Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/tsb.h>
13 #include <asm/tlb.h>
14 #include <asm/oplib.h>
15
16 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
17
18 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
19 {
20         vaddr >>= hash_shift;
21         return vaddr & (nentries - 1);
22 }
23
24 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
25 {
26         return (tag == (vaddr >> 22));
27 }
28
29 /* TSB flushes need only occur on the processor initiating the address
30  * space modification, not on each cpu the address space has run on.
31  * Only the TLB flush needs that treatment.
32  */
33
34 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
35 {
36         unsigned long v;
37
38         for (v = start; v < end; v += PAGE_SIZE) {
39                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
40                                               KERNEL_TSB_NENTRIES);
41                 struct tsb *ent = &swapper_tsb[hash];
42
43                 if (tag_compare(ent->tag, v))
44                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
45         }
46 }
47
48 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
49                                   unsigned long hash_shift,
50                                   unsigned long nentries)
51 {
52         unsigned long tag, ent, hash;
53
54         v &= ~0x1UL;
55         hash = tsb_hash(v, hash_shift, nentries);
56         ent = tsb + (hash * sizeof(struct tsb));
57         tag = (v >> 22UL);
58
59         tsb_flush(ent, tag);
60 }
61
62 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
63                             unsigned long tsb, unsigned long nentries)
64 {
65         unsigned long i;
66
67         for (i = 0; i < tb->tlb_nr; i++)
68                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
69 }
70
71 void flush_tsb_user(struct tlb_batch *tb)
72 {
73         struct mm_struct *mm = tb->mm;
74         unsigned long nentries, base, flags;
75
76         spin_lock_irqsave(&mm->context.lock, flags);
77
78         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
79         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
80         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
81                 base = __pa(base);
82         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
83
84 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
85         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
86                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
87                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
88                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
89                         base = __pa(base);
90                 __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
91         }
92 #endif
93         spin_unlock_irqrestore(&mm->context.lock, flags);
94 }
95
96 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
97 {
98         unsigned long nentries, base, flags;
99
100         spin_lock_irqsave(&mm->context.lock, flags);
101
102         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
103         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
104         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
105                 base = __pa(base);
106         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
107
108 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
109         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
110                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
111                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
112                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
113                         base = __pa(base);
114                 __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
115         }
116 #endif
117         spin_unlock_irqrestore(&mm->context.lock, flags);
118 }
119
120 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
121 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
122
123 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
124 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
125 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
126 #endif
127
128 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
129 {
130         unsigned long tsb_reg, base, tsb_paddr;
131         unsigned long page_sz, tte;
132
133         mm->context.tsb_block[tsb_idx].tsb_nentries =
134                 tsb_bytes / sizeof(struct tsb);
135
136         base = TSBMAP_BASE;
137         tte = pgprot_val(PAGE_KERNEL_LOCKED);
138         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
139         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
140
141         /* Use the smallest page size that can map the whole TSB
142          * in one TLB entry.
143          */
144         switch (tsb_bytes) {
145         case 8192 << 0:
146                 tsb_reg = 0x0UL;
147 #ifdef DCACHE_ALIASING_POSSIBLE
148                 base += (tsb_paddr & 8192);
149 #endif
150                 page_sz = 8192;
151                 break;
152
153         case 8192 << 1:
154                 tsb_reg = 0x1UL;
155                 page_sz = 64 * 1024;
156                 break;
157
158         case 8192 << 2:
159                 tsb_reg = 0x2UL;
160                 page_sz = 64 * 1024;
161                 break;
162
163         case 8192 << 3:
164                 tsb_reg = 0x3UL;
165                 page_sz = 64 * 1024;
166                 break;
167
168         case 8192 << 4:
169                 tsb_reg = 0x4UL;
170                 page_sz = 512 * 1024;
171                 break;
172
173         case 8192 << 5:
174                 tsb_reg = 0x5UL;
175                 page_sz = 512 * 1024;
176                 break;
177
178         case 8192 << 6:
179                 tsb_reg = 0x6UL;
180                 page_sz = 512 * 1024;
181                 break;
182
183         case 8192 << 7:
184                 tsb_reg = 0x7UL;
185                 page_sz = 4 * 1024 * 1024;
186                 break;
187
188         default:
189                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
190                        current->comm, current->pid, tsb_bytes);
191                 do_exit(SIGSEGV);
192         }
193         tte |= pte_sz_bits(page_sz);
194
195         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
196                 /* Physical mapping, no locked TLB entry for TSB.  */
197                 tsb_reg |= tsb_paddr;
198
199                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
200                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
201                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
202         } else {
203                 tsb_reg |= base;
204                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
205                 tte |= (tsb_paddr & ~(page_sz - 1UL));
206
207                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
208                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
209                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
210         }
211
212         /* Setup the Hypervisor TSB descriptor.  */
213         if (tlb_type == hypervisor) {
214                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
215
216                 switch (tsb_idx) {
217                 case MM_TSB_BASE:
218                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
219                         break;
220 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
221                 case MM_TSB_HUGE:
222                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
223                         break;
224 #endif
225                 default:
226                         BUG();
227                 }
228                 hp->assoc = 1;
229                 hp->num_ttes = tsb_bytes / 16;
230                 hp->ctx_idx = 0;
231                 switch (tsb_idx) {
232                 case MM_TSB_BASE:
233                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
234                         break;
235 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
236                 case MM_TSB_HUGE:
237                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
238                         break;
239 #endif
240                 default:
241                         BUG();
242                 }
243                 hp->tsb_base = tsb_paddr;
244                 hp->resv = 0;
245         }
246 }
247
248 struct kmem_cache *pgtable_cache __read_mostly;
249
250 static struct kmem_cache *tsb_caches[8] __read_mostly;
251
252 static const char *tsb_cache_names[8] = {
253         "tsb_8KB",
254         "tsb_16KB",
255         "tsb_32KB",
256         "tsb_64KB",
257         "tsb_128KB",
258         "tsb_256KB",
259         "tsb_512KB",
260         "tsb_1MB",
261 };
262
263 void __init pgtable_cache_init(void)
264 {
265         unsigned long i;
266
267         pgtable_cache = kmem_cache_create("pgtable_cache",
268                                           PAGE_SIZE, PAGE_SIZE,
269                                           0,
270                                           _clear_page);
271         if (!pgtable_cache) {
272                 prom_printf("pgtable_cache_init(): Could not create!\n");
273                 prom_halt();
274         }
275
276         for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
277                 unsigned long size = 8192 << i;
278                 const char *name = tsb_cache_names[i];
279
280                 tsb_caches[i] = kmem_cache_create(name,
281                                                   size, size,
282                                                   0, NULL);
283                 if (!tsb_caches[i]) {
284                         prom_printf("Could not create %s cache\n", name);
285                         prom_halt();
286                 }
287         }
288 }
289
290 int sysctl_tsb_ratio = -2;
291
292 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
293 {
294         unsigned long num_ents = (new_size / sizeof(struct tsb));
295
296         if (sysctl_tsb_ratio < 0)
297                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
298         else
299                 return num_ents + (num_ents >> sysctl_tsb_ratio);
300 }
301
302 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
303  * do_sparc64_fault() invokes this routine to try and grow it.
304  *
305  * When we reach the maximum TSB size supported, we stick ~0UL into
306  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
307  * will not trigger any longer.
308  *
309  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
310  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
311  * must be 512K aligned.  It also must be physically contiguous, so we
312  * cannot use vmalloc().
313  *
314  * The idea here is to grow the TSB when the RSS of the process approaches
315  * the number of entries that the current TSB can hold at once.  Currently,
316  * we trigger when the RSS hits 3/4 of the TSB capacity.
317  */
318 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
319 {
320         unsigned long max_tsb_size = 1 * 1024 * 1024;
321         unsigned long new_size, old_size, flags;
322         struct tsb *old_tsb, *new_tsb;
323         unsigned long new_cache_index, old_cache_index;
324         unsigned long new_rss_limit;
325         gfp_t gfp_flags;
326
327         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
328                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
329
330         new_cache_index = 0;
331         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
332                 new_rss_limit = tsb_size_to_rss_limit(new_size);
333                 if (new_rss_limit > rss)
334                         break;
335                 new_cache_index++;
336         }
337
338         if (new_size == max_tsb_size)
339                 new_rss_limit = ~0UL;
340
341 retry_tsb_alloc:
342         gfp_flags = GFP_KERNEL;
343         if (new_size > (PAGE_SIZE * 2))
344                 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
345
346         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
347                                         gfp_flags, numa_node_id());
348         if (unlikely(!new_tsb)) {
349                 /* Not being able to fork due to a high-order TSB
350                  * allocation failure is very bad behavior.  Just back
351                  * down to a 0-order allocation and force no TSB
352                  * growing for this address space.
353                  */
354                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
355                     new_cache_index > 0) {
356                         new_cache_index = 0;
357                         new_size = 8192;
358                         new_rss_limit = ~0UL;
359                         goto retry_tsb_alloc;
360                 }
361
362                 /* If we failed on a TSB grow, we are under serious
363                  * memory pressure so don't try to grow any more.
364                  */
365                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
366                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
367                 return;
368         }
369
370         /* Mark all tags as invalid.  */
371         tsb_init(new_tsb, new_size);
372
373         /* Ok, we are about to commit the changes.  If we are
374          * growing an existing TSB the locking is very tricky,
375          * so WATCH OUT!
376          *
377          * We have to hold mm->context.lock while committing to the
378          * new TSB, this synchronizes us with processors in
379          * flush_tsb_user() and switch_mm() for this address space.
380          *
381          * But even with that lock held, processors run asynchronously
382          * accessing the old TSB via TLB miss handling.  This is OK
383          * because those actions are just propagating state from the
384          * Linux page tables into the TSB, page table mappings are not
385          * being changed.  If a real fault occurs, the processor will
386          * synchronize with us when it hits flush_tsb_user(), this is
387          * also true for the case where vmscan is modifying the page
388          * tables.  The only thing we need to be careful with is to
389          * skip any locked TSB entries during copy_tsb().
390          *
391          * When we finish committing to the new TSB, we have to drop
392          * the lock and ask all other cpus running this address space
393          * to run tsb_context_switch() to see the new TSB table.
394          */
395         spin_lock_irqsave(&mm->context.lock, flags);
396
397         old_tsb = mm->context.tsb_block[tsb_index].tsb;
398         old_cache_index =
399                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
400         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
401                     sizeof(struct tsb));
402
403
404         /* Handle multiple threads trying to grow the TSB at the same time.
405          * One will get in here first, and bump the size and the RSS limit.
406          * The others will get in here next and hit this check.
407          */
408         if (unlikely(old_tsb &&
409                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
410                 spin_unlock_irqrestore(&mm->context.lock, flags);
411
412                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
413                 return;
414         }
415
416         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
417
418         if (old_tsb) {
419                 extern void copy_tsb(unsigned long old_tsb_base,
420                                      unsigned long old_tsb_size,
421                                      unsigned long new_tsb_base,
422                                      unsigned long new_tsb_size);
423                 unsigned long old_tsb_base = (unsigned long) old_tsb;
424                 unsigned long new_tsb_base = (unsigned long) new_tsb;
425
426                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
427                         old_tsb_base = __pa(old_tsb_base);
428                         new_tsb_base = __pa(new_tsb_base);
429                 }
430                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
431         }
432
433         mm->context.tsb_block[tsb_index].tsb = new_tsb;
434         setup_tsb_params(mm, tsb_index, new_size);
435
436         spin_unlock_irqrestore(&mm->context.lock, flags);
437
438         /* If old_tsb is NULL, we're being invoked for the first time
439          * from init_new_context().
440          */
441         if (old_tsb) {
442                 /* Reload it on the local cpu.  */
443                 tsb_context_switch(mm);
444
445                 /* Now force other processors to do the same.  */
446                 preempt_disable();
447                 smp_tsb_sync(mm);
448                 preempt_enable();
449
450                 /* Now it is safe to free the old tsb.  */
451                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
452         }
453 }
454
455 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
456 {
457 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
458         unsigned long huge_pte_count;
459 #endif
460         unsigned int i;
461
462         spin_lock_init(&mm->context.lock);
463
464         mm->context.sparc64_ctx_val = 0UL;
465
466 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
467         /* We reset it to zero because the fork() page copying
468          * will re-increment the counters as the parent PTEs are
469          * copied into the child address space.
470          */
471         huge_pte_count = mm->context.huge_pte_count;
472         mm->context.huge_pte_count = 0;
473 #endif
474
475         /* copy_mm() copies over the parent's mm_struct before calling
476          * us, so we need to zero out the TSB pointer or else tsb_grow()
477          * will be confused and think there is an older TSB to free up.
478          */
479         for (i = 0; i < MM_NUM_TSBS; i++)
480                 mm->context.tsb_block[i].tsb = NULL;
481
482         /* If this is fork, inherit the parent's TSB size.  We would
483          * grow it to that size on the first page fault anyways.
484          */
485         tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
486
487 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
488         if (unlikely(huge_pte_count))
489                 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
490 #endif
491
492         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
493                 return -ENOMEM;
494
495         return 0;
496 }
497
498 static void tsb_destroy_one(struct tsb_config *tp)
499 {
500         unsigned long cache_index;
501
502         if (!tp->tsb)
503                 return;
504         cache_index = tp->tsb_reg_val & 0x7UL;
505         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
506         tp->tsb = NULL;
507         tp->tsb_reg_val = 0UL;
508 }
509
510 void destroy_context(struct mm_struct *mm)
511 {
512         unsigned long flags, i;
513
514         for (i = 0; i < MM_NUM_TSBS; i++)
515                 tsb_destroy_one(&mm->context.tsb_block[i]);
516
517         spin_lock_irqsave(&ctx_alloc_lock, flags);
518
519         if (CTX_VALID(mm->context)) {
520                 unsigned long nr = CTX_NRBITS(mm->context);
521                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
522         }
523
524         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
525 }