Linux 6.9-rc5
[sfrench/cifs-2.6.git] / arch / x86 / crypto / twofish-i586-asm_32.S
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /***************************************************************************
3 *   Copyright (C) 2006 by Joachim Fritschi, <jfritschi@freenet.de>        *
4 *                                                                         *
5 ***************************************************************************/
6
7 .file "twofish-i586-asm.S"
8 .text
9
10 #include <linux/linkage.h>
11 #include <asm/asm-offsets.h>
12
13 /* return address at 0 */
14
15 #define in_blk    12  /* input byte array address parameter*/
16 #define out_blk   8  /* output byte array address parameter*/
17 #define ctx       4  /* Twofish context structure */
18
19 #define a_offset        0
20 #define b_offset        4
21 #define c_offset        8
22 #define d_offset        12
23
24 /* Structure of the crypto context struct*/
25
26 #define s0      0       /* S0 Array 256 Words each */
27 #define s1      1024    /* S1 Array */
28 #define s2      2048    /* S2 Array */
29 #define s3      3072    /* S3 Array */
30 #define w       4096    /* 8 whitening keys (word) */
31 #define k       4128    /* key 1-32 ( word ) */
32
33 /* define a few register aliases to allow macro substitution */
34
35 #define R0D    %eax
36 #define R0B    %al
37 #define R0H    %ah
38
39 #define R1D    %ebx
40 #define R1B    %bl
41 #define R1H    %bh
42
43 #define R2D    %ecx
44 #define R2B    %cl
45 #define R2H    %ch
46
47 #define R3D    %edx
48 #define R3B    %dl
49 #define R3H    %dh
50
51
52 /* performs input whitening */
53 #define input_whitening(src,context,offset)\
54         xor     w+offset(context),      src;
55
56 /* performs input whitening */
57 #define output_whitening(src,context,offset)\
58         xor     w+16+offset(context),   src;
59
60 /*
61  * a input register containing a (rotated 16)
62  * b input register containing b
63  * c input register containing c
64  * d input register containing d (already rol $1)
65  * operations on a and b are interleaved to increase performance
66  */
67 #define encrypt_round(a,b,c,d,round)\
68         push    d ## D;\
69         movzx   b ## B,         %edi;\
70         mov     s1(%ebp,%edi,4),d ## D;\
71         movzx   a ## B,         %edi;\
72         mov     s2(%ebp,%edi,4),%esi;\
73         movzx   b ## H,         %edi;\
74         ror     $16,            b ## D;\
75         xor     s2(%ebp,%edi,4),d ## D;\
76         movzx   a ## H,         %edi;\
77         ror     $16,            a ## D;\
78         xor     s3(%ebp,%edi,4),%esi;\
79         movzx   b ## B,         %edi;\
80         xor     s3(%ebp,%edi,4),d ## D;\
81         movzx   a ## B,         %edi;\
82         xor     (%ebp,%edi,4),  %esi;\
83         movzx   b ## H,         %edi;\
84         ror     $15,            b ## D;\
85         xor     (%ebp,%edi,4),  d ## D;\
86         movzx   a ## H,         %edi;\
87         xor     s1(%ebp,%edi,4),%esi;\
88         pop     %edi;\
89         add     d ## D,         %esi;\
90         add     %esi,           d ## D;\
91         add     k+round(%ebp),  %esi;\
92         xor     %esi,           c ## D;\
93         rol     $15,            c ## D;\
94         add     k+4+round(%ebp),d ## D;\
95         xor     %edi,           d ## D;
96
97 /*
98  * a input register containing a (rotated 16)
99  * b input register containing b
100  * c input register containing c
101  * d input register containing d (already rol $1)
102  * operations on a and b are interleaved to increase performance
103  * last round has different rotations for the output preparation
104  */
105 #define encrypt_last_round(a,b,c,d,round)\
106         push    d ## D;\
107         movzx   b ## B,         %edi;\
108         mov     s1(%ebp,%edi,4),d ## D;\
109         movzx   a ## B,         %edi;\
110         mov     s2(%ebp,%edi,4),%esi;\
111         movzx   b ## H,         %edi;\
112         ror     $16,            b ## D;\
113         xor     s2(%ebp,%edi,4),d ## D;\
114         movzx   a ## H,         %edi;\
115         ror     $16,            a ## D;\
116         xor     s3(%ebp,%edi,4),%esi;\
117         movzx   b ## B,         %edi;\
118         xor     s3(%ebp,%edi,4),d ## D;\
119         movzx   a ## B,         %edi;\
120         xor     (%ebp,%edi,4),  %esi;\
121         movzx   b ## H,         %edi;\
122         ror     $16,            b ## D;\
123         xor     (%ebp,%edi,4),  d ## D;\
124         movzx   a ## H,         %edi;\
125         xor     s1(%ebp,%edi,4),%esi;\
126         pop     %edi;\
127         add     d ## D,         %esi;\
128         add     %esi,           d ## D;\
129         add     k+round(%ebp),  %esi;\
130         xor     %esi,           c ## D;\
131         ror     $1,             c ## D;\
132         add     k+4+round(%ebp),d ## D;\
133         xor     %edi,           d ## D;
134
135 /*
136  * a input register containing a
137  * b input register containing b (rotated 16)
138  * c input register containing c
139  * d input register containing d (already rol $1)
140  * operations on a and b are interleaved to increase performance
141  */
142 #define decrypt_round(a,b,c,d,round)\
143         push    c ## D;\
144         movzx   a ## B,         %edi;\
145         mov     (%ebp,%edi,4),  c ## D;\
146         movzx   b ## B,         %edi;\
147         mov     s3(%ebp,%edi,4),%esi;\
148         movzx   a ## H,         %edi;\
149         ror     $16,            a ## D;\
150         xor     s1(%ebp,%edi,4),c ## D;\
151         movzx   b ## H,         %edi;\
152         ror     $16,            b ## D;\
153         xor     (%ebp,%edi,4),  %esi;\
154         movzx   a ## B,         %edi;\
155         xor     s2(%ebp,%edi,4),c ## D;\
156         movzx   b ## B,         %edi;\
157         xor     s1(%ebp,%edi,4),%esi;\
158         movzx   a ## H,         %edi;\
159         ror     $15,            a ## D;\
160         xor     s3(%ebp,%edi,4),c ## D;\
161         movzx   b ## H,         %edi;\
162         xor     s2(%ebp,%edi,4),%esi;\
163         pop     %edi;\
164         add     %esi,           c ## D;\
165         add     c ## D,         %esi;\
166         add     k+round(%ebp),  c ## D;\
167         xor     %edi,           c ## D;\
168         add     k+4+round(%ebp),%esi;\
169         xor     %esi,           d ## D;\
170         rol     $15,            d ## D;
171
172 /*
173  * a input register containing a
174  * b input register containing b (rotated 16)
175  * c input register containing c
176  * d input register containing d (already rol $1)
177  * operations on a and b are interleaved to increase performance
178  * last round has different rotations for the output preparation
179  */
180 #define decrypt_last_round(a,b,c,d,round)\
181         push    c ## D;\
182         movzx   a ## B,         %edi;\
183         mov     (%ebp,%edi,4),  c ## D;\
184         movzx   b ## B,         %edi;\
185         mov     s3(%ebp,%edi,4),%esi;\
186         movzx   a ## H,         %edi;\
187         ror     $16,            a ## D;\
188         xor     s1(%ebp,%edi,4),c ## D;\
189         movzx   b ## H,         %edi;\
190         ror     $16,            b ## D;\
191         xor     (%ebp,%edi,4),  %esi;\
192         movzx   a ## B,         %edi;\
193         xor     s2(%ebp,%edi,4),c ## D;\
194         movzx   b ## B,         %edi;\
195         xor     s1(%ebp,%edi,4),%esi;\
196         movzx   a ## H,         %edi;\
197         ror     $16,            a ## D;\
198         xor     s3(%ebp,%edi,4),c ## D;\
199         movzx   b ## H,         %edi;\
200         xor     s2(%ebp,%edi,4),%esi;\
201         pop     %edi;\
202         add     %esi,           c ## D;\
203         add     c ## D,         %esi;\
204         add     k+round(%ebp),  c ## D;\
205         xor     %edi,           c ## D;\
206         add     k+4+round(%ebp),%esi;\
207         xor     %esi,           d ## D;\
208         ror     $1,             d ## D;
209
210 SYM_FUNC_START(twofish_enc_blk)
211         push    %ebp                    /* save registers according to calling convention*/
212         push    %ebx
213         push    %esi
214         push    %edi
215
216         mov     ctx + 16(%esp), %ebp    /* abuse the base pointer: set new base
217                                          * pointer to the ctx address */
218         mov     in_blk+16(%esp),%edi    /* input address in edi */
219
220         mov     (%edi),         %eax
221         mov     b_offset(%edi), %ebx
222         mov     c_offset(%edi), %ecx
223         mov     d_offset(%edi), %edx
224         input_whitening(%eax,%ebp,a_offset)
225         ror     $16,    %eax
226         input_whitening(%ebx,%ebp,b_offset)
227         input_whitening(%ecx,%ebp,c_offset)
228         input_whitening(%edx,%ebp,d_offset)
229         rol     $1,     %edx
230
231         encrypt_round(R0,R1,R2,R3,0);
232         encrypt_round(R2,R3,R0,R1,8);
233         encrypt_round(R0,R1,R2,R3,2*8);
234         encrypt_round(R2,R3,R0,R1,3*8);
235         encrypt_round(R0,R1,R2,R3,4*8);
236         encrypt_round(R2,R3,R0,R1,5*8);
237         encrypt_round(R0,R1,R2,R3,6*8);
238         encrypt_round(R2,R3,R0,R1,7*8);
239         encrypt_round(R0,R1,R2,R3,8*8);
240         encrypt_round(R2,R3,R0,R1,9*8);
241         encrypt_round(R0,R1,R2,R3,10*8);
242         encrypt_round(R2,R3,R0,R1,11*8);
243         encrypt_round(R0,R1,R2,R3,12*8);
244         encrypt_round(R2,R3,R0,R1,13*8);
245         encrypt_round(R0,R1,R2,R3,14*8);
246         encrypt_last_round(R2,R3,R0,R1,15*8);
247
248         output_whitening(%eax,%ebp,c_offset)
249         output_whitening(%ebx,%ebp,d_offset)
250         output_whitening(%ecx,%ebp,a_offset)
251         output_whitening(%edx,%ebp,b_offset)
252         mov     out_blk+16(%esp),%edi;
253         mov     %eax,           c_offset(%edi)
254         mov     %ebx,           d_offset(%edi)
255         mov     %ecx,           (%edi)
256         mov     %edx,           b_offset(%edi)
257
258         pop     %edi
259         pop     %esi
260         pop     %ebx
261         pop     %ebp
262         mov     $1,     %eax
263         ret
264 SYM_FUNC_END(twofish_enc_blk)
265
266 SYM_FUNC_START(twofish_dec_blk)
267         push    %ebp                    /* save registers according to calling convention*/
268         push    %ebx
269         push    %esi
270         push    %edi
271
272
273         mov     ctx + 16(%esp), %ebp    /* abuse the base pointer: set new base
274                                          * pointer to the ctx address */
275         mov     in_blk+16(%esp),%edi    /* input address in edi */
276
277         mov     (%edi),         %eax
278         mov     b_offset(%edi), %ebx
279         mov     c_offset(%edi), %ecx
280         mov     d_offset(%edi), %edx
281         output_whitening(%eax,%ebp,a_offset)
282         output_whitening(%ebx,%ebp,b_offset)
283         ror     $16,    %ebx
284         output_whitening(%ecx,%ebp,c_offset)
285         output_whitening(%edx,%ebp,d_offset)
286         rol     $1,     %ecx
287
288         decrypt_round(R0,R1,R2,R3,15*8);
289         decrypt_round(R2,R3,R0,R1,14*8);
290         decrypt_round(R0,R1,R2,R3,13*8);
291         decrypt_round(R2,R3,R0,R1,12*8);
292         decrypt_round(R0,R1,R2,R3,11*8);
293         decrypt_round(R2,R3,R0,R1,10*8);
294         decrypt_round(R0,R1,R2,R3,9*8);
295         decrypt_round(R2,R3,R0,R1,8*8);
296         decrypt_round(R0,R1,R2,R3,7*8);
297         decrypt_round(R2,R3,R0,R1,6*8);
298         decrypt_round(R0,R1,R2,R3,5*8);
299         decrypt_round(R2,R3,R0,R1,4*8);
300         decrypt_round(R0,R1,R2,R3,3*8);
301         decrypt_round(R2,R3,R0,R1,2*8);
302         decrypt_round(R0,R1,R2,R3,1*8);
303         decrypt_last_round(R2,R3,R0,R1,0);
304
305         input_whitening(%eax,%ebp,c_offset)
306         input_whitening(%ebx,%ebp,d_offset)
307         input_whitening(%ecx,%ebp,a_offset)
308         input_whitening(%edx,%ebp,b_offset)
309         mov     out_blk+16(%esp),%edi;
310         mov     %eax,           c_offset(%edi)
311         mov     %ebx,           d_offset(%edi)
312         mov     %ecx,           (%edi)
313         mov     %edx,           b_offset(%edi)
314
315         pop     %edi
316         pop     %esi
317         pop     %ebx
318         pop     %ebp
319         mov     $1,     %eax
320         ret
321 SYM_FUNC_END(twofish_dec_blk)