Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41
42 #include "perf_event.h"
43
44 struct x86_pmu x86_pmu __read_mostly;
45
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47         .enabled = 1,
48 };
49
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51
52 u64 __read_mostly hw_cache_event_ids
53                                 [PERF_COUNT_HW_CACHE_MAX]
54                                 [PERF_COUNT_HW_CACHE_OP_MAX]
55                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57                                 [PERF_COUNT_HW_CACHE_MAX]
58                                 [PERF_COUNT_HW_CACHE_OP_MAX]
59                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60
61 /*
62  * Propagate event elapsed time into the generic event.
63  * Can only be executed on the CPU where the event is active.
64  * Returns the delta events processed.
65  */
66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68         struct hw_perf_event *hwc = &event->hw;
69         int shift = 64 - x86_pmu.cntval_bits;
70         u64 prev_raw_count, new_raw_count;
71         int idx = hwc->idx;
72         u64 delta;
73
74         if (idx == INTEL_PMC_IDX_FIXED_BTS)
75                 return 0;
76
77         /*
78          * Careful: an NMI might modify the previous event value.
79          *
80          * Our tactic to handle this is to first atomically read and
81          * exchange a new raw count - then add that new-prev delta
82          * count to the generic event atomically:
83          */
84 again:
85         prev_raw_count = local64_read(&hwc->prev_count);
86         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87
88         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89                                         new_raw_count) != prev_raw_count)
90                 goto again;
91
92         /*
93          * Now we have the new raw value and have updated the prev
94          * timestamp already. We can now calculate the elapsed delta
95          * (event-)time and add that to the generic event.
96          *
97          * Careful, not all hw sign-extends above the physical width
98          * of the count.
99          */
100         delta = (new_raw_count << shift) - (prev_raw_count << shift);
101         delta >>= shift;
102
103         local64_add(delta, &event->count);
104         local64_sub(delta, &hwc->period_left);
105
106         return new_raw_count;
107 }
108
109 /*
110  * Find and validate any extra registers to set up.
111  */
112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114         struct hw_perf_event_extra *reg;
115         struct extra_reg *er;
116
117         reg = &event->hw.extra_reg;
118
119         if (!x86_pmu.extra_regs)
120                 return 0;
121
122         for (er = x86_pmu.extra_regs; er->msr; er++) {
123                 if (er->event != (config & er->config_mask))
124                         continue;
125                 if (event->attr.config1 & ~er->valid_mask)
126                         return -EINVAL;
127                 /* Check if the extra msrs can be safely accessed*/
128                 if (!er->extra_msr_access)
129                         return -ENXIO;
130
131                 reg->idx = er->idx;
132                 reg->config = event->attr.config1;
133                 reg->reg = er->msr;
134                 break;
135         }
136         return 0;
137 }
138
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142
143 #ifdef CONFIG_X86_LOCAL_APIC
144
145 static bool reserve_pmc_hardware(void)
146 {
147         int i;
148
149         for (i = 0; i < x86_pmu.num_counters; i++) {
150                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151                         goto perfctr_fail;
152         }
153
154         for (i = 0; i < x86_pmu.num_counters; i++) {
155                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156                         goto eventsel_fail;
157         }
158
159         return true;
160
161 eventsel_fail:
162         for (i--; i >= 0; i--)
163                 release_evntsel_nmi(x86_pmu_config_addr(i));
164
165         i = x86_pmu.num_counters;
166
167 perfctr_fail:
168         for (i--; i >= 0; i--)
169                 release_perfctr_nmi(x86_pmu_event_addr(i));
170
171         return false;
172 }
173
174 static void release_pmc_hardware(void)
175 {
176         int i;
177
178         for (i = 0; i < x86_pmu.num_counters; i++) {
179                 release_perfctr_nmi(x86_pmu_event_addr(i));
180                 release_evntsel_nmi(x86_pmu_config_addr(i));
181         }
182 }
183
184 #else
185
186 static bool reserve_pmc_hardware(void) { return true; }
187 static void release_pmc_hardware(void) {}
188
189 #endif
190
191 static bool check_hw_exists(void)
192 {
193         u64 val, val_fail, val_new= ~0;
194         int i, reg, reg_fail, ret = 0;
195         int bios_fail = 0;
196         int reg_safe = -1;
197
198         /*
199          * Check to see if the BIOS enabled any of the counters, if so
200          * complain and bail.
201          */
202         for (i = 0; i < x86_pmu.num_counters; i++) {
203                 reg = x86_pmu_config_addr(i);
204                 ret = rdmsrl_safe(reg, &val);
205                 if (ret)
206                         goto msr_fail;
207                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208                         bios_fail = 1;
209                         val_fail = val;
210                         reg_fail = reg;
211                 } else {
212                         reg_safe = i;
213                 }
214         }
215
216         if (x86_pmu.num_counters_fixed) {
217                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218                 ret = rdmsrl_safe(reg, &val);
219                 if (ret)
220                         goto msr_fail;
221                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222                         if (val & (0x03 << i*4)) {
223                                 bios_fail = 1;
224                                 val_fail = val;
225                                 reg_fail = reg;
226                         }
227                 }
228         }
229
230         /*
231          * If all the counters are enabled, the below test will always
232          * fail.  The tools will also become useless in this scenario.
233          * Just fail and disable the hardware counters.
234          */
235
236         if (reg_safe == -1) {
237                 reg = reg_safe;
238                 goto msr_fail;
239         }
240
241         /*
242          * Read the current value, change it and read it back to see if it
243          * matches, this is needed to detect certain hardware emulators
244          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245          */
246         reg = x86_pmu_event_addr(reg_safe);
247         if (rdmsrl_safe(reg, &val))
248                 goto msr_fail;
249         val ^= 0xffffUL;
250         ret = wrmsrl_safe(reg, val);
251         ret |= rdmsrl_safe(reg, &val_new);
252         if (ret || val != val_new)
253                 goto msr_fail;
254
255         /*
256          * We still allow the PMU driver to operate:
257          */
258         if (bios_fail) {
259                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261                               reg_fail, val_fail);
262         }
263
264         return true;
265
266 msr_fail:
267         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268                 pr_cont("PMU not available due to virtualization, using software events only.\n");
269         } else {
270                 pr_cont("Broken PMU hardware detected, using software events only.\n");
271                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272                        reg, val_new);
273         }
274
275         return false;
276 }
277
278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280         x86_release_hardware();
281         atomic_dec(&active_events);
282 }
283
284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286         hw_perf_event_destroy(event);
287
288         /* undo the lbr/bts event accounting */
289         x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291
292 static inline int x86_pmu_initialized(void)
293 {
294         return x86_pmu.handle_irq != NULL;
295 }
296
297 static inline int
298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300         struct perf_event_attr *attr = &event->attr;
301         unsigned int cache_type, cache_op, cache_result;
302         u64 config, val;
303
304         config = attr->config;
305
306         cache_type = (config >>  0) & 0xff;
307         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308                 return -EINVAL;
309
310         cache_op = (config >>  8) & 0xff;
311         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312                 return -EINVAL;
313
314         cache_result = (config >> 16) & 0xff;
315         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316                 return -EINVAL;
317
318         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319
320         if (val == 0)
321                 return -ENOENT;
322
323         if (val == -1)
324                 return -EINVAL;
325
326         hwc->config |= val;
327         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328         return x86_pmu_extra_regs(val, event);
329 }
330
331 int x86_reserve_hardware(void)
332 {
333         int err = 0;
334
335         if (!atomic_inc_not_zero(&pmc_refcount)) {
336                 mutex_lock(&pmc_reserve_mutex);
337                 if (atomic_read(&pmc_refcount) == 0) {
338                         if (!reserve_pmc_hardware())
339                                 err = -EBUSY;
340                         else
341                                 reserve_ds_buffers();
342                 }
343                 if (!err)
344                         atomic_inc(&pmc_refcount);
345                 mutex_unlock(&pmc_reserve_mutex);
346         }
347
348         return err;
349 }
350
351 void x86_release_hardware(void)
352 {
353         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354                 release_pmc_hardware();
355                 release_ds_buffers();
356                 mutex_unlock(&pmc_reserve_mutex);
357         }
358 }
359
360 /*
361  * Check if we can create event of a certain type (that no conflicting events
362  * are present).
363  */
364 int x86_add_exclusive(unsigned int what)
365 {
366         int i;
367
368         /*
369          * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
370          * LBR and BTS are still mutually exclusive.
371          */
372         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
373                 return 0;
374
375         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
376                 mutex_lock(&pmc_reserve_mutex);
377                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
378                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
379                                 goto fail_unlock;
380                 }
381                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
382                 mutex_unlock(&pmc_reserve_mutex);
383         }
384
385         atomic_inc(&active_events);
386         return 0;
387
388 fail_unlock:
389         mutex_unlock(&pmc_reserve_mutex);
390         return -EBUSY;
391 }
392
393 void x86_del_exclusive(unsigned int what)
394 {
395         if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
396                 return;
397
398         atomic_dec(&x86_pmu.lbr_exclusive[what]);
399         atomic_dec(&active_events);
400 }
401
402 int x86_setup_perfctr(struct perf_event *event)
403 {
404         struct perf_event_attr *attr = &event->attr;
405         struct hw_perf_event *hwc = &event->hw;
406         u64 config;
407
408         if (!is_sampling_event(event)) {
409                 hwc->sample_period = x86_pmu.max_period;
410                 hwc->last_period = hwc->sample_period;
411                 local64_set(&hwc->period_left, hwc->sample_period);
412         }
413
414         if (attr->type == PERF_TYPE_RAW)
415                 return x86_pmu_extra_regs(event->attr.config, event);
416
417         if (attr->type == PERF_TYPE_HW_CACHE)
418                 return set_ext_hw_attr(hwc, event);
419
420         if (attr->config >= x86_pmu.max_events)
421                 return -EINVAL;
422
423         /*
424          * The generic map:
425          */
426         config = x86_pmu.event_map(attr->config);
427
428         if (config == 0)
429                 return -ENOENT;
430
431         if (config == -1LL)
432                 return -EINVAL;
433
434         /*
435          * Branch tracing:
436          */
437         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
438             !attr->freq && hwc->sample_period == 1) {
439                 /* BTS is not supported by this architecture. */
440                 if (!x86_pmu.bts_active)
441                         return -EOPNOTSUPP;
442
443                 /* BTS is currently only allowed for user-mode. */
444                 if (!attr->exclude_kernel)
445                         return -EOPNOTSUPP;
446
447                 /* disallow bts if conflicting events are present */
448                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
449                         return -EBUSY;
450
451                 event->destroy = hw_perf_lbr_event_destroy;
452         }
453
454         hwc->config |= config;
455
456         return 0;
457 }
458
459 /*
460  * check that branch_sample_type is compatible with
461  * settings needed for precise_ip > 1 which implies
462  * using the LBR to capture ALL taken branches at the
463  * priv levels of the measurement
464  */
465 static inline int precise_br_compat(struct perf_event *event)
466 {
467         u64 m = event->attr.branch_sample_type;
468         u64 b = 0;
469
470         /* must capture all branches */
471         if (!(m & PERF_SAMPLE_BRANCH_ANY))
472                 return 0;
473
474         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
475
476         if (!event->attr.exclude_user)
477                 b |= PERF_SAMPLE_BRANCH_USER;
478
479         if (!event->attr.exclude_kernel)
480                 b |= PERF_SAMPLE_BRANCH_KERNEL;
481
482         /*
483          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
484          */
485
486         return m == b;
487 }
488
489 int x86_pmu_hw_config(struct perf_event *event)
490 {
491         if (event->attr.precise_ip) {
492                 int precise = 0;
493
494                 /* Support for constant skid */
495                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496                         precise++;
497
498                         /* Support for IP fixup */
499                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500                                 precise++;
501
502                         if (x86_pmu.pebs_prec_dist)
503                                 precise++;
504                 }
505
506                 if (event->attr.precise_ip > precise)
507                         return -EOPNOTSUPP;
508         }
509         /*
510          * check that PEBS LBR correction does not conflict with
511          * whatever the user is asking with attr->branch_sample_type
512          */
513         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
514                 u64 *br_type = &event->attr.branch_sample_type;
515
516                 if (has_branch_stack(event)) {
517                         if (!precise_br_compat(event))
518                                 return -EOPNOTSUPP;
519
520                         /* branch_sample_type is compatible */
521
522                 } else {
523                         /*
524                          * user did not specify  branch_sample_type
525                          *
526                          * For PEBS fixups, we capture all
527                          * the branches at the priv level of the
528                          * event.
529                          */
530                         *br_type = PERF_SAMPLE_BRANCH_ANY;
531
532                         if (!event->attr.exclude_user)
533                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
534
535                         if (!event->attr.exclude_kernel)
536                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
537                 }
538         }
539
540         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
541                 event->attach_state |= PERF_ATTACH_TASK_DATA;
542
543         /*
544          * Generate PMC IRQs:
545          * (keep 'enabled' bit clear for now)
546          */
547         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
548
549         /*
550          * Count user and OS events unless requested not to
551          */
552         if (!event->attr.exclude_user)
553                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
554         if (!event->attr.exclude_kernel)
555                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
556
557         if (event->attr.type == PERF_TYPE_RAW)
558                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
559
560         if (event->attr.sample_period && x86_pmu.limit_period) {
561                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
562                                 event->attr.sample_period)
563                         return -EINVAL;
564         }
565
566         return x86_setup_perfctr(event);
567 }
568
569 /*
570  * Setup the hardware configuration for a given attr_type
571  */
572 static int __x86_pmu_event_init(struct perf_event *event)
573 {
574         int err;
575
576         if (!x86_pmu_initialized())
577                 return -ENODEV;
578
579         err = x86_reserve_hardware();
580         if (err)
581                 return err;
582
583         atomic_inc(&active_events);
584         event->destroy = hw_perf_event_destroy;
585
586         event->hw.idx = -1;
587         event->hw.last_cpu = -1;
588         event->hw.last_tag = ~0ULL;
589
590         /* mark unused */
591         event->hw.extra_reg.idx = EXTRA_REG_NONE;
592         event->hw.branch_reg.idx = EXTRA_REG_NONE;
593
594         return x86_pmu.hw_config(event);
595 }
596
597 void x86_pmu_disable_all(void)
598 {
599         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
600         int idx;
601
602         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
603                 u64 val;
604
605                 if (!test_bit(idx, cpuc->active_mask))
606                         continue;
607                 rdmsrl(x86_pmu_config_addr(idx), val);
608                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
609                         continue;
610                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
611                 wrmsrl(x86_pmu_config_addr(idx), val);
612         }
613 }
614
615 /*
616  * There may be PMI landing after enabled=0. The PMI hitting could be before or
617  * after disable_all.
618  *
619  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
620  * It will not be re-enabled in the NMI handler again, because enabled=0. After
621  * handling the NMI, disable_all will be called, which will not change the
622  * state either. If PMI hits after disable_all, the PMU is already disabled
623  * before entering NMI handler. The NMI handler will not change the state
624  * either.
625  *
626  * So either situation is harmless.
627  */
628 static void x86_pmu_disable(struct pmu *pmu)
629 {
630         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
631
632         if (!x86_pmu_initialized())
633                 return;
634
635         if (!cpuc->enabled)
636                 return;
637
638         cpuc->n_added = 0;
639         cpuc->enabled = 0;
640         barrier();
641
642         x86_pmu.disable_all();
643 }
644
645 void x86_pmu_enable_all(int added)
646 {
647         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648         int idx;
649
650         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
651                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
652
653                 if (!test_bit(idx, cpuc->active_mask))
654                         continue;
655
656                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
657         }
658 }
659
660 static struct pmu pmu;
661
662 static inline int is_x86_event(struct perf_event *event)
663 {
664         return event->pmu == &pmu;
665 }
666
667 /*
668  * Event scheduler state:
669  *
670  * Assign events iterating over all events and counters, beginning
671  * with events with least weights first. Keep the current iterator
672  * state in struct sched_state.
673  */
674 struct sched_state {
675         int     weight;
676         int     event;          /* event index */
677         int     counter;        /* counter index */
678         int     unassigned;     /* number of events to be assigned left */
679         int     nr_gp;          /* number of GP counters used */
680         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
681 };
682
683 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
684 #define SCHED_STATES_MAX        2
685
686 struct perf_sched {
687         int                     max_weight;
688         int                     max_events;
689         int                     max_gp;
690         int                     saved_states;
691         struct event_constraint **constraints;
692         struct sched_state      state;
693         struct sched_state      saved[SCHED_STATES_MAX];
694 };
695
696 /*
697  * Initialize interator that runs through all events and counters.
698  */
699 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
700                             int num, int wmin, int wmax, int gpmax)
701 {
702         int idx;
703
704         memset(sched, 0, sizeof(*sched));
705         sched->max_events       = num;
706         sched->max_weight       = wmax;
707         sched->max_gp           = gpmax;
708         sched->constraints      = constraints;
709
710         for (idx = 0; idx < num; idx++) {
711                 if (constraints[idx]->weight == wmin)
712                         break;
713         }
714
715         sched->state.event      = idx;          /* start with min weight */
716         sched->state.weight     = wmin;
717         sched->state.unassigned = num;
718 }
719
720 static void perf_sched_save_state(struct perf_sched *sched)
721 {
722         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
723                 return;
724
725         sched->saved[sched->saved_states] = sched->state;
726         sched->saved_states++;
727 }
728
729 static bool perf_sched_restore_state(struct perf_sched *sched)
730 {
731         if (!sched->saved_states)
732                 return false;
733
734         sched->saved_states--;
735         sched->state = sched->saved[sched->saved_states];
736
737         /* continue with next counter: */
738         clear_bit(sched->state.counter++, sched->state.used);
739
740         return true;
741 }
742
743 /*
744  * Select a counter for the current event to schedule. Return true on
745  * success.
746  */
747 static bool __perf_sched_find_counter(struct perf_sched *sched)
748 {
749         struct event_constraint *c;
750         int idx;
751
752         if (!sched->state.unassigned)
753                 return false;
754
755         if (sched->state.event >= sched->max_events)
756                 return false;
757
758         c = sched->constraints[sched->state.event];
759         /* Prefer fixed purpose counters */
760         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
761                 idx = INTEL_PMC_IDX_FIXED;
762                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
763                         if (!__test_and_set_bit(idx, sched->state.used))
764                                 goto done;
765                 }
766         }
767
768         /* Grab the first unused counter starting with idx */
769         idx = sched->state.counter;
770         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
771                 if (!__test_and_set_bit(idx, sched->state.used)) {
772                         if (sched->state.nr_gp++ >= sched->max_gp)
773                                 return false;
774
775                         goto done;
776                 }
777         }
778
779         return false;
780
781 done:
782         sched->state.counter = idx;
783
784         if (c->overlap)
785                 perf_sched_save_state(sched);
786
787         return true;
788 }
789
790 static bool perf_sched_find_counter(struct perf_sched *sched)
791 {
792         while (!__perf_sched_find_counter(sched)) {
793                 if (!perf_sched_restore_state(sched))
794                         return false;
795         }
796
797         return true;
798 }
799
800 /*
801  * Go through all unassigned events and find the next one to schedule.
802  * Take events with the least weight first. Return true on success.
803  */
804 static bool perf_sched_next_event(struct perf_sched *sched)
805 {
806         struct event_constraint *c;
807
808         if (!sched->state.unassigned || !--sched->state.unassigned)
809                 return false;
810
811         do {
812                 /* next event */
813                 sched->state.event++;
814                 if (sched->state.event >= sched->max_events) {
815                         /* next weight */
816                         sched->state.event = 0;
817                         sched->state.weight++;
818                         if (sched->state.weight > sched->max_weight)
819                                 return false;
820                 }
821                 c = sched->constraints[sched->state.event];
822         } while (c->weight != sched->state.weight);
823
824         sched->state.counter = 0;       /* start with first counter */
825
826         return true;
827 }
828
829 /*
830  * Assign a counter for each event.
831  */
832 int perf_assign_events(struct event_constraint **constraints, int n,
833                         int wmin, int wmax, int gpmax, int *assign)
834 {
835         struct perf_sched sched;
836
837         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
838
839         do {
840                 if (!perf_sched_find_counter(&sched))
841                         break;  /* failed */
842                 if (assign)
843                         assign[sched.state.event] = sched.state.counter;
844         } while (perf_sched_next_event(&sched));
845
846         return sched.state.unassigned;
847 }
848 EXPORT_SYMBOL_GPL(perf_assign_events);
849
850 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
851 {
852         struct event_constraint *c;
853         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
854         struct perf_event *e;
855         int i, wmin, wmax, unsched = 0;
856         struct hw_perf_event *hwc;
857
858         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
859
860         if (x86_pmu.start_scheduling)
861                 x86_pmu.start_scheduling(cpuc);
862
863         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
864                 cpuc->event_constraint[i] = NULL;
865                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
866                 cpuc->event_constraint[i] = c;
867
868                 wmin = min(wmin, c->weight);
869                 wmax = max(wmax, c->weight);
870         }
871
872         /*
873          * fastpath, try to reuse previous register
874          */
875         for (i = 0; i < n; i++) {
876                 hwc = &cpuc->event_list[i]->hw;
877                 c = cpuc->event_constraint[i];
878
879                 /* never assigned */
880                 if (hwc->idx == -1)
881                         break;
882
883                 /* constraint still honored */
884                 if (!test_bit(hwc->idx, c->idxmsk))
885                         break;
886
887                 /* not already used */
888                 if (test_bit(hwc->idx, used_mask))
889                         break;
890
891                 __set_bit(hwc->idx, used_mask);
892                 if (assign)
893                         assign[i] = hwc->idx;
894         }
895
896         /* slow path */
897         if (i != n) {
898                 int gpmax = x86_pmu.num_counters;
899
900                 /*
901                  * Do not allow scheduling of more than half the available
902                  * generic counters.
903                  *
904                  * This helps avoid counter starvation of sibling thread by
905                  * ensuring at most half the counters cannot be in exclusive
906                  * mode. There is no designated counters for the limits. Any
907                  * N/2 counters can be used. This helps with events with
908                  * specific counter constraints.
909                  */
910                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
911                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
912                         gpmax /= 2;
913
914                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
915                                              wmax, gpmax, assign);
916         }
917
918         /*
919          * In case of success (unsched = 0), mark events as committed,
920          * so we do not put_constraint() in case new events are added
921          * and fail to be scheduled
922          *
923          * We invoke the lower level commit callback to lock the resource
924          *
925          * We do not need to do all of this in case we are called to
926          * validate an event group (assign == NULL)
927          */
928         if (!unsched && assign) {
929                 for (i = 0; i < n; i++) {
930                         e = cpuc->event_list[i];
931                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
932                         if (x86_pmu.commit_scheduling)
933                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
934                 }
935         } else {
936                 for (i = 0; i < n; i++) {
937                         e = cpuc->event_list[i];
938                         /*
939                          * do not put_constraint() on comitted events,
940                          * because they are good to go
941                          */
942                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
943                                 continue;
944
945                         /*
946                          * release events that failed scheduling
947                          */
948                         if (x86_pmu.put_event_constraints)
949                                 x86_pmu.put_event_constraints(cpuc, e);
950                 }
951         }
952
953         if (x86_pmu.stop_scheduling)
954                 x86_pmu.stop_scheduling(cpuc);
955
956         return unsched ? -EINVAL : 0;
957 }
958
959 /*
960  * dogrp: true if must collect siblings events (group)
961  * returns total number of events and error code
962  */
963 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
964 {
965         struct perf_event *event;
966         int n, max_count;
967
968         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
969
970         /* current number of events already accepted */
971         n = cpuc->n_events;
972
973         if (is_x86_event(leader)) {
974                 if (n >= max_count)
975                         return -EINVAL;
976                 cpuc->event_list[n] = leader;
977                 n++;
978         }
979         if (!dogrp)
980                 return n;
981
982         list_for_each_entry(event, &leader->sibling_list, group_entry) {
983                 if (!is_x86_event(event) ||
984                     event->state <= PERF_EVENT_STATE_OFF)
985                         continue;
986
987                 if (n >= max_count)
988                         return -EINVAL;
989
990                 cpuc->event_list[n] = event;
991                 n++;
992         }
993         return n;
994 }
995
996 static inline void x86_assign_hw_event(struct perf_event *event,
997                                 struct cpu_hw_events *cpuc, int i)
998 {
999         struct hw_perf_event *hwc = &event->hw;
1000
1001         hwc->idx = cpuc->assign[i];
1002         hwc->last_cpu = smp_processor_id();
1003         hwc->last_tag = ++cpuc->tags[i];
1004
1005         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1006                 hwc->config_base = 0;
1007                 hwc->event_base = 0;
1008         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1009                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1010                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1011                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1012         } else {
1013                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1014                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1015                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1016         }
1017 }
1018
1019 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1020                                         struct cpu_hw_events *cpuc,
1021                                         int i)
1022 {
1023         return hwc->idx == cpuc->assign[i] &&
1024                 hwc->last_cpu == smp_processor_id() &&
1025                 hwc->last_tag == cpuc->tags[i];
1026 }
1027
1028 static void x86_pmu_start(struct perf_event *event, int flags);
1029
1030 static void x86_pmu_enable(struct pmu *pmu)
1031 {
1032         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1033         struct perf_event *event;
1034         struct hw_perf_event *hwc;
1035         int i, added = cpuc->n_added;
1036
1037         if (!x86_pmu_initialized())
1038                 return;
1039
1040         if (cpuc->enabled)
1041                 return;
1042
1043         if (cpuc->n_added) {
1044                 int n_running = cpuc->n_events - cpuc->n_added;
1045                 /*
1046                  * apply assignment obtained either from
1047                  * hw_perf_group_sched_in() or x86_pmu_enable()
1048                  *
1049                  * step1: save events moving to new counters
1050                  */
1051                 for (i = 0; i < n_running; i++) {
1052                         event = cpuc->event_list[i];
1053                         hwc = &event->hw;
1054
1055                         /*
1056                          * we can avoid reprogramming counter if:
1057                          * - assigned same counter as last time
1058                          * - running on same CPU as last time
1059                          * - no other event has used the counter since
1060                          */
1061                         if (hwc->idx == -1 ||
1062                             match_prev_assignment(hwc, cpuc, i))
1063                                 continue;
1064
1065                         /*
1066                          * Ensure we don't accidentally enable a stopped
1067                          * counter simply because we rescheduled.
1068                          */
1069                         if (hwc->state & PERF_HES_STOPPED)
1070                                 hwc->state |= PERF_HES_ARCH;
1071
1072                         x86_pmu_stop(event, PERF_EF_UPDATE);
1073                 }
1074
1075                 /*
1076                  * step2: reprogram moved events into new counters
1077                  */
1078                 for (i = 0; i < cpuc->n_events; i++) {
1079                         event = cpuc->event_list[i];
1080                         hwc = &event->hw;
1081
1082                         if (!match_prev_assignment(hwc, cpuc, i))
1083                                 x86_assign_hw_event(event, cpuc, i);
1084                         else if (i < n_running)
1085                                 continue;
1086
1087                         if (hwc->state & PERF_HES_ARCH)
1088                                 continue;
1089
1090                         x86_pmu_start(event, PERF_EF_RELOAD);
1091                 }
1092                 cpuc->n_added = 0;
1093                 perf_events_lapic_init();
1094         }
1095
1096         cpuc->enabled = 1;
1097         barrier();
1098
1099         x86_pmu.enable_all(added);
1100 }
1101
1102 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1103
1104 /*
1105  * Set the next IRQ period, based on the hwc->period_left value.
1106  * To be called with the event disabled in hw:
1107  */
1108 int x86_perf_event_set_period(struct perf_event *event)
1109 {
1110         struct hw_perf_event *hwc = &event->hw;
1111         s64 left = local64_read(&hwc->period_left);
1112         s64 period = hwc->sample_period;
1113         int ret = 0, idx = hwc->idx;
1114
1115         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1116                 return 0;
1117
1118         /*
1119          * If we are way outside a reasonable range then just skip forward:
1120          */
1121         if (unlikely(left <= -period)) {
1122                 left = period;
1123                 local64_set(&hwc->period_left, left);
1124                 hwc->last_period = period;
1125                 ret = 1;
1126         }
1127
1128         if (unlikely(left <= 0)) {
1129                 left += period;
1130                 local64_set(&hwc->period_left, left);
1131                 hwc->last_period = period;
1132                 ret = 1;
1133         }
1134         /*
1135          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1136          */
1137         if (unlikely(left < 2))
1138                 left = 2;
1139
1140         if (left > x86_pmu.max_period)
1141                 left = x86_pmu.max_period;
1142
1143         if (x86_pmu.limit_period)
1144                 left = x86_pmu.limit_period(event, left);
1145
1146         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1147
1148         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1149             local64_read(&hwc->prev_count) != (u64)-left) {
1150                 /*
1151                  * The hw event starts counting from this event offset,
1152                  * mark it to be able to extra future deltas:
1153                  */
1154                 local64_set(&hwc->prev_count, (u64)-left);
1155
1156                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1157         }
1158
1159         /*
1160          * Due to erratum on certan cpu we need
1161          * a second write to be sure the register
1162          * is updated properly
1163          */
1164         if (x86_pmu.perfctr_second_write) {
1165                 wrmsrl(hwc->event_base,
1166                         (u64)(-left) & x86_pmu.cntval_mask);
1167         }
1168
1169         perf_event_update_userpage(event);
1170
1171         return ret;
1172 }
1173
1174 void x86_pmu_enable_event(struct perf_event *event)
1175 {
1176         if (__this_cpu_read(cpu_hw_events.enabled))
1177                 __x86_pmu_enable_event(&event->hw,
1178                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1179 }
1180
1181 /*
1182  * Add a single event to the PMU.
1183  *
1184  * The event is added to the group of enabled events
1185  * but only if it can be scehduled with existing events.
1186  */
1187 static int x86_pmu_add(struct perf_event *event, int flags)
1188 {
1189         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1190         struct hw_perf_event *hwc;
1191         int assign[X86_PMC_IDX_MAX];
1192         int n, n0, ret;
1193
1194         hwc = &event->hw;
1195
1196         n0 = cpuc->n_events;
1197         ret = n = collect_events(cpuc, event, false);
1198         if (ret < 0)
1199                 goto out;
1200
1201         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1202         if (!(flags & PERF_EF_START))
1203                 hwc->state |= PERF_HES_ARCH;
1204
1205         /*
1206          * If group events scheduling transaction was started,
1207          * skip the schedulability test here, it will be performed
1208          * at commit time (->commit_txn) as a whole.
1209          *
1210          * If commit fails, we'll call ->del() on all events
1211          * for which ->add() was called.
1212          */
1213         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1214                 goto done_collect;
1215
1216         ret = x86_pmu.schedule_events(cpuc, n, assign);
1217         if (ret)
1218                 goto out;
1219         /*
1220          * copy new assignment, now we know it is possible
1221          * will be used by hw_perf_enable()
1222          */
1223         memcpy(cpuc->assign, assign, n*sizeof(int));
1224
1225 done_collect:
1226         /*
1227          * Commit the collect_events() state. See x86_pmu_del() and
1228          * x86_pmu_*_txn().
1229          */
1230         cpuc->n_events = n;
1231         cpuc->n_added += n - n0;
1232         cpuc->n_txn += n - n0;
1233
1234         if (x86_pmu.add) {
1235                 /*
1236                  * This is before x86_pmu_enable() will call x86_pmu_start(),
1237                  * so we enable LBRs before an event needs them etc..
1238                  */
1239                 x86_pmu.add(event);
1240         }
1241
1242         ret = 0;
1243 out:
1244         return ret;
1245 }
1246
1247 static void x86_pmu_start(struct perf_event *event, int flags)
1248 {
1249         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1250         int idx = event->hw.idx;
1251
1252         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1253                 return;
1254
1255         if (WARN_ON_ONCE(idx == -1))
1256                 return;
1257
1258         if (flags & PERF_EF_RELOAD) {
1259                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1260                 x86_perf_event_set_period(event);
1261         }
1262
1263         event->hw.state = 0;
1264
1265         cpuc->events[idx] = event;
1266         __set_bit(idx, cpuc->active_mask);
1267         __set_bit(idx, cpuc->running);
1268         x86_pmu.enable(event);
1269         perf_event_update_userpage(event);
1270 }
1271
1272 void perf_event_print_debug(void)
1273 {
1274         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1275         u64 pebs, debugctl;
1276         struct cpu_hw_events *cpuc;
1277         unsigned long flags;
1278         int cpu, idx;
1279
1280         if (!x86_pmu.num_counters)
1281                 return;
1282
1283         local_irq_save(flags);
1284
1285         cpu = smp_processor_id();
1286         cpuc = &per_cpu(cpu_hw_events, cpu);
1287
1288         if (x86_pmu.version >= 2) {
1289                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1290                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1291                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1292                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1293
1294                 pr_info("\n");
1295                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1296                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1297                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1298                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1299                 if (x86_pmu.pebs_constraints) {
1300                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1301                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1302                 }
1303                 if (x86_pmu.lbr_nr) {
1304                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1305                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1306                 }
1307         }
1308         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1309
1310         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1311                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1312                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1313
1314                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1315
1316                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1317                         cpu, idx, pmc_ctrl);
1318                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1319                         cpu, idx, pmc_count);
1320                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1321                         cpu, idx, prev_left);
1322         }
1323         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1324                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1325
1326                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1327                         cpu, idx, pmc_count);
1328         }
1329         local_irq_restore(flags);
1330 }
1331
1332 void x86_pmu_stop(struct perf_event *event, int flags)
1333 {
1334         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1335         struct hw_perf_event *hwc = &event->hw;
1336
1337         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1338                 x86_pmu.disable(event);
1339                 cpuc->events[hwc->idx] = NULL;
1340                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1341                 hwc->state |= PERF_HES_STOPPED;
1342         }
1343
1344         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1345                 /*
1346                  * Drain the remaining delta count out of a event
1347                  * that we are disabling:
1348                  */
1349                 x86_perf_event_update(event);
1350                 hwc->state |= PERF_HES_UPTODATE;
1351         }
1352 }
1353
1354 static void x86_pmu_del(struct perf_event *event, int flags)
1355 {
1356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357         int i;
1358
1359         /*
1360          * event is descheduled
1361          */
1362         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1363
1364         /*
1365          * If we're called during a txn, we only need to undo x86_pmu.add.
1366          * The events never got scheduled and ->cancel_txn will truncate
1367          * the event_list.
1368          *
1369          * XXX assumes any ->del() called during a TXN will only be on
1370          * an event added during that same TXN.
1371          */
1372         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1373                 goto do_del;
1374
1375         /*
1376          * Not a TXN, therefore cleanup properly.
1377          */
1378         x86_pmu_stop(event, PERF_EF_UPDATE);
1379
1380         for (i = 0; i < cpuc->n_events; i++) {
1381                 if (event == cpuc->event_list[i])
1382                         break;
1383         }
1384
1385         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1386                 return;
1387
1388         /* If we have a newly added event; make sure to decrease n_added. */
1389         if (i >= cpuc->n_events - cpuc->n_added)
1390                 --cpuc->n_added;
1391
1392         if (x86_pmu.put_event_constraints)
1393                 x86_pmu.put_event_constraints(cpuc, event);
1394
1395         /* Delete the array entry. */
1396         while (++i < cpuc->n_events) {
1397                 cpuc->event_list[i-1] = cpuc->event_list[i];
1398                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1399         }
1400         --cpuc->n_events;
1401
1402         perf_event_update_userpage(event);
1403
1404 do_del:
1405         if (x86_pmu.del) {
1406                 /*
1407                  * This is after x86_pmu_stop(); so we disable LBRs after any
1408                  * event can need them etc..
1409                  */
1410                 x86_pmu.del(event);
1411         }
1412 }
1413
1414 int x86_pmu_handle_irq(struct pt_regs *regs)
1415 {
1416         struct perf_sample_data data;
1417         struct cpu_hw_events *cpuc;
1418         struct perf_event *event;
1419         int idx, handled = 0;
1420         u64 val;
1421
1422         cpuc = this_cpu_ptr(&cpu_hw_events);
1423
1424         /*
1425          * Some chipsets need to unmask the LVTPC in a particular spot
1426          * inside the nmi handler.  As a result, the unmasking was pushed
1427          * into all the nmi handlers.
1428          *
1429          * This generic handler doesn't seem to have any issues where the
1430          * unmasking occurs so it was left at the top.
1431          */
1432         apic_write(APIC_LVTPC, APIC_DM_NMI);
1433
1434         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1435                 if (!test_bit(idx, cpuc->active_mask)) {
1436                         /*
1437                          * Though we deactivated the counter some cpus
1438                          * might still deliver spurious interrupts still
1439                          * in flight. Catch them:
1440                          */
1441                         if (__test_and_clear_bit(idx, cpuc->running))
1442                                 handled++;
1443                         continue;
1444                 }
1445
1446                 event = cpuc->events[idx];
1447
1448                 val = x86_perf_event_update(event);
1449                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1450                         continue;
1451
1452                 /*
1453                  * event overflow
1454                  */
1455                 handled++;
1456                 perf_sample_data_init(&data, 0, event->hw.last_period);
1457
1458                 if (!x86_perf_event_set_period(event))
1459                         continue;
1460
1461                 if (perf_event_overflow(event, &data, regs))
1462                         x86_pmu_stop(event, 0);
1463         }
1464
1465         if (handled)
1466                 inc_irq_stat(apic_perf_irqs);
1467
1468         return handled;
1469 }
1470
1471 void perf_events_lapic_init(void)
1472 {
1473         if (!x86_pmu.apic || !x86_pmu_initialized())
1474                 return;
1475
1476         /*
1477          * Always use NMI for PMU
1478          */
1479         apic_write(APIC_LVTPC, APIC_DM_NMI);
1480 }
1481
1482 static int
1483 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1484 {
1485         u64 start_clock;
1486         u64 finish_clock;
1487         int ret;
1488
1489         /*
1490          * All PMUs/events that share this PMI handler should make sure to
1491          * increment active_events for their events.
1492          */
1493         if (!atomic_read(&active_events))
1494                 return NMI_DONE;
1495
1496         start_clock = sched_clock();
1497         ret = x86_pmu.handle_irq(regs);
1498         finish_clock = sched_clock();
1499
1500         perf_sample_event_took(finish_clock - start_clock);
1501
1502         return ret;
1503 }
1504 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1505
1506 struct event_constraint emptyconstraint;
1507 struct event_constraint unconstrained;
1508
1509 static int x86_pmu_prepare_cpu(unsigned int cpu)
1510 {
1511         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1512         int i;
1513
1514         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1515                 cpuc->kfree_on_online[i] = NULL;
1516         if (x86_pmu.cpu_prepare)
1517                 return x86_pmu.cpu_prepare(cpu);
1518         return 0;
1519 }
1520
1521 static int x86_pmu_dead_cpu(unsigned int cpu)
1522 {
1523         if (x86_pmu.cpu_dead)
1524                 x86_pmu.cpu_dead(cpu);
1525         return 0;
1526 }
1527
1528 static int x86_pmu_online_cpu(unsigned int cpu)
1529 {
1530         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1531         int i;
1532
1533         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1534                 kfree(cpuc->kfree_on_online[i]);
1535                 cpuc->kfree_on_online[i] = NULL;
1536         }
1537         return 0;
1538 }
1539
1540 static int x86_pmu_starting_cpu(unsigned int cpu)
1541 {
1542         if (x86_pmu.cpu_starting)
1543                 x86_pmu.cpu_starting(cpu);
1544         return 0;
1545 }
1546
1547 static int x86_pmu_dying_cpu(unsigned int cpu)
1548 {
1549         if (x86_pmu.cpu_dying)
1550                 x86_pmu.cpu_dying(cpu);
1551         return 0;
1552 }
1553
1554 static void __init pmu_check_apic(void)
1555 {
1556         if (boot_cpu_has(X86_FEATURE_APIC))
1557                 return;
1558
1559         x86_pmu.apic = 0;
1560         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1561         pr_info("no hardware sampling interrupt available.\n");
1562
1563         /*
1564          * If we have a PMU initialized but no APIC
1565          * interrupts, we cannot sample hardware
1566          * events (user-space has to fall back and
1567          * sample via a hrtimer based software event):
1568          */
1569         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1570
1571 }
1572
1573 static struct attribute_group x86_pmu_format_group = {
1574         .name = "format",
1575         .attrs = NULL,
1576 };
1577
1578 /*
1579  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1580  * out of events_attr attributes.
1581  */
1582 static void __init filter_events(struct attribute **attrs)
1583 {
1584         struct device_attribute *d;
1585         struct perf_pmu_events_attr *pmu_attr;
1586         int offset = 0;
1587         int i, j;
1588
1589         for (i = 0; attrs[i]; i++) {
1590                 d = (struct device_attribute *)attrs[i];
1591                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1592                 /* str trumps id */
1593                 if (pmu_attr->event_str)
1594                         continue;
1595                 if (x86_pmu.event_map(i + offset))
1596                         continue;
1597
1598                 for (j = i; attrs[j]; j++)
1599                         attrs[j] = attrs[j + 1];
1600
1601                 /* Check the shifted attr. */
1602                 i--;
1603
1604                 /*
1605                  * event_map() is index based, the attrs array is organized
1606                  * by increasing event index. If we shift the events, then
1607                  * we need to compensate for the event_map(), otherwise
1608                  * we are looking up the wrong event in the map
1609                  */
1610                 offset++;
1611         }
1612 }
1613
1614 /* Merge two pointer arrays */
1615 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1616 {
1617         struct attribute **new;
1618         int j, i;
1619
1620         for (j = 0; a[j]; j++)
1621                 ;
1622         for (i = 0; b[i]; i++)
1623                 j++;
1624         j++;
1625
1626         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1627         if (!new)
1628                 return NULL;
1629
1630         j = 0;
1631         for (i = 0; a[i]; i++)
1632                 new[j++] = a[i];
1633         for (i = 0; b[i]; i++)
1634                 new[j++] = b[i];
1635         new[j] = NULL;
1636
1637         return new;
1638 }
1639
1640 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1641 {
1642         struct perf_pmu_events_attr *pmu_attr = \
1643                 container_of(attr, struct perf_pmu_events_attr, attr);
1644         u64 config = x86_pmu.event_map(pmu_attr->id);
1645
1646         /* string trumps id */
1647         if (pmu_attr->event_str)
1648                 return sprintf(page, "%s", pmu_attr->event_str);
1649
1650         return x86_pmu.events_sysfs_show(page, config);
1651 }
1652 EXPORT_SYMBOL_GPL(events_sysfs_show);
1653
1654 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1655                           char *page)
1656 {
1657         struct perf_pmu_events_ht_attr *pmu_attr =
1658                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1659
1660         /*
1661          * Report conditional events depending on Hyper-Threading.
1662          *
1663          * This is overly conservative as usually the HT special
1664          * handling is not needed if the other CPU thread is idle.
1665          *
1666          * Note this does not (and cannot) handle the case when thread
1667          * siblings are invisible, for example with virtualization
1668          * if they are owned by some other guest.  The user tool
1669          * has to re-read when a thread sibling gets onlined later.
1670          */
1671         return sprintf(page, "%s",
1672                         topology_max_smt_threads() > 1 ?
1673                         pmu_attr->event_str_ht :
1674                         pmu_attr->event_str_noht);
1675 }
1676
1677 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1678 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1679 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1680 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1681 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1682 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1683 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1684 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1685 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1686 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1687
1688 static struct attribute *empty_attrs;
1689
1690 static struct attribute *events_attr[] = {
1691         EVENT_PTR(CPU_CYCLES),
1692         EVENT_PTR(INSTRUCTIONS),
1693         EVENT_PTR(CACHE_REFERENCES),
1694         EVENT_PTR(CACHE_MISSES),
1695         EVENT_PTR(BRANCH_INSTRUCTIONS),
1696         EVENT_PTR(BRANCH_MISSES),
1697         EVENT_PTR(BUS_CYCLES),
1698         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1699         EVENT_PTR(STALLED_CYCLES_BACKEND),
1700         EVENT_PTR(REF_CPU_CYCLES),
1701         NULL,
1702 };
1703
1704 static struct attribute_group x86_pmu_events_group = {
1705         .name = "events",
1706         .attrs = events_attr,
1707 };
1708
1709 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1710 {
1711         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1712         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1713         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1714         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1715         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1716         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1717         ssize_t ret;
1718
1719         /*
1720         * We have whole page size to spend and just little data
1721         * to write, so we can safely use sprintf.
1722         */
1723         ret = sprintf(page, "event=0x%02llx", event);
1724
1725         if (umask)
1726                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1727
1728         if (edge)
1729                 ret += sprintf(page + ret, ",edge");
1730
1731         if (pc)
1732                 ret += sprintf(page + ret, ",pc");
1733
1734         if (any)
1735                 ret += sprintf(page + ret, ",any");
1736
1737         if (inv)
1738                 ret += sprintf(page + ret, ",inv");
1739
1740         if (cmask)
1741                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1742
1743         ret += sprintf(page + ret, "\n");
1744
1745         return ret;
1746 }
1747
1748 static int __init init_hw_perf_events(void)
1749 {
1750         struct x86_pmu_quirk *quirk;
1751         int err;
1752
1753         pr_info("Performance Events: ");
1754
1755         switch (boot_cpu_data.x86_vendor) {
1756         case X86_VENDOR_INTEL:
1757                 err = intel_pmu_init();
1758                 break;
1759         case X86_VENDOR_AMD:
1760                 err = amd_pmu_init();
1761                 break;
1762         default:
1763                 err = -ENOTSUPP;
1764         }
1765         if (err != 0) {
1766                 pr_cont("no PMU driver, software events only.\n");
1767                 return 0;
1768         }
1769
1770         pmu_check_apic();
1771
1772         /* sanity check that the hardware exists or is emulated */
1773         if (!check_hw_exists())
1774                 return 0;
1775
1776         pr_cont("%s PMU driver.\n", x86_pmu.name);
1777
1778         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1779
1780         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1781                 quirk->func();
1782
1783         if (!x86_pmu.intel_ctrl)
1784                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1785
1786         perf_events_lapic_init();
1787         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1788
1789         unconstrained = (struct event_constraint)
1790                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1791                                    0, x86_pmu.num_counters, 0, 0);
1792
1793         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1794
1795         if (x86_pmu.event_attrs)
1796                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1797
1798         if (!x86_pmu.events_sysfs_show)
1799                 x86_pmu_events_group.attrs = &empty_attrs;
1800         else
1801                 filter_events(x86_pmu_events_group.attrs);
1802
1803         if (x86_pmu.cpu_events) {
1804                 struct attribute **tmp;
1805
1806                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1807                 if (!WARN_ON(!tmp))
1808                         x86_pmu_events_group.attrs = tmp;
1809         }
1810
1811         pr_info("... version:                %d\n",     x86_pmu.version);
1812         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1813         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1814         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1815         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1816         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1817         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1818
1819         /*
1820          * Install callbacks. Core will call them for each online
1821          * cpu.
1822          */
1823         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1824                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1825         if (err)
1826                 return err;
1827
1828         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1829                                 "perf/x86:starting", x86_pmu_starting_cpu,
1830                                 x86_pmu_dying_cpu);
1831         if (err)
1832                 goto out;
1833
1834         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1835                                 x86_pmu_online_cpu, NULL);
1836         if (err)
1837                 goto out1;
1838
1839         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1840         if (err)
1841                 goto out2;
1842
1843         return 0;
1844
1845 out2:
1846         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1847 out1:
1848         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1849 out:
1850         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1851         return err;
1852 }
1853 early_initcall(init_hw_perf_events);
1854
1855 static inline void x86_pmu_read(struct perf_event *event)
1856 {
1857         x86_perf_event_update(event);
1858 }
1859
1860 /*
1861  * Start group events scheduling transaction
1862  * Set the flag to make pmu::enable() not perform the
1863  * schedulability test, it will be performed at commit time
1864  *
1865  * We only support PERF_PMU_TXN_ADD transactions. Save the
1866  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1867  * transactions.
1868  */
1869 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1870 {
1871         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1872
1873         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1874
1875         cpuc->txn_flags = txn_flags;
1876         if (txn_flags & ~PERF_PMU_TXN_ADD)
1877                 return;
1878
1879         perf_pmu_disable(pmu);
1880         __this_cpu_write(cpu_hw_events.n_txn, 0);
1881 }
1882
1883 /*
1884  * Stop group events scheduling transaction
1885  * Clear the flag and pmu::enable() will perform the
1886  * schedulability test.
1887  */
1888 static void x86_pmu_cancel_txn(struct pmu *pmu)
1889 {
1890         unsigned int txn_flags;
1891         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1892
1893         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1894
1895         txn_flags = cpuc->txn_flags;
1896         cpuc->txn_flags = 0;
1897         if (txn_flags & ~PERF_PMU_TXN_ADD)
1898                 return;
1899
1900         /*
1901          * Truncate collected array by the number of events added in this
1902          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1903          */
1904         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1905         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1906         perf_pmu_enable(pmu);
1907 }
1908
1909 /*
1910  * Commit group events scheduling transaction
1911  * Perform the group schedulability test as a whole
1912  * Return 0 if success
1913  *
1914  * Does not cancel the transaction on failure; expects the caller to do this.
1915  */
1916 static int x86_pmu_commit_txn(struct pmu *pmu)
1917 {
1918         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1919         int assign[X86_PMC_IDX_MAX];
1920         int n, ret;
1921
1922         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1923
1924         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1925                 cpuc->txn_flags = 0;
1926                 return 0;
1927         }
1928
1929         n = cpuc->n_events;
1930
1931         if (!x86_pmu_initialized())
1932                 return -EAGAIN;
1933
1934         ret = x86_pmu.schedule_events(cpuc, n, assign);
1935         if (ret)
1936                 return ret;
1937
1938         /*
1939          * copy new assignment, now we know it is possible
1940          * will be used by hw_perf_enable()
1941          */
1942         memcpy(cpuc->assign, assign, n*sizeof(int));
1943
1944         cpuc->txn_flags = 0;
1945         perf_pmu_enable(pmu);
1946         return 0;
1947 }
1948 /*
1949  * a fake_cpuc is used to validate event groups. Due to
1950  * the extra reg logic, we need to also allocate a fake
1951  * per_core and per_cpu structure. Otherwise, group events
1952  * using extra reg may conflict without the kernel being
1953  * able to catch this when the last event gets added to
1954  * the group.
1955  */
1956 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1957 {
1958         kfree(cpuc->shared_regs);
1959         kfree(cpuc);
1960 }
1961
1962 static struct cpu_hw_events *allocate_fake_cpuc(void)
1963 {
1964         struct cpu_hw_events *cpuc;
1965         int cpu = raw_smp_processor_id();
1966
1967         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1968         if (!cpuc)
1969                 return ERR_PTR(-ENOMEM);
1970
1971         /* only needed, if we have extra_regs */
1972         if (x86_pmu.extra_regs) {
1973                 cpuc->shared_regs = allocate_shared_regs(cpu);
1974                 if (!cpuc->shared_regs)
1975                         goto error;
1976         }
1977         cpuc->is_fake = 1;
1978         return cpuc;
1979 error:
1980         free_fake_cpuc(cpuc);
1981         return ERR_PTR(-ENOMEM);
1982 }
1983
1984 /*
1985  * validate that we can schedule this event
1986  */
1987 static int validate_event(struct perf_event *event)
1988 {
1989         struct cpu_hw_events *fake_cpuc;
1990         struct event_constraint *c;
1991         int ret = 0;
1992
1993         fake_cpuc = allocate_fake_cpuc();
1994         if (IS_ERR(fake_cpuc))
1995                 return PTR_ERR(fake_cpuc);
1996
1997         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1998
1999         if (!c || !c->weight)
2000                 ret = -EINVAL;
2001
2002         if (x86_pmu.put_event_constraints)
2003                 x86_pmu.put_event_constraints(fake_cpuc, event);
2004
2005         free_fake_cpuc(fake_cpuc);
2006
2007         return ret;
2008 }
2009
2010 /*
2011  * validate a single event group
2012  *
2013  * validation include:
2014  *      - check events are compatible which each other
2015  *      - events do not compete for the same counter
2016  *      - number of events <= number of counters
2017  *
2018  * validation ensures the group can be loaded onto the
2019  * PMU if it was the only group available.
2020  */
2021 static int validate_group(struct perf_event *event)
2022 {
2023         struct perf_event *leader = event->group_leader;
2024         struct cpu_hw_events *fake_cpuc;
2025         int ret = -EINVAL, n;
2026
2027         fake_cpuc = allocate_fake_cpuc();
2028         if (IS_ERR(fake_cpuc))
2029                 return PTR_ERR(fake_cpuc);
2030         /*
2031          * the event is not yet connected with its
2032          * siblings therefore we must first collect
2033          * existing siblings, then add the new event
2034          * before we can simulate the scheduling
2035          */
2036         n = collect_events(fake_cpuc, leader, true);
2037         if (n < 0)
2038                 goto out;
2039
2040         fake_cpuc->n_events = n;
2041         n = collect_events(fake_cpuc, event, false);
2042         if (n < 0)
2043                 goto out;
2044
2045         fake_cpuc->n_events = n;
2046
2047         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2048
2049 out:
2050         free_fake_cpuc(fake_cpuc);
2051         return ret;
2052 }
2053
2054 static int x86_pmu_event_init(struct perf_event *event)
2055 {
2056         struct pmu *tmp;
2057         int err;
2058
2059         switch (event->attr.type) {
2060         case PERF_TYPE_RAW:
2061         case PERF_TYPE_HARDWARE:
2062         case PERF_TYPE_HW_CACHE:
2063                 break;
2064
2065         default:
2066                 return -ENOENT;
2067         }
2068
2069         err = __x86_pmu_event_init(event);
2070         if (!err) {
2071                 /*
2072                  * we temporarily connect event to its pmu
2073                  * such that validate_group() can classify
2074                  * it as an x86 event using is_x86_event()
2075                  */
2076                 tmp = event->pmu;
2077                 event->pmu = &pmu;
2078
2079                 if (event->group_leader != event)
2080                         err = validate_group(event);
2081                 else
2082                         err = validate_event(event);
2083
2084                 event->pmu = tmp;
2085         }
2086         if (err) {
2087                 if (event->destroy)
2088                         event->destroy(event);
2089         }
2090
2091         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2092                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2093
2094         return err;
2095 }
2096
2097 static void refresh_pce(void *ignored)
2098 {
2099         if (current->mm)
2100                 load_mm_cr4(current->mm);
2101 }
2102
2103 static void x86_pmu_event_mapped(struct perf_event *event)
2104 {
2105         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2106                 return;
2107
2108         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2109                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2110 }
2111
2112 static void x86_pmu_event_unmapped(struct perf_event *event)
2113 {
2114         if (!current->mm)
2115                 return;
2116
2117         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2118                 return;
2119
2120         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2121                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2122 }
2123
2124 static int x86_pmu_event_idx(struct perf_event *event)
2125 {
2126         int idx = event->hw.idx;
2127
2128         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2129                 return 0;
2130
2131         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2132                 idx -= INTEL_PMC_IDX_FIXED;
2133                 idx |= 1 << 30;
2134         }
2135
2136         return idx + 1;
2137 }
2138
2139 static ssize_t get_attr_rdpmc(struct device *cdev,
2140                               struct device_attribute *attr,
2141                               char *buf)
2142 {
2143         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2144 }
2145
2146 static ssize_t set_attr_rdpmc(struct device *cdev,
2147                               struct device_attribute *attr,
2148                               const char *buf, size_t count)
2149 {
2150         unsigned long val;
2151         ssize_t ret;
2152
2153         ret = kstrtoul(buf, 0, &val);
2154         if (ret)
2155                 return ret;
2156
2157         if (val > 2)
2158                 return -EINVAL;
2159
2160         if (x86_pmu.attr_rdpmc_broken)
2161                 return -ENOTSUPP;
2162
2163         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2164                 /*
2165                  * Changing into or out of always available, aka
2166                  * perf-event-bypassing mode.  This path is extremely slow,
2167                  * but only root can trigger it, so it's okay.
2168                  */
2169                 if (val == 2)
2170                         static_key_slow_inc(&rdpmc_always_available);
2171                 else
2172                         static_key_slow_dec(&rdpmc_always_available);
2173                 on_each_cpu(refresh_pce, NULL, 1);
2174         }
2175
2176         x86_pmu.attr_rdpmc = val;
2177
2178         return count;
2179 }
2180
2181 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2182
2183 static struct attribute *x86_pmu_attrs[] = {
2184         &dev_attr_rdpmc.attr,
2185         NULL,
2186 };
2187
2188 static struct attribute_group x86_pmu_attr_group = {
2189         .attrs = x86_pmu_attrs,
2190 };
2191
2192 static const struct attribute_group *x86_pmu_attr_groups[] = {
2193         &x86_pmu_attr_group,
2194         &x86_pmu_format_group,
2195         &x86_pmu_events_group,
2196         NULL,
2197 };
2198
2199 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2200 {
2201         if (x86_pmu.sched_task)
2202                 x86_pmu.sched_task(ctx, sched_in);
2203 }
2204
2205 void perf_check_microcode(void)
2206 {
2207         if (x86_pmu.check_microcode)
2208                 x86_pmu.check_microcode();
2209 }
2210 EXPORT_SYMBOL_GPL(perf_check_microcode);
2211
2212 static struct pmu pmu = {
2213         .pmu_enable             = x86_pmu_enable,
2214         .pmu_disable            = x86_pmu_disable,
2215
2216         .attr_groups            = x86_pmu_attr_groups,
2217
2218         .event_init             = x86_pmu_event_init,
2219
2220         .event_mapped           = x86_pmu_event_mapped,
2221         .event_unmapped         = x86_pmu_event_unmapped,
2222
2223         .add                    = x86_pmu_add,
2224         .del                    = x86_pmu_del,
2225         .start                  = x86_pmu_start,
2226         .stop                   = x86_pmu_stop,
2227         .read                   = x86_pmu_read,
2228
2229         .start_txn              = x86_pmu_start_txn,
2230         .cancel_txn             = x86_pmu_cancel_txn,
2231         .commit_txn             = x86_pmu_commit_txn,
2232
2233         .event_idx              = x86_pmu_event_idx,
2234         .sched_task             = x86_pmu_sched_task,
2235         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2236 };
2237
2238 void arch_perf_update_userpage(struct perf_event *event,
2239                                struct perf_event_mmap_page *userpg, u64 now)
2240 {
2241         struct cyc2ns_data *data;
2242
2243         userpg->cap_user_time = 0;
2244         userpg->cap_user_time_zero = 0;
2245         userpg->cap_user_rdpmc =
2246                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2247         userpg->pmc_width = x86_pmu.cntval_bits;
2248
2249         if (!sched_clock_stable())
2250                 return;
2251
2252         data = cyc2ns_read_begin();
2253
2254         /*
2255          * Internal timekeeping for enabled/running/stopped times
2256          * is always in the local_clock domain.
2257          */
2258         userpg->cap_user_time = 1;
2259         userpg->time_mult = data->cyc2ns_mul;
2260         userpg->time_shift = data->cyc2ns_shift;
2261         userpg->time_offset = data->cyc2ns_offset - now;
2262
2263         /*
2264          * cap_user_time_zero doesn't make sense when we're using a different
2265          * time base for the records.
2266          */
2267         if (!event->attr.use_clockid) {
2268                 userpg->cap_user_time_zero = 1;
2269                 userpg->time_zero = data->cyc2ns_offset;
2270         }
2271
2272         cyc2ns_read_end(data);
2273 }
2274
2275 void
2276 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2277 {
2278         struct unwind_state state;
2279         unsigned long addr;
2280
2281         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2282                 /* TODO: We don't support guest os callchain now */
2283                 return;
2284         }
2285
2286         if (perf_callchain_store(entry, regs->ip))
2287                 return;
2288
2289         for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2290              unwind_next_frame(&state)) {
2291                 addr = unwind_get_return_address(&state);
2292                 if (!addr || perf_callchain_store(entry, addr))
2293                         return;
2294         }
2295 }
2296
2297 static inline int
2298 valid_user_frame(const void __user *fp, unsigned long size)
2299 {
2300         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2301 }
2302
2303 static unsigned long get_segment_base(unsigned int segment)
2304 {
2305         struct desc_struct *desc;
2306         unsigned int idx = segment >> 3;
2307
2308         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2309 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2310                 struct ldt_struct *ldt;
2311
2312                 if (idx > LDT_ENTRIES)
2313                         return 0;
2314
2315                 /* IRQs are off, so this synchronizes with smp_store_release */
2316                 ldt = lockless_dereference(current->active_mm->context.ldt);
2317                 if (!ldt || idx > ldt->size)
2318                         return 0;
2319
2320                 desc = &ldt->entries[idx];
2321 #else
2322                 return 0;
2323 #endif
2324         } else {
2325                 if (idx > GDT_ENTRIES)
2326                         return 0;
2327
2328                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2329         }
2330
2331         return get_desc_base(desc);
2332 }
2333
2334 #ifdef CONFIG_IA32_EMULATION
2335
2336 #include <asm/compat.h>
2337
2338 static inline int
2339 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2340 {
2341         /* 32-bit process in 64-bit kernel. */
2342         unsigned long ss_base, cs_base;
2343         struct stack_frame_ia32 frame;
2344         const void __user *fp;
2345
2346         if (!test_thread_flag(TIF_IA32))
2347                 return 0;
2348
2349         cs_base = get_segment_base(regs->cs);
2350         ss_base = get_segment_base(regs->ss);
2351
2352         fp = compat_ptr(ss_base + regs->bp);
2353         pagefault_disable();
2354         while (entry->nr < entry->max_stack) {
2355                 unsigned long bytes;
2356                 frame.next_frame     = 0;
2357                 frame.return_address = 0;
2358
2359                 if (!valid_user_frame(fp, sizeof(frame)))
2360                         break;
2361
2362                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2363                 if (bytes != 0)
2364                         break;
2365                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2366                 if (bytes != 0)
2367                         break;
2368
2369                 perf_callchain_store(entry, cs_base + frame.return_address);
2370                 fp = compat_ptr(ss_base + frame.next_frame);
2371         }
2372         pagefault_enable();
2373         return 1;
2374 }
2375 #else
2376 static inline int
2377 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2378 {
2379     return 0;
2380 }
2381 #endif
2382
2383 void
2384 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2385 {
2386         struct stack_frame frame;
2387         const unsigned long __user *fp;
2388
2389         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2390                 /* TODO: We don't support guest os callchain now */
2391                 return;
2392         }
2393
2394         /*
2395          * We don't know what to do with VM86 stacks.. ignore them for now.
2396          */
2397         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2398                 return;
2399
2400         fp = (unsigned long __user *)regs->bp;
2401
2402         perf_callchain_store(entry, regs->ip);
2403
2404         if (!current->mm)
2405                 return;
2406
2407         if (perf_callchain_user32(regs, entry))
2408                 return;
2409
2410         pagefault_disable();
2411         while (entry->nr < entry->max_stack) {
2412                 unsigned long bytes;
2413
2414                 frame.next_frame             = NULL;
2415                 frame.return_address = 0;
2416
2417                 if (!valid_user_frame(fp, sizeof(frame)))
2418                         break;
2419
2420                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2421                 if (bytes != 0)
2422                         break;
2423                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2424                 if (bytes != 0)
2425                         break;
2426
2427                 perf_callchain_store(entry, frame.return_address);
2428                 fp = (void __user *)frame.next_frame;
2429         }
2430         pagefault_enable();
2431 }
2432
2433 /*
2434  * Deal with code segment offsets for the various execution modes:
2435  *
2436  *   VM86 - the good olde 16 bit days, where the linear address is
2437  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2438  *
2439  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2440  *          to figure out what the 32bit base address is.
2441  *
2442  *    X32 - has TIF_X32 set, but is running in x86_64
2443  *
2444  * X86_64 - CS,DS,SS,ES are all zero based.
2445  */
2446 static unsigned long code_segment_base(struct pt_regs *regs)
2447 {
2448         /*
2449          * For IA32 we look at the GDT/LDT segment base to convert the
2450          * effective IP to a linear address.
2451          */
2452
2453 #ifdef CONFIG_X86_32
2454         /*
2455          * If we are in VM86 mode, add the segment offset to convert to a
2456          * linear address.
2457          */
2458         if (regs->flags & X86_VM_MASK)
2459                 return 0x10 * regs->cs;
2460
2461         if (user_mode(regs) && regs->cs != __USER_CS)
2462                 return get_segment_base(regs->cs);
2463 #else
2464         if (user_mode(regs) && !user_64bit_mode(regs) &&
2465             regs->cs != __USER32_CS)
2466                 return get_segment_base(regs->cs);
2467 #endif
2468         return 0;
2469 }
2470
2471 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2472 {
2473         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2474                 return perf_guest_cbs->get_guest_ip();
2475
2476         return regs->ip + code_segment_base(regs);
2477 }
2478
2479 unsigned long perf_misc_flags(struct pt_regs *regs)
2480 {
2481         int misc = 0;
2482
2483         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2484                 if (perf_guest_cbs->is_user_mode())
2485                         misc |= PERF_RECORD_MISC_GUEST_USER;
2486                 else
2487                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2488         } else {
2489                 if (user_mode(regs))
2490                         misc |= PERF_RECORD_MISC_USER;
2491                 else
2492                         misc |= PERF_RECORD_MISC_KERNEL;
2493         }
2494
2495         if (regs->flags & PERF_EFLAGS_EXACT)
2496                 misc |= PERF_RECORD_MISC_EXACT_IP;
2497
2498         return misc;
2499 }
2500
2501 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2502 {
2503         cap->version            = x86_pmu.version;
2504         cap->num_counters_gp    = x86_pmu.num_counters;
2505         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2506         cap->bit_width_gp       = x86_pmu.cntval_bits;
2507         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2508         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2509         cap->events_mask_len    = x86_pmu.events_mask_len;
2510 }
2511 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);