         const unsigned long __user *fp;
2461
2462         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2463                 /* TODO: We don't support guest os callchain now */
2464                 return;
2465         }
2466
2467         /*
2468          * We don't know what to do with VM86 stacks.. ignore them for now.
2469          */
2470         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2471                 return;
2472
2473         fp = (unsigned long __user *)regs->bp;
2474
2475         perf_callchain_store(entry, regs->ip);
2476
2477         if (!nmi_uaccess_okay())
2478                 return;
2479
2480         if (perf_callchain_user32(regs, entry))
2481                 return;
2482
2483         pagefault_disable();
2484         while (entry->nr < entry->max_stack) {
2485                 unsigned long bytes;
2486
2487                 frame.next_frame             = NULL;
2488                 frame.return_address = 0;
2489
2490                 if (!valid_user_frame(fp, sizeof(frame)))
2491                         break;
2492
2493                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2494                 if (bytes != 0)
2495                         break;
2496                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2497                 if (bytes != 0)
2498                         break;
2499
2500                 perf_callchain_store(entry, frame.return_address);
2501                 fp = (void __user *)frame.next_frame;
2502         }
2503         pagefault_enable();
2504 }
2505
2506 /*
2507  * Deal with code segment offsets for the various execution modes:
2508  *
2509  *   VM86 - the good olde 16 bit days, where the linear address is
2510  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2511  *
2512  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2513  *          to figure out what the 32bit base address is.
2514  *
2515  *    X32 - has TIF_X32 set, but is running in x86_64
2516  *
2517  * X86_64 - CS,DS,SS,ES are all zero based.
2518  */
2519 static unsigned long code_segment_base(struct pt_regs *regs)
2520 {
2521         /*
2522          * For IA32 we look at the GDT/LDT segment base to convert the
2523          * effective IP to a linear address.
2524          */
2525
2526 #ifdef CONFIG_X86_32
2527         /*
2528          * If we are in VM86 mode, add the segment offset to convert to a
2529          * linear address.
2530          */
2531         if (regs->flags & X86_VM_MASK)
2532                 return 0x10 * regs->cs;
2533
2534         if (user_mode(regs) && regs->cs != __USER_CS)
2535                 return get_segment_base(regs->cs);
2536 #else
2537         if (user_mode(regs) && !user_64bit_mode(regs) &&
2538             regs->cs != __USER32_CS)
2539                 return get_segment_base(regs->cs);
2540 #endif
2541         return 0;
2542 }
2543
2544 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2545 {
2546         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2547                 return perf_guest_cbs->get_guest_ip();
2548
2549         return regs->ip + code_segment_base(regs);
2550 }
2551
2552 unsigned long perf_misc_flags(struct pt_regs *regs)
2553 {
2554         int misc = 0;
2555
2556         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2557                 if (perf_guest_cbs->is_user_mode())
2558                         misc |= PERF_RECORD_MISC_GUEST_USER;
2559                 else
2560                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2561         } else {
2562                 if (user_mode(regs))
2563                         misc |= PERF_RECORD_MISC_USER;
2564                 else
2565                         misc |= PERF_RECORD_MISC_KERNEL;
2566         }
2567
2568         if (regs->flags & PERF_EFLAGS_EXACT)
2569                 misc |= PERF_RECORD_MISC_EXACT_IP;
2570
2571         return misc;
2572 }
2573
2574 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2575 {
2576         cap->version            = x86_pmu.version;
2577         cap->num_counters_gp    = x86_pmu.num_counters;
2578         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2579         cap->bit_width_gp       = x86_pmu.cntval_bits;
2580         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2581         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2582         cap->events_mask_len    = x86_pmu.events_mask_len;
2583 }
2584 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);