Merge branch 'drm-patches' of master.kernel.org:/pub/scm/linux/kernel/git/airlied...
[sfrench/cifs-2.6.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* pci_sabre.c: Sabre specific PCI controller support.
2  *
3  * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be)
5  * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com)
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
14
15 #include <asm/apb.h>
16 #include <asm/pbm.h>
17 #include <asm/iommu.h>
18 #include <asm/irq.h>
19 #include <asm/smp.h>
20 #include <asm/oplib.h>
21 #include <asm/prom.h>
22
23 #include "pci_impl.h"
24 #include "iommu_common.h"
25
26 /* All SABRE registers are 64-bits.  The following accessor
27  * routines are how they are accessed.  The REG parameter
28  * is a physical address.
29  */
30 #define sabre_read(__reg) \
31 ({      u64 __ret; \
32         __asm__ __volatile__("ldxa [%1] %2, %0" \
33                              : "=r" (__ret) \
34                              : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
35                              : "memory"); \
36         __ret; \
37 })
38 #define sabre_write(__reg, __val) \
39         __asm__ __volatile__("stxa %0, [%1] %2" \
40                              : /* no outputs */ \
41                              : "r" (__val), "r" (__reg), \
42                                "i" (ASI_PHYS_BYPASS_EC_E) \
43                              : "memory")
44
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR           0x0030UL
47 #define  SABRE_UEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
48 #define  SABRE_UEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
49 #define  SABRE_UEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
50 #define  SABRE_UEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
51 #define  SABRE_UEAFSR_SDTE       0x0200000000000000UL   /* Secondary DMA Translation Error */
52 #define  SABRE_UEAFSR_PDTE       0x0100000000000000UL   /* Primary DMA Translation Error */
53 #define  SABRE_UEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
54 #define  SABRE_UEAFSR_OFF        0x00000000e0000000UL   /* Offset (AFAR bits [5:3] */
55 #define  SABRE_UEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
56 #define SABRE_UECE_AFAR         0x0038UL
57 #define SABRE_CE_AFSR           0x0040UL
58 #define  SABRE_CEAFSR_PDRD       0x4000000000000000UL   /* Primary PCI DMA Read */
59 #define  SABRE_CEAFSR_PDWR       0x2000000000000000UL   /* Primary PCI DMA Write */
60 #define  SABRE_CEAFSR_SDRD       0x0800000000000000UL   /* Secondary PCI DMA Read */
61 #define  SABRE_CEAFSR_SDWR       0x0400000000000000UL   /* Secondary PCI DMA Write */
62 #define  SABRE_CEAFSR_ESYND      0x00ff000000000000UL   /* ECC Syndrome */
63 #define  SABRE_CEAFSR_BMSK       0x0000ffff00000000UL   /* Bytemask */
64 #define  SABRE_CEAFSR_OFF        0x00000000e0000000UL   /* Offset */
65 #define  SABRE_CEAFSR_BLK        0x0000000000800000UL   /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS   0x0048UL        /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL     0x0200UL
68 #define  SABRE_IOMMUCTRL_ERRSTS  0x0000000006000000UL   /* Error status bits */
69 #define  SABRE_IOMMUCTRL_ERR     0x0000000001000000UL   /* Error present in IOTLB */
70 #define  SABRE_IOMMUCTRL_LCKEN   0x0000000000800000UL   /* IOTLB lock enable */
71 #define  SABRE_IOMMUCTRL_LCKPTR  0x0000000000780000UL   /* IOTLB lock pointer */
72 #define  SABRE_IOMMUCTRL_TSBSZ   0x0000000000070000UL   /* TSB Size */
73 #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000
74 #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000
75 #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000
76 #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000
77 #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000
78 #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000
79 #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000
80 #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define  SABRE_IOMMUCTRL_TBWSZ   0x0000000000000004UL   /* TSB assumed page size */
82 #define  SABRE_IOMMUCTRL_DENAB   0x0000000000000002UL   /* Diagnostic Mode Enable */
83 #define  SABRE_IOMMUCTRL_ENAB    0x0000000000000001UL   /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE     0x0208UL
85 #define SABRE_IOMMU_FLUSH       0x0210UL
86 #define SABRE_IMAP_A_SLOT0      0x0c00UL
87 #define SABRE_IMAP_B_SLOT0      0x0c20UL
88 #define SABRE_IMAP_SCSI         0x1000UL
89 #define SABRE_IMAP_ETH          0x1008UL
90 #define SABRE_IMAP_BPP          0x1010UL
91 #define SABRE_IMAP_AU_REC       0x1018UL
92 #define SABRE_IMAP_AU_PLAY      0x1020UL
93 #define SABRE_IMAP_PFAIL        0x1028UL
94 #define SABRE_IMAP_KMS          0x1030UL
95 #define SABRE_IMAP_FLPY         0x1038UL
96 #define SABRE_IMAP_SHW          0x1040UL
97 #define SABRE_IMAP_KBD          0x1048UL
98 #define SABRE_IMAP_MS           0x1050UL
99 #define SABRE_IMAP_SER          0x1058UL
100 #define SABRE_IMAP_UE           0x1070UL
101 #define SABRE_IMAP_CE           0x1078UL
102 #define SABRE_IMAP_PCIERR       0x1080UL
103 #define SABRE_IMAP_GFX          0x1098UL
104 #define SABRE_IMAP_EUPA         0x10a0UL
105 #define SABRE_ICLR_A_SLOT0      0x1400UL
106 #define SABRE_ICLR_B_SLOT0      0x1480UL
107 #define SABRE_ICLR_SCSI         0x1800UL
108 #define SABRE_ICLR_ETH          0x1808UL
109 #define SABRE_ICLR_BPP          0x1810UL
110 #define SABRE_ICLR_AU_REC       0x1818UL
111 #define SABRE_ICLR_AU_PLAY      0x1820UL
112 #define SABRE_ICLR_PFAIL        0x1828UL
113 #define SABRE_ICLR_KMS          0x1830UL
114 #define SABRE_ICLR_FLPY         0x1838UL
115 #define SABRE_ICLR_SHW          0x1840UL
116 #define SABRE_ICLR_KBD          0x1848UL
117 #define SABRE_ICLR_MS           0x1850UL
118 #define SABRE_ICLR_SER          0x1858UL
119 #define SABRE_ICLR_UE           0x1870UL
120 #define SABRE_ICLR_CE           0x1878UL
121 #define SABRE_ICLR_PCIERR       0x1880UL
122 #define SABRE_WRSYNC            0x1c20UL
123 #define SABRE_PCICTRL           0x2000UL
124 #define  SABRE_PCICTRL_MRLEN     0x0000001000000000UL   /* Use MemoryReadLine for block loads/stores */
125 #define  SABRE_PCICTRL_SERR      0x0000000400000000UL   /* Set when SERR asserted on PCI bus */
126 #define  SABRE_PCICTRL_ARBPARK   0x0000000000200000UL   /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define  SABRE_PCICTRL_CPUPRIO   0x0000000000100000UL   /* Ultra-IIi granted every other bus cycle */
128 #define  SABRE_PCICTRL_ARBPRIO   0x00000000000f0000UL   /* Slot which is granted every other bus cycle */
129 #define  SABRE_PCICTRL_ERREN     0x0000000000000100UL   /* PCI Error Interrupt Enable */
130 #define  SABRE_PCICTRL_RTRYWE    0x0000000000000080UL   /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define  SABRE_PCICTRL_AEN       0x000000000000000fUL   /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR           0x2010UL
133 #define  SABRE_PIOAFSR_PMA       0x8000000000000000UL   /* Primary Master Abort */
134 #define  SABRE_PIOAFSR_PTA       0x4000000000000000UL   /* Primary Target Abort */
135 #define  SABRE_PIOAFSR_PRTRY     0x2000000000000000UL   /* Primary Excessive Retries */
136 #define  SABRE_PIOAFSR_PPERR     0x1000000000000000UL   /* Primary Parity Error */
137 #define  SABRE_PIOAFSR_SMA       0x0800000000000000UL   /* Secondary Master Abort */
138 #define  SABRE_PIOAFSR_STA       0x0400000000000000UL   /* Secondary Target Abort */
139 #define  SABRE_PIOAFSR_SRTRY     0x0200000000000000UL   /* Secondary Excessive Retries */
140 #define  SABRE_PIOAFSR_SPERR     0x0100000000000000UL   /* Secondary Parity Error */
141 #define  SABRE_PIOAFSR_BMSK      0x0000ffff00000000UL   /* Byte Mask */
142 #define  SABRE_PIOAFSR_BLK       0x0000000080000000UL   /* Was Block Operation */
143 #define SABRE_PIOAFAR           0x2018UL
144 #define SABRE_PCIDIAG           0x2020UL
145 #define  SABRE_PCIDIAG_DRTRY     0x0000000000000040UL   /* Disable PIO Retry Limit */
146 #define  SABRE_PCIDIAG_IPAPAR    0x0000000000000008UL   /* Invert PIO Address Parity */
147 #define  SABRE_PCIDIAG_IPDPAR    0x0000000000000004UL   /* Invert PIO Data Parity */
148 #define  SABRE_PCIDIAG_IDDPAR    0x0000000000000002UL   /* Invert DMA Data Parity */
149 #define  SABRE_PCIDIAG_ELPBK     0x0000000000000001UL   /* Loopback Enable - not supported */
150 #define SABRE_PCITASR           0x2028UL
151 #define  SABRE_PCITASR_EF        0x0000000000000080UL   /* Respond to 0xe0000000-0xffffffff */
152 #define  SABRE_PCITASR_CD        0x0000000000000040UL   /* Respond to 0xc0000000-0xdfffffff */
153 #define  SABRE_PCITASR_AB        0x0000000000000020UL   /* Respond to 0xa0000000-0xbfffffff */
154 #define  SABRE_PCITASR_89        0x0000000000000010UL   /* Respond to 0x80000000-0x9fffffff */
155 #define  SABRE_PCITASR_67        0x0000000000000008UL   /* Respond to 0x60000000-0x7fffffff */
156 #define  SABRE_PCITASR_45        0x0000000000000004UL   /* Respond to 0x40000000-0x5fffffff */
157 #define  SABRE_PCITASR_23        0x0000000000000002UL   /* Respond to 0x20000000-0x3fffffff */
158 #define  SABRE_PCITASR_01        0x0000000000000001UL   /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG       0x5000UL
160 #define SABRE_DMABUF_DIAGLO     0x5100UL
161 #define SABRE_DMABUF_DIAGHI     0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS    0x6000UL        /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS   0x8000UL        /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG      0xa400UL
165 #define SABRE_IOMMU_TCDIAG      0xa408UL
166 #define SABRE_IOMMU_TAG         0xa580UL
167 #define  SABRE_IOMMUTAG_ERRSTS   0x0000000001800000UL   /* Error status bits */
168 #define  SABRE_IOMMUTAG_ERR      0x0000000000400000UL   /* Error present */
169 #define  SABRE_IOMMUTAG_WRITE    0x0000000000200000UL   /* Page is writable */
170 #define  SABRE_IOMMUTAG_STREAM   0x0000000000100000UL   /* Streamable bit - unused */
171 #define  SABRE_IOMMUTAG_SIZE     0x0000000000080000UL   /* 0=8k 1=16k */
172 #define  SABRE_IOMMUTAG_VPN      0x000000000007ffffUL   /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA        0xa600UL
174 #define SABRE_IOMMUDATA_VALID    0x0000000040000000UL   /* Valid */
175 #define SABRE_IOMMUDATA_USED     0x0000000020000000UL   /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE    0x0000000010000000UL   /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN      0x00000000001fffffUL   /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE      0xa800UL
179 #define SABRE_OBIO_IRQSTATE     0xa808UL
180 #define SABRE_FFBCFG            0xf000UL
181 #define  SABRE_FFBCFG_SPRQS      0x000000000f000000     /* Slave P_RQST queue size */
182 #define  SABRE_FFBCFG_ONEREAD    0x0000000000004000     /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0           0xf010UL
184 #define  SABRE_MCCTRL0_RENAB     0x0000000080000000     /* Refresh Enable */
185 #define  SABRE_MCCTRL0_EENAB     0x0000000010000000     /* Enable all ECC functions */
186 #define  SABRE_MCCTRL0_11BIT     0x0000000000001000     /* Enable 11-bit column addressing */
187 #define  SABRE_MCCTRL0_DPP       0x0000000000000f00     /* DIMM Pair Present Bits */
188 #define  SABRE_MCCTRL0_RINTVL    0x00000000000000ff     /* Refresh Interval */
189 #define SABRE_MCCTRL1           0xf018UL
190 #define  SABRE_MCCTRL1_AMDC      0x0000000038000000     /* Advance Memdata Clock */
191 #define  SABRE_MCCTRL1_ARDC      0x0000000007000000     /* Advance DRAM Read Data Clock */
192 #define  SABRE_MCCTRL1_CSR       0x0000000000e00000     /* CAS to RAS delay for CBR refresh */
193 #define  SABRE_MCCTRL1_CASRW     0x00000000001c0000     /* CAS length for read/write */
194 #define  SABRE_MCCTRL1_RCD       0x0000000000038000     /* RAS to CAS delay */
195 #define  SABRE_MCCTRL1_CP        0x0000000000007000     /* CAS Precharge */
196 #define  SABRE_MCCTRL1_RP        0x0000000000000e00     /* RAS Precharge */
197 #define  SABRE_MCCTRL1_RAS       0x00000000000001c0     /* Length of RAS for refresh */
198 #define  SABRE_MCCTRL1_CASRW2    0x0000000000000038     /* Must be same as CASRW */
199 #define  SABRE_MCCTRL1_RSC       0x0000000000000007     /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL         0xf020UL
201
202 #define SABRE_CONFIGSPACE       0x001000000UL
203 #define SABRE_IOSPACE           0x002000000UL
204 #define SABRE_IOSPACE_SIZE      0x000ffffffUL
205 #define SABRE_MEMSPACE          0x100000000UL
206 #define SABRE_MEMSPACE_SIZE     0x07fffffffUL
207
208 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
209  * configuration space address format:
210  * 
211  *  32             24 23 16 15    11 10       8 7   2  1 0
212  * ---------------------------------------------------------
213  * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214  * ---------------------------------------------------------
215  */
216 #define SABRE_CONFIG_BASE(PBM)  \
217         ((PBM)->config_space | (1UL << 24))
218 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)    \
219         (((unsigned long)(BUS)   << 16) |       \
220          ((unsigned long)(DEVFN) << 8)  |       \
221          ((unsigned long)(REG)))
222
223 static int hummingbird_p;
224 static struct pci_bus *sabre_root_bus;
225
226 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
227                                      unsigned char bus,
228                                      unsigned int devfn,
229                                      int where)
230 {
231         if (!pbm)
232                 return NULL;
233         return (void *)
234                 (SABRE_CONFIG_BASE(pbm) |
235                  SABRE_CONFIG_ENCODE(bus, devfn, where));
236 }
237
238 static int sabre_out_of_range(unsigned char devfn)
239 {
240         if (hummingbird_p)
241                 return 0;
242
243         return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
244                 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
245                 (PCI_SLOT(devfn) > 1));
246 }
247
248 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
249                                 unsigned char bus,
250                                 unsigned char devfn)
251 {
252         if (hummingbird_p)
253                 return 0;
254
255         return ((pbm->parent == 0) ||
256                 ((pbm == &pbm->parent->pbm_A) &&
257                  (bus == pbm->pci_first_busno) &&
258                  PCI_SLOT(devfn) > 8));
259 }
260
261 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
262                                 int where, int size, u32 *value)
263 {
264         struct pci_pbm_info *pbm = bus_dev->sysdata;
265         unsigned char bus = bus_dev->number;
266         u32 *addr;
267         u16 tmp16;
268         u8 tmp8;
269
270         switch (size) {
271         case 1:
272                 *value = 0xff;
273                 break;
274         case 2:
275                 *value = 0xffff;
276                 break;
277         case 4:
278                 *value = 0xffffffff;
279                 break;
280         }
281
282         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
283         if (!addr)
284                 return PCIBIOS_SUCCESSFUL;
285
286         if (__sabre_out_of_range(pbm, bus, devfn))
287                 return PCIBIOS_SUCCESSFUL;
288
289         switch (size) {
290         case 1:
291                 pci_config_read8((u8 *) addr, &tmp8);
292                 *value = tmp8;
293                 break;
294
295         case 2:
296                 if (where & 0x01) {
297                         printk("pci_read_config_word: misaligned reg [%x]\n",
298                                where);
299                         return PCIBIOS_SUCCESSFUL;
300                 }
301                 pci_config_read16((u16 *) addr, &tmp16);
302                 *value = tmp16;
303                 break;
304
305         case 4:
306                 if (where & 0x03) {
307                         printk("pci_read_config_dword: misaligned reg [%x]\n",
308                                where);
309                         return PCIBIOS_SUCCESSFUL;
310                 }
311                 pci_config_read32(addr, value);
312                 break;
313         }
314
315         return PCIBIOS_SUCCESSFUL;
316 }
317
318 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
319                               int where, int size, u32 *value)
320 {
321         struct pci_pbm_info *pbm = bus->sysdata;
322
323         if (bus == pbm->pci_bus && devfn == 0x00)
324                 return pci_host_bridge_read_pci_cfg(bus, devfn, where,
325                                                     size, value);
326
327         if (!bus->number && sabre_out_of_range(devfn)) {
328                 switch (size) {
329                 case 1:
330                         *value = 0xff;
331                         break;
332                 case 2:
333                         *value = 0xffff;
334                         break;
335                 case 4:
336                         *value = 0xffffffff;
337                         break;
338                 }
339                 return PCIBIOS_SUCCESSFUL;
340         }
341
342         if (bus->number || PCI_SLOT(devfn))
343                 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
344
345         /* When accessing PCI config space of the PCI controller itself (bus
346          * 0, device slot 0, function 0) there are restrictions.  Each
347          * register must be accessed as it's natural size.  Thus, for example
348          * the Vendor ID must be accessed as a 16-bit quantity.
349          */
350
351         switch (size) {
352         case 1:
353                 if (where < 8) {
354                         u32 tmp32;
355                         u16 tmp16;
356
357                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
358                         tmp16 = (u16) tmp32;
359                         if (where & 1)
360                                 *value = tmp16 >> 8;
361                         else
362                                 *value = tmp16 & 0xff;
363                 } else
364                         return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
365                 break;
366
367         case 2:
368                 if (where < 8)
369                         return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
370                 else {
371                         u32 tmp32;
372                         u8 tmp8;
373
374                         __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
375                         tmp8 = (u8) tmp32;
376                         *value = tmp8;
377                         __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
378                         tmp8 = (u8) tmp32;
379                         *value |= tmp8 << 8;
380                 }
381                 break;
382
383         case 4: {
384                 u32 tmp32;
385                 u16 tmp16;
386
387                 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
388                 tmp16 = (u16) tmp32;
389                 *value = tmp16;
390                 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
391                 tmp16 = (u16) tmp32;
392                 *value |= tmp16 << 16;
393                 break;
394         }
395         }
396         return PCIBIOS_SUCCESSFUL;
397 }
398
399 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
400                                  int where, int size, u32 value)
401 {
402         struct pci_pbm_info *pbm = bus_dev->sysdata;
403         unsigned char bus = bus_dev->number;
404         u32 *addr;
405
406         addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
407         if (!addr)
408                 return PCIBIOS_SUCCESSFUL;
409
410         if (__sabre_out_of_range(pbm, bus, devfn))
411                 return PCIBIOS_SUCCESSFUL;
412
413         switch (size) {
414         case 1:
415                 pci_config_write8((u8 *) addr, value);
416                 break;
417
418         case 2:
419                 if (where & 0x01) {
420                         printk("pci_write_config_word: misaligned reg [%x]\n",
421                                where);
422                         return PCIBIOS_SUCCESSFUL;
423                 }
424                 pci_config_write16((u16 *) addr, value);
425                 break;
426
427         case 4:
428                 if (where & 0x03) {
429                         printk("pci_write_config_dword: misaligned reg [%x]\n",
430                                where);
431                         return PCIBIOS_SUCCESSFUL;
432                 }
433                 pci_config_write32(addr, value);
434                 break;
435         }
436
437         return PCIBIOS_SUCCESSFUL;
438 }
439
440 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
441                                int where, int size, u32 value)
442 {
443         struct pci_pbm_info *pbm = bus->sysdata;
444
445         if (bus == pbm->pci_bus && devfn == 0x00)
446                 return pci_host_bridge_write_pci_cfg(bus, devfn, where,
447                                                      size, value);
448
449         if (bus->number)
450                 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
451
452         if (sabre_out_of_range(devfn))
453                 return PCIBIOS_SUCCESSFUL;
454
455         switch (size) {
456         case 1:
457                 if (where < 8) {
458                         u32 tmp32;
459                         u16 tmp16;
460
461                         __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
462                         tmp16 = (u16) tmp32;
463                         if (where & 1) {
464                                 value &= 0x00ff;
465                                 value |= tmp16 << 8;
466                         } else {
467                                 value &= 0xff00;
468                                 value |= tmp16;
469                         }
470                         tmp32 = (u32) tmp16;
471                         return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
472                 } else
473                         return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
474                 break;
475         case 2:
476                 if (where < 8)
477                         return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
478                 else {
479                         __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
480                         __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
481                 }
482                 break;
483         case 4:
484                 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
485                 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
486                 break;
487         }
488         return PCIBIOS_SUCCESSFUL;
489 }
490
491 static struct pci_ops sabre_ops = {
492         .read =         sabre_read_pci_cfg,
493         .write =        sabre_write_pci_cfg,
494 };
495
496 /* SABRE error handling support. */
497 static void sabre_check_iommu_error(struct pci_controller_info *p,
498                                     unsigned long afsr,
499                                     unsigned long afar)
500 {
501         struct iommu *iommu = p->pbm_A.iommu;
502         unsigned long iommu_tag[16];
503         unsigned long iommu_data[16];
504         unsigned long flags;
505         u64 control;
506         int i;
507
508         spin_lock_irqsave(&iommu->lock, flags);
509         control = sabre_read(iommu->iommu_control);
510         if (control & SABRE_IOMMUCTRL_ERR) {
511                 char *type_string;
512
513                 /* Clear the error encountered bit.
514                  * NOTE: On Sabre this is write 1 to clear,
515                  *       which is different from Psycho.
516                  */
517                 sabre_write(iommu->iommu_control, control);
518                 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
519                 case 1:
520                         type_string = "Invalid Error";
521                         break;
522                 case 3:
523                         type_string = "ECC Error";
524                         break;
525                 default:
526                         type_string = "Unknown";
527                         break;
528                 };
529                 printk("SABRE%d: IOMMU Error, type[%s]\n",
530                        p->index, type_string);
531
532                 /* Enter diagnostic mode and probe for error'd
533                  * entries in the IOTLB.
534                  */
535                 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
536                 sabre_write(iommu->iommu_control,
537                             (control | SABRE_IOMMUCTRL_DENAB));
538                 for (i = 0; i < 16; i++) {
539                         unsigned long base = p->pbm_A.controller_regs;
540
541                         iommu_tag[i] =
542                                 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
543                         iommu_data[i] =
544                                 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
545                         sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
546                         sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
547                 }
548                 sabre_write(iommu->iommu_control, control);
549
550                 for (i = 0; i < 16; i++) {
551                         unsigned long tag, data;
552
553                         tag = iommu_tag[i];
554                         if (!(tag & SABRE_IOMMUTAG_ERR))
555                                 continue;
556
557                         data = iommu_data[i];
558                         switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
559                         case 1:
560                                 type_string = "Invalid Error";
561                                 break;
562                         case 3:
563                                 type_string = "ECC Error";
564                                 break;
565                         default:
566                                 type_string = "Unknown";
567                                 break;
568                         };
569                         printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
570                                p->index, i, tag, type_string,
571                                ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
572                                ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
573                                ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
574                         printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
575                                p->index, i, data,
576                                ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
577                                ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
578                                ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
579                                ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
580                 }
581         }
582         spin_unlock_irqrestore(&iommu->lock, flags);
583 }
584
585 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
586 {
587         struct pci_controller_info *p = dev_id;
588         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
589         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
590         unsigned long afsr, afar, error_bits;
591         int reported;
592
593         /* Latch uncorrectable error status. */
594         afar = sabre_read(afar_reg);
595         afsr = sabre_read(afsr_reg);
596
597         /* Clear the primary/secondary error status bits. */
598         error_bits = afsr &
599                 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
600                  SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
601                  SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
602         if (!error_bits)
603                 return IRQ_NONE;
604         sabre_write(afsr_reg, error_bits);
605
606         /* Log the error. */
607         printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
608                p->index,
609                ((error_bits & SABRE_UEAFSR_PDRD) ?
610                 "DMA Read" :
611                 ((error_bits & SABRE_UEAFSR_PDWR) ?
612                  "DMA Write" : "???")),
613                ((error_bits & SABRE_UEAFSR_PDTE) ?
614                 ":Translation Error" : ""));
615         printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
616                p->index,
617                (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
618                (afsr & SABRE_UEAFSR_OFF) >> 29UL,
619                ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
620         printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
621         printk("SABRE%d: UE Secondary errors [", p->index);
622         reported = 0;
623         if (afsr & SABRE_UEAFSR_SDRD) {
624                 reported++;
625                 printk("(DMA Read)");
626         }
627         if (afsr & SABRE_UEAFSR_SDWR) {
628                 reported++;
629                 printk("(DMA Write)");
630         }
631         if (afsr & SABRE_UEAFSR_SDTE) {
632                 reported++;
633                 printk("(Translation Error)");
634         }
635         if (!reported)
636                 printk("(none)");
637         printk("]\n");
638
639         /* Interrogate IOMMU for error status. */
640         sabre_check_iommu_error(p, afsr, afar);
641
642         return IRQ_HANDLED;
643 }
644
645 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
646 {
647         struct pci_controller_info *p = dev_id;
648         unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
649         unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
650         unsigned long afsr, afar, error_bits;
651         int reported;
652
653         /* Latch error status. */
654         afar = sabre_read(afar_reg);
655         afsr = sabre_read(afsr_reg);
656
657         /* Clear primary/secondary error status bits. */
658         error_bits = afsr &
659                 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
660                  SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
661         if (!error_bits)
662                 return IRQ_NONE;
663         sabre_write(afsr_reg, error_bits);
664
665         /* Log the error. */
666         printk("SABRE%d: Correctable Error, primary error type[%s]\n",
667                p->index,
668                ((error_bits & SABRE_CEAFSR_PDRD) ?
669                 "DMA Read" :
670                 ((error_bits & SABRE_CEAFSR_PDWR) ?
671                  "DMA Write" : "???")));
672
673         /* XXX Use syndrome and afar to print out module string just like
674          * XXX UDB CE trap handler does... -DaveM
675          */
676         printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
677                "was_block(%d)\n",
678                p->index,
679                (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
680                (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
681                (afsr & SABRE_CEAFSR_OFF) >> 29UL,
682                ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
683         printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
684         printk("SABRE%d: CE Secondary errors [", p->index);
685         reported = 0;
686         if (afsr & SABRE_CEAFSR_SDRD) {
687                 reported++;
688                 printk("(DMA Read)");
689         }
690         if (afsr & SABRE_CEAFSR_SDWR) {
691                 reported++;
692                 printk("(DMA Write)");
693         }
694         if (!reported)
695                 printk("(none)");
696         printk("]\n");
697
698         return IRQ_HANDLED;
699 }
700
701 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
702 {
703         unsigned long csr_reg, csr, csr_error_bits;
704         irqreturn_t ret = IRQ_NONE;
705         u16 stat;
706
707         csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
708         csr = sabre_read(csr_reg);
709         csr_error_bits =
710                 csr & SABRE_PCICTRL_SERR;
711         if (csr_error_bits) {
712                 /* Clear the errors.  */
713                 sabre_write(csr_reg, csr);
714
715                 /* Log 'em.  */
716                 if (csr_error_bits & SABRE_PCICTRL_SERR)
717                         printk("SABRE%d: PCI SERR signal asserted.\n",
718                                p->index);
719                 ret = IRQ_HANDLED;
720         }
721         pci_bus_read_config_word(sabre_root_bus, 0,
722                                  PCI_STATUS, &stat);
723         if (stat & (PCI_STATUS_PARITY |
724                     PCI_STATUS_SIG_TARGET_ABORT |
725                     PCI_STATUS_REC_TARGET_ABORT |
726                     PCI_STATUS_REC_MASTER_ABORT |
727                     PCI_STATUS_SIG_SYSTEM_ERROR)) {
728                 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
729                        p->index, stat);
730                 pci_bus_write_config_word(sabre_root_bus, 0,
731                                           PCI_STATUS, 0xffff);
732                 ret = IRQ_HANDLED;
733         }
734         return ret;
735 }
736
737 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
738 {
739         struct pci_controller_info *p = dev_id;
740         unsigned long afsr_reg, afar_reg;
741         unsigned long afsr, afar, error_bits;
742         int reported;
743
744         afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
745         afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
746
747         /* Latch error status. */
748         afar = sabre_read(afar_reg);
749         afsr = sabre_read(afsr_reg);
750
751         /* Clear primary/secondary error status bits. */
752         error_bits = afsr &
753                 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
754                  SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
755                  SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
756                  SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
757         if (!error_bits)
758                 return sabre_pcierr_intr_other(p);
759         sabre_write(afsr_reg, error_bits);
760
761         /* Log the error. */
762         printk("SABRE%d: PCI Error, primary error type[%s]\n",
763                p->index,
764                (((error_bits & SABRE_PIOAFSR_PMA) ?
765                  "Master Abort" :
766                  ((error_bits & SABRE_PIOAFSR_PTA) ?
767                   "Target Abort" :
768                   ((error_bits & SABRE_PIOAFSR_PRTRY) ?
769                    "Excessive Retries" :
770                    ((error_bits & SABRE_PIOAFSR_PPERR) ?
771                     "Parity Error" : "???"))))));
772         printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
773                p->index,
774                (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
775                (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
776         printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
777         printk("SABRE%d: PCI Secondary errors [", p->index);
778         reported = 0;
779         if (afsr & SABRE_PIOAFSR_SMA) {
780                 reported++;
781                 printk("(Master Abort)");
782         }
783         if (afsr & SABRE_PIOAFSR_STA) {
784                 reported++;
785                 printk("(Target Abort)");
786         }
787         if (afsr & SABRE_PIOAFSR_SRTRY) {
788                 reported++;
789                 printk("(Excessive Retries)");
790         }
791         if (afsr & SABRE_PIOAFSR_SPERR) {
792                 reported++;
793                 printk("(Parity Error)");
794         }
795         if (!reported)
796                 printk("(none)");
797         printk("]\n");
798
799         /* For the error types shown, scan both PCI buses for devices
800          * which have logged that error type.
801          */
802
803         /* If we see a Target Abort, this could be the result of an
804          * IOMMU translation error of some sort.  It is extremely
805          * useful to log this information as usually it indicates
806          * a bug in the IOMMU support code or a PCI device driver.
807          */
808         if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
809                 sabre_check_iommu_error(p, afsr, afar);
810                 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
811         }
812         if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
813                 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
814
815         /* For excessive retries, SABRE/PBM will abort the device
816          * and there is no way to specifically check for excessive
817          * retries in the config space status registers.  So what
818          * we hope is that we'll catch it via the master/target
819          * abort events.
820          */
821
822         if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
823                 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
824
825         return IRQ_HANDLED;
826 }
827
828 static void sabre_register_error_handlers(struct pci_controller_info *p)
829 {
830         struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
831         struct device_node *dp = pbm->prom_node;
832         struct of_device *op;
833         unsigned long base = pbm->controller_regs;
834         u64 tmp;
835
836         if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
837                 dp = dp->parent;
838
839         op = of_find_device_by_node(dp);
840         if (!op)
841                 return;
842
843         /* Sabre/Hummingbird IRQ property layout is:
844          * 0: PCI ERR
845          * 1: UE ERR
846          * 2: CE ERR
847          * 3: POWER FAIL
848          */
849         if (op->num_irqs < 4)
850                 return;
851
852         /* We clear the error bits in the appropriate AFSR before
853          * registering the handler so that we don't get spurious
854          * interrupts.
855          */
856         sabre_write(base + SABRE_UE_AFSR,
857                     (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
858                      SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
859                      SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
860
861         request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
862
863         sabre_write(base + SABRE_CE_AFSR,
864                     (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
865                      SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
866
867         request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
868         request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
869                     "SABRE PCIERR", p);
870
871         tmp = sabre_read(base + SABRE_PCICTRL);
872         tmp |= SABRE_PCICTRL_ERREN;
873         sabre_write(base + SABRE_PCICTRL, tmp);
874 }
875
876 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
877 {
878         struct pci_dev *pdev;
879
880         list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
881                 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
882                     pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
883                         u16 word16;
884
885                         pci_read_config_word(pdev, PCI_COMMAND, &word16);
886                         word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
887                                 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
888                                 PCI_COMMAND_IO;
889                         pci_write_config_word(pdev, PCI_COMMAND, word16);
890
891                         /* Status register bits are "write 1 to clear". */
892                         pci_write_config_word(pdev, PCI_STATUS, 0xffff);
893                         pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
894
895                         /* Use a primary/seconday latency timer value
896                          * of 64.
897                          */
898                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
899                         pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
900
901                         /* Enable reporting/forwarding of master aborts,
902                          * parity, and SERR.
903                          */
904                         pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
905                                               (PCI_BRIDGE_CTL_PARITY |
906                                                PCI_BRIDGE_CTL_SERR |
907                                                PCI_BRIDGE_CTL_MASTER_ABORT));
908                 }
909         }
910 }
911
912 static void sabre_scan_bus(struct pci_controller_info *p)
913 {
914         static int once;
915         struct pci_bus *pbus;
916
917         /* The APB bridge speaks to the Sabre host PCI bridge
918          * at 66Mhz, but the front side of APB runs at 33Mhz
919          * for both segments.
920          */
921         p->pbm_A.is_66mhz_capable = 0;
922
923         /* This driver has not been verified to handle
924          * multiple SABREs yet, so trap this.
925          *
926          * Also note that the SABRE host bridge is hardwired
927          * to live at bus 0.
928          */
929         if (once != 0) {
930                 prom_printf("SABRE: Multiple controllers unsupported.\n");
931                 prom_halt();
932         }
933         once++;
934
935         pbus = pci_scan_one_pbm(&p->pbm_A);
936         if (!pbus)
937                 return;
938
939         sabre_root_bus = pbus;
940
941         apb_init(p, pbus);
942
943         sabre_register_error_handlers(p);
944 }
945
946 static void sabre_iommu_init(struct pci_controller_info *p,
947                              int tsbsize, unsigned long dvma_offset,
948                              u32 dma_mask)
949 {
950         struct iommu *iommu = p->pbm_A.iommu;
951         unsigned long i;
952         u64 control;
953
954         /* Register addresses. */
955         iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
956         iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
957         iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
958         iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
959         /* Sabre's IOMMU lacks ctx flushing. */
960         iommu->iommu_ctxflush = 0;
961                                         
962         /* Invalidate TLB Entries. */
963         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
964         control |= SABRE_IOMMUCTRL_DENAB;
965         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
966
967         for(i = 0; i < 16; i++) {
968                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
969                 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
970         }
971
972         /* Leave diag mode enabled for full-flushing done
973          * in pci_iommu.c
974          */
975         pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
976
977         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
978                     __pa(iommu->page_table));
979
980         control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
981         control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
982         control |= SABRE_IOMMUCTRL_ENAB;
983         switch(tsbsize) {
984         case 64:
985                 control |= SABRE_IOMMU_TSBSZ_64K;
986                 break;
987         case 128:
988                 control |= SABRE_IOMMU_TSBSZ_128K;
989                 break;
990         default:
991                 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
992                 prom_halt();
993                 break;
994         }
995         sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
996 }
997
998 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
999 {
1000         struct pci_pbm_info *pbm;
1001
1002         pbm = &p->pbm_A;
1003         pbm->name = dp->full_name;
1004         printk("%s: SABRE PCI Bus Module\n", pbm->name);
1005
1006         pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1007         pbm->parent = p;
1008         pbm->prom_node = dp;
1009         pbm->pci_first_busno = p->pci_first_busno;
1010         pbm->pci_last_busno = p->pci_last_busno;
1011
1012         pci_determine_mem_io_space(pbm);
1013 }
1014
1015 void sabre_init(struct device_node *dp, char *model_name)
1016 {
1017         const struct linux_prom64_registers *pr_regs;
1018         struct pci_controller_info *p;
1019         struct iommu *iommu;
1020         int tsbsize;
1021         const u32 *busrange;
1022         const u32 *vdma;
1023         u32 upa_portid, dma_mask;
1024         u64 clear_irq;
1025
1026         hummingbird_p = 0;
1027         if (!strcmp(model_name, "pci108e,a001"))
1028                 hummingbird_p = 1;
1029         else if (!strcmp(model_name, "SUNW,sabre")) {
1030                 const char *compat = of_get_property(dp, "compatible", NULL);
1031                 if (compat && !strcmp(compat, "pci108e,a001"))
1032                         hummingbird_p = 1;
1033                 if (!hummingbird_p) {
1034                         struct device_node *dp;
1035
1036                         /* Of course, Sun has to encode things a thousand
1037                          * different ways, inconsistently.
1038                          */
1039                         cpu_find_by_instance(0, &dp, NULL);
1040                         if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1041                                 hummingbird_p = 1;
1042                 }
1043         }
1044
1045         p = kzalloc(sizeof(*p), GFP_ATOMIC);
1046         if (!p) {
1047                 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1048                 prom_halt();
1049         }
1050
1051         iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1052         if (!iommu) {
1053                 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1054                 prom_halt();
1055         }
1056         p->pbm_A.iommu = iommu;
1057
1058         upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
1059
1060         p->next = pci_controller_root;
1061         pci_controller_root = p;
1062
1063         p->pbm_A.portid = upa_portid;
1064         p->index = pci_num_controllers++;
1065         p->scan_bus = sabre_scan_bus;
1066         p->pci_ops = &sabre_ops;
1067
1068         /*
1069          * Map in SABRE register set and report the presence of this SABRE.
1070          */
1071         
1072         pr_regs = of_get_property(dp, "reg", NULL);
1073
1074         /*
1075          * First REG in property is base of entire SABRE register space.
1076          */
1077         p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1078
1079         /* Clear interrupts */
1080
1081         /* PCI first */
1082         for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1083                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1084
1085         /* Then OBIO */
1086         for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1087                 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1088
1089         /* Error interrupts are enabled later after the bus scan. */
1090         sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1091                     (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR |
1092                      SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1093
1094         /* Now map in PCI config space for entire SABRE. */
1095         p->pbm_A.config_space =
1096                 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1097
1098         vdma = of_get_property(dp, "virtual-dma", NULL);
1099
1100         dma_mask = vdma[0];
1101         switch(vdma[1]) {
1102                 case 0x20000000:
1103                         dma_mask |= 0x1fffffff;
1104                         tsbsize = 64;
1105                         break;
1106                 case 0x40000000:
1107                         dma_mask |= 0x3fffffff;
1108                         tsbsize = 128;
1109                         break;
1110
1111                 case 0x80000000:
1112                         dma_mask |= 0x7fffffff;
1113                         tsbsize = 128;
1114                         break;
1115                 default:
1116                         prom_printf("SABRE: strange virtual-dma size.\n");
1117                         prom_halt();
1118         }
1119
1120         sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1121
1122         busrange = of_get_property(dp, "bus-range", NULL);
1123         p->pci_first_busno = busrange[0];
1124         p->pci_last_busno = busrange[1];
1125
1126         /*
1127          * Look for APB underneath.
1128          */
1129         sabre_pbm_init(p, dp);
1130 }