Merge remote-tracking branches 'asoc/topic/ab8500', 'asoc/topic/arizona', 'asoc/topic...
[sfrench/cifs-2.6.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329         struct mm_struct *mm;
330         unsigned long flags;
331         pte_t pte = *ptep;
332
333         if (tlb_type != hypervisor) {
334                 unsigned long pfn = pte_pfn(pte);
335
336                 if (pfn_valid(pfn))
337                         flush_dcache(pfn);
338         }
339
340         mm = vma->vm_mm;
341
342         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343         if (!pte_accessible(mm, pte))
344                 return;
345
346         spin_lock_irqsave(&mm->context.lock, flags);
347
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349         if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
350             is_hugetlb_pte(pte)) {
351                 /* We are fabricating 8MB pages using 4MB real hw pages.  */
352                 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
353                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
354                                         address, pte_val(pte));
355         } else
356 #endif
357                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
358                                         address, pte_val(pte));
359
360         spin_unlock_irqrestore(&mm->context.lock, flags);
361 }
362
363 void flush_dcache_page(struct page *page)
364 {
365         struct address_space *mapping;
366         int this_cpu;
367
368         if (tlb_type == hypervisor)
369                 return;
370
371         /* Do not bother with the expensive D-cache flush if it
372          * is merely the zero page.  The 'bigcore' testcase in GDB
373          * causes this case to run millions of times.
374          */
375         if (page == ZERO_PAGE(0))
376                 return;
377
378         this_cpu = get_cpu();
379
380         mapping = page_mapping(page);
381         if (mapping && !mapping_mapped(mapping)) {
382                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
383                 if (dirty) {
384                         int dirty_cpu = dcache_dirty_cpu(page);
385
386                         if (dirty_cpu == this_cpu)
387                                 goto out;
388                         smp_flush_dcache_page_impl(page, dirty_cpu);
389                 }
390                 set_dcache_dirty(page, this_cpu);
391         } else {
392                 /* We could delay the flush for the !page_mapping
393                  * case too.  But that case is for exec env/arg
394                  * pages and those are %99 certainly going to get
395                  * faulted into the tlb (and thus flushed) anyways.
396                  */
397                 flush_dcache_page_impl(page);
398         }
399
400 out:
401         put_cpu();
402 }
403 EXPORT_SYMBOL(flush_dcache_page);
404
405 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
406 {
407         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
408         if (tlb_type == spitfire) {
409                 unsigned long kaddr;
410
411                 /* This code only runs on Spitfire cpus so this is
412                  * why we can assume _PAGE_PADDR_4U.
413                  */
414                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
415                         unsigned long paddr, mask = _PAGE_PADDR_4U;
416
417                         if (kaddr >= PAGE_OFFSET)
418                                 paddr = kaddr & mask;
419                         else {
420                                 pgd_t *pgdp = pgd_offset_k(kaddr);
421                                 pud_t *pudp = pud_offset(pgdp, kaddr);
422                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
423                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
424
425                                 paddr = pte_val(*ptep) & mask;
426                         }
427                         __flush_icache_page(paddr);
428                 }
429         }
430 }
431 EXPORT_SYMBOL(flush_icache_range);
432
433 void mmu_info(struct seq_file *m)
434 {
435         static const char *pgsz_strings[] = {
436                 "8K", "64K", "512K", "4MB", "32MB",
437                 "256MB", "2GB", "16GB",
438         };
439         int i, printed;
440
441         if (tlb_type == cheetah)
442                 seq_printf(m, "MMU Type\t: Cheetah\n");
443         else if (tlb_type == cheetah_plus)
444                 seq_printf(m, "MMU Type\t: Cheetah+\n");
445         else if (tlb_type == spitfire)
446                 seq_printf(m, "MMU Type\t: Spitfire\n");
447         else if (tlb_type == hypervisor)
448                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449         else
450                 seq_printf(m, "MMU Type\t: ???\n");
451
452         seq_printf(m, "MMU PGSZs\t: ");
453         printed = 0;
454         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
455                 if (cpu_pgsz_mask & (1UL << i)) {
456                         seq_printf(m, "%s%s",
457                                    printed ? "," : "", pgsz_strings[i]);
458                         printed++;
459                 }
460         }
461         seq_putc(m, '\n');
462
463 #ifdef CONFIG_DEBUG_DCFLUSH
464         seq_printf(m, "DCPageFlushes\t: %d\n",
465                    atomic_read(&dcpage_flushes));
466 #ifdef CONFIG_SMP
467         seq_printf(m, "DCPageFlushesXC\t: %d\n",
468                    atomic_read(&dcpage_flushes_xcall));
469 #endif /* CONFIG_SMP */
470 #endif /* CONFIG_DEBUG_DCFLUSH */
471 }
472
473 struct linux_prom_translation prom_trans[512] __read_mostly;
474 unsigned int prom_trans_ents __read_mostly;
475
476 unsigned long kern_locked_tte_data;
477
478 /* The obp translations are saved based on 8k pagesize, since obp can
479  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
480  * HI_OBP_ADDRESS range are handled in ktlb.S.
481  */
482 static inline int in_obp_range(unsigned long vaddr)
483 {
484         return (vaddr >= LOW_OBP_ADDRESS &&
485                 vaddr < HI_OBP_ADDRESS);
486 }
487
488 static int cmp_ptrans(const void *a, const void *b)
489 {
490         const struct linux_prom_translation *x = a, *y = b;
491
492         if (x->virt > y->virt)
493                 return 1;
494         if (x->virt < y->virt)
495                 return -1;
496         return 0;
497 }
498
499 /* Read OBP translations property into 'prom_trans[]'.  */
500 static void __init read_obp_translations(void)
501 {
502         int n, node, ents, first, last, i;
503
504         node = prom_finddevice("/virtual-memory");
505         n = prom_getproplen(node, "translations");
506         if (unlikely(n == 0 || n == -1)) {
507                 prom_printf("prom_mappings: Couldn't get size.\n");
508                 prom_halt();
509         }
510         if (unlikely(n > sizeof(prom_trans))) {
511                 prom_printf("prom_mappings: Size %d is too big.\n", n);
512                 prom_halt();
513         }
514
515         if ((n = prom_getproperty(node, "translations",
516                                   (char *)&prom_trans[0],
517                                   sizeof(prom_trans))) == -1) {
518                 prom_printf("prom_mappings: Couldn't get property.\n");
519                 prom_halt();
520         }
521
522         n = n / sizeof(struct linux_prom_translation);
523
524         ents = n;
525
526         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
527              cmp_ptrans, NULL);
528
529         /* Now kick out all the non-OBP entries.  */
530         for (i = 0; i < ents; i++) {
531                 if (in_obp_range(prom_trans[i].virt))
532                         break;
533         }
534         first = i;
535         for (; i < ents; i++) {
536                 if (!in_obp_range(prom_trans[i].virt))
537                         break;
538         }
539         last = i;
540
541         for (i = 0; i < (last - first); i++) {
542                 struct linux_prom_translation *src = &prom_trans[i + first];
543                 struct linux_prom_translation *dest = &prom_trans[i];
544
545                 *dest = *src;
546         }
547         for (; i < ents; i++) {
548                 struct linux_prom_translation *dest = &prom_trans[i];
549                 dest->virt = dest->size = dest->data = 0x0UL;
550         }
551
552         prom_trans_ents = last - first;
553
554         if (tlb_type == spitfire) {
555                 /* Clear diag TTE bits. */
556                 for (i = 0; i < prom_trans_ents; i++)
557                         prom_trans[i].data &= ~0x0003fe0000000000UL;
558         }
559
560         /* Force execute bit on.  */
561         for (i = 0; i < prom_trans_ents; i++)
562                 prom_trans[i].data |= (tlb_type == hypervisor ?
563                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
564 }
565
566 static void __init hypervisor_tlb_lock(unsigned long vaddr,
567                                        unsigned long pte,
568                                        unsigned long mmu)
569 {
570         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
571
572         if (ret != 0) {
573                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
574                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
575                 prom_halt();
576         }
577 }
578
579 static unsigned long kern_large_tte(unsigned long paddr);
580
581 static void __init remap_kernel(void)
582 {
583         unsigned long phys_page, tte_vaddr, tte_data;
584         int i, tlb_ent = sparc64_highest_locked_tlbent();
585
586         tte_vaddr = (unsigned long) KERNBASE;
587         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
588         tte_data = kern_large_tte(phys_page);
589
590         kern_locked_tte_data = tte_data;
591
592         /* Now lock us into the TLBs via Hypervisor or OBP. */
593         if (tlb_type == hypervisor) {
594                 for (i = 0; i < num_kernel_image_mappings; i++) {
595                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
596                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
597                         tte_vaddr += 0x400000;
598                         tte_data += 0x400000;
599                 }
600         } else {
601                 for (i = 0; i < num_kernel_image_mappings; i++) {
602                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
603                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
604                         tte_vaddr += 0x400000;
605                         tte_data += 0x400000;
606                 }
607                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
608         }
609         if (tlb_type == cheetah_plus) {
610                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
611                                             CTX_CHEETAH_PLUS_NUC);
612                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
613                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
614         }
615 }
616
617
618 static void __init inherit_prom_mappings(void)
619 {
620         /* Now fixup OBP's idea about where we really are mapped. */
621         printk("Remapping the kernel... ");
622         remap_kernel();
623         printk("done.\n");
624 }
625
626 void prom_world(int enter)
627 {
628         if (!enter)
629                 set_fs(get_fs());
630
631         __asm__ __volatile__("flushw");
632 }
633
634 void __flush_dcache_range(unsigned long start, unsigned long end)
635 {
636         unsigned long va;
637
638         if (tlb_type == spitfire) {
639                 int n = 0;
640
641                 for (va = start; va < end; va += 32) {
642                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
643                         if (++n >= 512)
644                                 break;
645                 }
646         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
647                 start = __pa(start);
648                 end = __pa(end);
649                 for (va = start; va < end; va += 32)
650                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
651                                              "membar #Sync"
652                                              : /* no outputs */
653                                              : "r" (va),
654                                                "i" (ASI_DCACHE_INVALIDATE));
655         }
656 }
657 EXPORT_SYMBOL(__flush_dcache_range);
658
659 /* get_new_mmu_context() uses "cache + 1".  */
660 DEFINE_SPINLOCK(ctx_alloc_lock);
661 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
662 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
663 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
664 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
665
666 /* Caller does TLB context flushing on local CPU if necessary.
667  * The caller also ensures that CTX_VALID(mm->context) is false.
668  *
669  * We must be careful about boundary cases so that we never
670  * let the user have CTX 0 (nucleus) or we ever use a CTX
671  * version of zero (and thus NO_CONTEXT would not be caught
672  * by version mis-match tests in mmu_context.h).
673  *
674  * Always invoked with interrupts disabled.
675  */
676 void get_new_mmu_context(struct mm_struct *mm)
677 {
678         unsigned long ctx, new_ctx;
679         unsigned long orig_pgsz_bits;
680         int new_version;
681
682         spin_lock(&ctx_alloc_lock);
683         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
684         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
685         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
686         new_version = 0;
687         if (new_ctx >= (1 << CTX_NR_BITS)) {
688                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
689                 if (new_ctx >= ctx) {
690                         int i;
691                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
692                                 CTX_FIRST_VERSION;
693                         if (new_ctx == 1)
694                                 new_ctx = CTX_FIRST_VERSION;
695
696                         /* Don't call memset, for 16 entries that's just
697                          * plain silly...
698                          */
699                         mmu_context_bmap[0] = 3;
700                         mmu_context_bmap[1] = 0;
701                         mmu_context_bmap[2] = 0;
702                         mmu_context_bmap[3] = 0;
703                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
704                                 mmu_context_bmap[i + 0] = 0;
705                                 mmu_context_bmap[i + 1] = 0;
706                                 mmu_context_bmap[i + 2] = 0;
707                                 mmu_context_bmap[i + 3] = 0;
708                         }
709                         new_version = 1;
710                         goto out;
711                 }
712         }
713         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
714         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
715 out:
716         tlb_context_cache = new_ctx;
717         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
718         spin_unlock(&ctx_alloc_lock);
719
720         if (unlikely(new_version))
721                 smp_new_mmu_context_version();
722 }
723
724 static int numa_enabled = 1;
725 static int numa_debug;
726
727 static int __init early_numa(char *p)
728 {
729         if (!p)
730                 return 0;
731
732         if (strstr(p, "off"))
733                 numa_enabled = 0;
734
735         if (strstr(p, "debug"))
736                 numa_debug = 1;
737
738         return 0;
739 }
740 early_param("numa", early_numa);
741
742 #define numadbg(f, a...) \
743 do {    if (numa_debug) \
744                 printk(KERN_INFO f, ## a); \
745 } while (0)
746
747 static void __init find_ramdisk(unsigned long phys_base)
748 {
749 #ifdef CONFIG_BLK_DEV_INITRD
750         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
751                 unsigned long ramdisk_image;
752
753                 /* Older versions of the bootloader only supported a
754                  * 32-bit physical address for the ramdisk image
755                  * location, stored at sparc_ramdisk_image.  Newer
756                  * SILO versions set sparc_ramdisk_image to zero and
757                  * provide a full 64-bit physical address at
758                  * sparc_ramdisk_image64.
759                  */
760                 ramdisk_image = sparc_ramdisk_image;
761                 if (!ramdisk_image)
762                         ramdisk_image = sparc_ramdisk_image64;
763
764                 /* Another bootloader quirk.  The bootloader normalizes
765                  * the physical address to KERNBASE, so we have to
766                  * factor that back out and add in the lowest valid
767                  * physical page address to get the true physical address.
768                  */
769                 ramdisk_image -= KERNBASE;
770                 ramdisk_image += phys_base;
771
772                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
773                         ramdisk_image, sparc_ramdisk_size);
774
775                 initrd_start = ramdisk_image;
776                 initrd_end = ramdisk_image + sparc_ramdisk_size;
777
778                 memblock_reserve(initrd_start, sparc_ramdisk_size);
779
780                 initrd_start += PAGE_OFFSET;
781                 initrd_end += PAGE_OFFSET;
782         }
783 #endif
784 }
785
786 struct node_mem_mask {
787         unsigned long mask;
788         unsigned long val;
789 };
790 static struct node_mem_mask node_masks[MAX_NUMNODES];
791 static int num_node_masks;
792
793 #ifdef CONFIG_NEED_MULTIPLE_NODES
794
795 int numa_cpu_lookup_table[NR_CPUS];
796 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
797
798 struct mdesc_mblock {
799         u64     base;
800         u64     size;
801         u64     offset; /* RA-to-PA */
802 };
803 static struct mdesc_mblock *mblocks;
804 static int num_mblocks;
805 static int find_numa_node_for_addr(unsigned long pa,
806                                    struct node_mem_mask *pnode_mask);
807
808 static unsigned long __init ra_to_pa(unsigned long addr)
809 {
810         int i;
811
812         for (i = 0; i < num_mblocks; i++) {
813                 struct mdesc_mblock *m = &mblocks[i];
814
815                 if (addr >= m->base &&
816                     addr < (m->base + m->size)) {
817                         addr += m->offset;
818                         break;
819                 }
820         }
821         return addr;
822 }
823
824 static int __init find_node(unsigned long addr)
825 {
826         static bool search_mdesc = true;
827         static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL };
828         static int last_index;
829         int i;
830
831         addr = ra_to_pa(addr);
832         for (i = 0; i < num_node_masks; i++) {
833                 struct node_mem_mask *p = &node_masks[i];
834
835                 if ((addr & p->mask) == p->val)
836                         return i;
837         }
838         /* The following condition has been observed on LDOM guests because
839          * node_masks only contains the best latency mask and value.
840          * LDOM guest's mdesc can contain a single latency group to
841          * cover multiple address range. Print warning message only if the
842          * address cannot be found in node_masks nor mdesc.
843          */
844         if ((search_mdesc) &&
845             ((addr & last_mem_mask.mask) != last_mem_mask.val)) {
846                 /* find the available node in the mdesc */
847                 last_index = find_numa_node_for_addr(addr, &last_mem_mask);
848                 numadbg("find_node: latency group for address 0x%lx is %d\n",
849                         addr, last_index);
850                 if ((last_index < 0) || (last_index >= num_node_masks)) {
851                         /* WARN_ONCE() and use default group 0 */
852                         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.");
853                         search_mdesc = false;
854                         last_index = 0;
855                 }
856         }
857
858         return last_index;
859 }
860
861 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
862 {
863         *nid = find_node(start);
864         start += PAGE_SIZE;
865         while (start < end) {
866                 int n = find_node(start);
867
868                 if (n != *nid)
869                         break;
870                 start += PAGE_SIZE;
871         }
872
873         if (start > end)
874                 start = end;
875
876         return start;
877 }
878 #endif
879
880 /* This must be invoked after performing all of the necessary
881  * memblock_set_node() calls for 'nid'.  We need to be able to get
882  * correct data from get_pfn_range_for_nid().
883  */
884 static void __init allocate_node_data(int nid)
885 {
886         struct pglist_data *p;
887         unsigned long start_pfn, end_pfn;
888 #ifdef CONFIG_NEED_MULTIPLE_NODES
889         unsigned long paddr;
890
891         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
892         if (!paddr) {
893                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
894                 prom_halt();
895         }
896         NODE_DATA(nid) = __va(paddr);
897         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
898
899         NODE_DATA(nid)->node_id = nid;
900 #endif
901
902         p = NODE_DATA(nid);
903
904         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
905         p->node_start_pfn = start_pfn;
906         p->node_spanned_pages = end_pfn - start_pfn;
907 }
908
909 static void init_node_masks_nonnuma(void)
910 {
911 #ifdef CONFIG_NEED_MULTIPLE_NODES
912         int i;
913 #endif
914
915         numadbg("Initializing tables for non-numa.\n");
916
917         node_masks[0].mask = node_masks[0].val = 0;
918         num_node_masks = 1;
919
920 #ifdef CONFIG_NEED_MULTIPLE_NODES
921         for (i = 0; i < NR_CPUS; i++)
922                 numa_cpu_lookup_table[i] = 0;
923
924         cpumask_setall(&numa_cpumask_lookup_table[0]);
925 #endif
926 }
927
928 #ifdef CONFIG_NEED_MULTIPLE_NODES
929 struct pglist_data *node_data[MAX_NUMNODES];
930
931 EXPORT_SYMBOL(numa_cpu_lookup_table);
932 EXPORT_SYMBOL(numa_cpumask_lookup_table);
933 EXPORT_SYMBOL(node_data);
934
935 struct mdesc_mlgroup {
936         u64     node;
937         u64     latency;
938         u64     match;
939         u64     mask;
940 };
941 static struct mdesc_mlgroup *mlgroups;
942 static int num_mlgroups;
943
944 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
945                                    u32 cfg_handle)
946 {
947         u64 arc;
948
949         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
950                 u64 target = mdesc_arc_target(md, arc);
951                 const u64 *val;
952
953                 val = mdesc_get_property(md, target,
954                                          "cfg-handle", NULL);
955                 if (val && *val == cfg_handle)
956                         return 0;
957         }
958         return -ENODEV;
959 }
960
961 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
962                                     u32 cfg_handle)
963 {
964         u64 arc, candidate, best_latency = ~(u64)0;
965
966         candidate = MDESC_NODE_NULL;
967         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
968                 u64 target = mdesc_arc_target(md, arc);
969                 const char *name = mdesc_node_name(md, target);
970                 const u64 *val;
971
972                 if (strcmp(name, "pio-latency-group"))
973                         continue;
974
975                 val = mdesc_get_property(md, target, "latency", NULL);
976                 if (!val)
977                         continue;
978
979                 if (*val < best_latency) {
980                         candidate = target;
981                         best_latency = *val;
982                 }
983         }
984
985         if (candidate == MDESC_NODE_NULL)
986                 return -ENODEV;
987
988         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
989 }
990
991 int of_node_to_nid(struct device_node *dp)
992 {
993         const struct linux_prom64_registers *regs;
994         struct mdesc_handle *md;
995         u32 cfg_handle;
996         int count, nid;
997         u64 grp;
998
999         /* This is the right thing to do on currently supported
1000          * SUN4U NUMA platforms as well, as the PCI controller does
1001          * not sit behind any particular memory controller.
1002          */
1003         if (!mlgroups)
1004                 return -1;
1005
1006         regs = of_get_property(dp, "reg", NULL);
1007         if (!regs)
1008                 return -1;
1009
1010         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1011
1012         md = mdesc_grab();
1013
1014         count = 0;
1015         nid = -1;
1016         mdesc_for_each_node_by_name(md, grp, "group") {
1017                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1018                         nid = count;
1019                         break;
1020                 }
1021                 count++;
1022         }
1023
1024         mdesc_release(md);
1025
1026         return nid;
1027 }
1028
1029 static void __init add_node_ranges(void)
1030 {
1031         struct memblock_region *reg;
1032
1033         for_each_memblock(memory, reg) {
1034                 unsigned long size = reg->size;
1035                 unsigned long start, end;
1036
1037                 start = reg->base;
1038                 end = start + size;
1039                 while (start < end) {
1040                         unsigned long this_end;
1041                         int nid;
1042
1043                         this_end = memblock_nid_range(start, end, &nid);
1044
1045                         numadbg("Setting memblock NUMA node nid[%d] "
1046                                 "start[%lx] end[%lx]\n",
1047                                 nid, start, this_end);
1048
1049                         memblock_set_node(start, this_end - start,
1050                                           &memblock.memory, nid);
1051                         start = this_end;
1052                 }
1053         }
1054 }
1055
1056 static int __init grab_mlgroups(struct mdesc_handle *md)
1057 {
1058         unsigned long paddr;
1059         int count = 0;
1060         u64 node;
1061
1062         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1063                 count++;
1064         if (!count)
1065                 return -ENOENT;
1066
1067         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1068                           SMP_CACHE_BYTES);
1069         if (!paddr)
1070                 return -ENOMEM;
1071
1072         mlgroups = __va(paddr);
1073         num_mlgroups = count;
1074
1075         count = 0;
1076         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1077                 struct mdesc_mlgroup *m = &mlgroups[count++];
1078                 const u64 *val;
1079
1080                 m->node = node;
1081
1082                 val = mdesc_get_property(md, node, "latency", NULL);
1083                 m->latency = *val;
1084                 val = mdesc_get_property(md, node, "address-match", NULL);
1085                 m->match = *val;
1086                 val = mdesc_get_property(md, node, "address-mask", NULL);
1087                 m->mask = *val;
1088
1089                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1090                         "match[%llx] mask[%llx]\n",
1091                         count - 1, m->node, m->latency, m->match, m->mask);
1092         }
1093
1094         return 0;
1095 }
1096
1097 static int __init grab_mblocks(struct mdesc_handle *md)
1098 {
1099         unsigned long paddr;
1100         int count = 0;
1101         u64 node;
1102
1103         mdesc_for_each_node_by_name(md, node, "mblock")
1104                 count++;
1105         if (!count)
1106                 return -ENOENT;
1107
1108         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1109                           SMP_CACHE_BYTES);
1110         if (!paddr)
1111                 return -ENOMEM;
1112
1113         mblocks = __va(paddr);
1114         num_mblocks = count;
1115
1116         count = 0;
1117         mdesc_for_each_node_by_name(md, node, "mblock") {
1118                 struct mdesc_mblock *m = &mblocks[count++];
1119                 const u64 *val;
1120
1121                 val = mdesc_get_property(md, node, "base", NULL);
1122                 m->base = *val;
1123                 val = mdesc_get_property(md, node, "size", NULL);
1124                 m->size = *val;
1125                 val = mdesc_get_property(md, node,
1126                                          "address-congruence-offset", NULL);
1127
1128                 /* The address-congruence-offset property is optional.
1129                  * Explicity zero it be identifty this.
1130                  */
1131                 if (val)
1132                         m->offset = *val;
1133                 else
1134                         m->offset = 0UL;
1135
1136                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1137                         count - 1, m->base, m->size, m->offset);
1138         }
1139
1140         return 0;
1141 }
1142
1143 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1144                                                u64 grp, cpumask_t *mask)
1145 {
1146         u64 arc;
1147
1148         cpumask_clear(mask);
1149
1150         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1151                 u64 target = mdesc_arc_target(md, arc);
1152                 const char *name = mdesc_node_name(md, target);
1153                 const u64 *id;
1154
1155                 if (strcmp(name, "cpu"))
1156                         continue;
1157                 id = mdesc_get_property(md, target, "id", NULL);
1158                 if (*id < nr_cpu_ids)
1159                         cpumask_set_cpu(*id, mask);
1160         }
1161 }
1162
1163 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1164 {
1165         int i;
1166
1167         for (i = 0; i < num_mlgroups; i++) {
1168                 struct mdesc_mlgroup *m = &mlgroups[i];
1169                 if (m->node == node)
1170                         return m;
1171         }
1172         return NULL;
1173 }
1174
1175 int __node_distance(int from, int to)
1176 {
1177         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1178                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1179                         from, to);
1180                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1181         }
1182         return numa_latency[from][to];
1183 }
1184
1185 static int find_numa_node_for_addr(unsigned long pa,
1186                                    struct node_mem_mask *pnode_mask)
1187 {
1188         struct mdesc_handle *md = mdesc_grab();
1189         u64 node, arc;
1190         int i = 0;
1191
1192         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1193         if (node == MDESC_NODE_NULL)
1194                 goto out;
1195
1196         mdesc_for_each_node_by_name(md, node, "group") {
1197                 mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) {
1198                         u64 target = mdesc_arc_target(md, arc);
1199                         struct mdesc_mlgroup *m = find_mlgroup(target);
1200
1201                         if (!m)
1202                                 continue;
1203                         if ((pa & m->mask) == m->match) {
1204                                 if (pnode_mask) {
1205                                         pnode_mask->mask = m->mask;
1206                                         pnode_mask->val = m->match;
1207                                 }
1208                                 mdesc_release(md);
1209                                 return i;
1210                         }
1211                 }
1212                 i++;
1213         }
1214
1215 out:
1216         mdesc_release(md);
1217         return -1;
1218 }
1219
1220 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1221 {
1222         int i;
1223
1224         for (i = 0; i < MAX_NUMNODES; i++) {
1225                 struct node_mem_mask *n = &node_masks[i];
1226
1227                 if ((grp->mask == n->mask) && (grp->match == n->val))
1228                         break;
1229         }
1230         return i;
1231 }
1232
1233 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1234                                                  u64 grp, int index)
1235 {
1236         u64 arc;
1237
1238         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1239                 int tnode;
1240                 u64 target = mdesc_arc_target(md, arc);
1241                 struct mdesc_mlgroup *m = find_mlgroup(target);
1242
1243                 if (!m)
1244                         continue;
1245                 tnode = find_best_numa_node_for_mlgroup(m);
1246                 if (tnode == MAX_NUMNODES)
1247                         continue;
1248                 numa_latency[index][tnode] = m->latency;
1249         }
1250 }
1251
1252 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1253                                       int index)
1254 {
1255         struct mdesc_mlgroup *candidate = NULL;
1256         u64 arc, best_latency = ~(u64)0;
1257         struct node_mem_mask *n;
1258
1259         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1260                 u64 target = mdesc_arc_target(md, arc);
1261                 struct mdesc_mlgroup *m = find_mlgroup(target);
1262                 if (!m)
1263                         continue;
1264                 if (m->latency < best_latency) {
1265                         candidate = m;
1266                         best_latency = m->latency;
1267                 }
1268         }
1269         if (!candidate)
1270                 return -ENOENT;
1271
1272         if (num_node_masks != index) {
1273                 printk(KERN_ERR "Inconsistent NUMA state, "
1274                        "index[%d] != num_node_masks[%d]\n",
1275                        index, num_node_masks);
1276                 return -EINVAL;
1277         }
1278
1279         n = &node_masks[num_node_masks++];
1280
1281         n->mask = candidate->mask;
1282         n->val = candidate->match;
1283
1284         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1285                 index, n->mask, n->val, candidate->latency);
1286
1287         return 0;
1288 }
1289
1290 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1291                                          int index)
1292 {
1293         cpumask_t mask;
1294         int cpu;
1295
1296         numa_parse_mdesc_group_cpus(md, grp, &mask);
1297
1298         for_each_cpu(cpu, &mask)
1299                 numa_cpu_lookup_table[cpu] = index;
1300         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1301
1302         if (numa_debug) {
1303                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1304                 for_each_cpu(cpu, &mask)
1305                         printk("%d ", cpu);
1306                 printk("]\n");
1307         }
1308
1309         return numa_attach_mlgroup(md, grp, index);
1310 }
1311
1312 static int __init numa_parse_mdesc(void)
1313 {
1314         struct mdesc_handle *md = mdesc_grab();
1315         int i, j, err, count;
1316         u64 node;
1317
1318         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1319         if (node == MDESC_NODE_NULL) {
1320                 mdesc_release(md);
1321                 return -ENOENT;
1322         }
1323
1324         err = grab_mblocks(md);
1325         if (err < 0)
1326                 goto out;
1327
1328         err = grab_mlgroups(md);
1329         if (err < 0)
1330                 goto out;
1331
1332         count = 0;
1333         mdesc_for_each_node_by_name(md, node, "group") {
1334                 err = numa_parse_mdesc_group(md, node, count);
1335                 if (err < 0)
1336                         break;
1337                 count++;
1338         }
1339
1340         count = 0;
1341         mdesc_for_each_node_by_name(md, node, "group") {
1342                 find_numa_latencies_for_group(md, node, count);
1343                 count++;
1344         }
1345
1346         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1347         for (i = 0; i < MAX_NUMNODES; i++) {
1348                 u64 self_latency = numa_latency[i][i];
1349
1350                 for (j = 0; j < MAX_NUMNODES; j++) {
1351                         numa_latency[i][j] =
1352                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1353                                 self_latency;
1354                 }
1355         }
1356
1357         add_node_ranges();
1358
1359         for (i = 0; i < num_node_masks; i++) {
1360                 allocate_node_data(i);
1361                 node_set_online(i);
1362         }
1363
1364         err = 0;
1365 out:
1366         mdesc_release(md);
1367         return err;
1368 }
1369
1370 static int __init numa_parse_jbus(void)
1371 {
1372         unsigned long cpu, index;
1373
1374         /* NUMA node id is encoded in bits 36 and higher, and there is
1375          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1376          */
1377         index = 0;
1378         for_each_present_cpu(cpu) {
1379                 numa_cpu_lookup_table[cpu] = index;
1380                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1381                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1382                 node_masks[index].val = cpu << 36UL;
1383
1384                 index++;
1385         }
1386         num_node_masks = index;
1387
1388         add_node_ranges();
1389
1390         for (index = 0; index < num_node_masks; index++) {
1391                 allocate_node_data(index);
1392                 node_set_online(index);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int __init numa_parse_sun4u(void)
1399 {
1400         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1401                 unsigned long ver;
1402
1403                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1404                 if ((ver >> 32UL) == __JALAPENO_ID ||
1405                     (ver >> 32UL) == __SERRANO_ID)
1406                         return numa_parse_jbus();
1407         }
1408         return -1;
1409 }
1410
1411 static int __init bootmem_init_numa(void)
1412 {
1413         int i, j;
1414         int err = -1;
1415
1416         numadbg("bootmem_init_numa()\n");
1417
1418         /* Some sane defaults for numa latency values */
1419         for (i = 0; i < MAX_NUMNODES; i++) {
1420                 for (j = 0; j < MAX_NUMNODES; j++)
1421                         numa_latency[i][j] = (i == j) ?
1422                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1423         }
1424
1425         if (numa_enabled) {
1426                 if (tlb_type == hypervisor)
1427                         err = numa_parse_mdesc();
1428                 else
1429                         err = numa_parse_sun4u();
1430         }
1431         return err;
1432 }
1433
1434 #else
1435
1436 static int bootmem_init_numa(void)
1437 {
1438         return -1;
1439 }
1440
1441 #endif
1442
1443 static void __init bootmem_init_nonnuma(void)
1444 {
1445         unsigned long top_of_ram = memblock_end_of_DRAM();
1446         unsigned long total_ram = memblock_phys_mem_size();
1447
1448         numadbg("bootmem_init_nonnuma()\n");
1449
1450         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1451                top_of_ram, total_ram);
1452         printk(KERN_INFO "Memory hole size: %ldMB\n",
1453                (top_of_ram - total_ram) >> 20);
1454
1455         init_node_masks_nonnuma();
1456         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1457         allocate_node_data(0);
1458         node_set_online(0);
1459 }
1460
1461 static unsigned long __init bootmem_init(unsigned long phys_base)
1462 {
1463         unsigned long end_pfn;
1464
1465         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1466         max_pfn = max_low_pfn = end_pfn;
1467         min_low_pfn = (phys_base >> PAGE_SHIFT);
1468
1469         if (bootmem_init_numa() < 0)
1470                 bootmem_init_nonnuma();
1471
1472         /* Dump memblock with node info. */
1473         memblock_dump_all();
1474
1475         /* XXX cpu notifier XXX */
1476
1477         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1478         sparse_init();
1479
1480         return end_pfn;
1481 }
1482
1483 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1484 static int pall_ents __initdata;
1485
1486 static unsigned long max_phys_bits = 40;
1487
1488 bool kern_addr_valid(unsigned long addr)
1489 {
1490         pgd_t *pgd;
1491         pud_t *pud;
1492         pmd_t *pmd;
1493         pte_t *pte;
1494
1495         if ((long)addr < 0L) {
1496                 unsigned long pa = __pa(addr);
1497
1498                 if ((addr >> max_phys_bits) != 0UL)
1499                         return false;
1500
1501                 return pfn_valid(pa >> PAGE_SHIFT);
1502         }
1503
1504         if (addr >= (unsigned long) KERNBASE &&
1505             addr < (unsigned long)&_end)
1506                 return true;
1507
1508         pgd = pgd_offset_k(addr);
1509         if (pgd_none(*pgd))
1510                 return 0;
1511
1512         pud = pud_offset(pgd, addr);
1513         if (pud_none(*pud))
1514                 return 0;
1515
1516         if (pud_large(*pud))
1517                 return pfn_valid(pud_pfn(*pud));
1518
1519         pmd = pmd_offset(pud, addr);
1520         if (pmd_none(*pmd))
1521                 return 0;
1522
1523         if (pmd_large(*pmd))
1524                 return pfn_valid(pmd_pfn(*pmd));
1525
1526         pte = pte_offset_kernel(pmd, addr);
1527         if (pte_none(*pte))
1528                 return 0;
1529
1530         return pfn_valid(pte_pfn(*pte));
1531 }
1532 EXPORT_SYMBOL(kern_addr_valid);
1533
1534 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1535                                               unsigned long vend,
1536                                               pud_t *pud)
1537 {
1538         const unsigned long mask16gb = (1UL << 34) - 1UL;
1539         u64 pte_val = vstart;
1540
1541         /* Each PUD is 8GB */
1542         if ((vstart & mask16gb) ||
1543             (vend - vstart <= mask16gb)) {
1544                 pte_val ^= kern_linear_pte_xor[2];
1545                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1546
1547                 return vstart + PUD_SIZE;
1548         }
1549
1550         pte_val ^= kern_linear_pte_xor[3];
1551         pte_val |= _PAGE_PUD_HUGE;
1552
1553         vend = vstart + mask16gb + 1UL;
1554         while (vstart < vend) {
1555                 pud_val(*pud) = pte_val;
1556
1557                 pte_val += PUD_SIZE;
1558                 vstart += PUD_SIZE;
1559                 pud++;
1560         }
1561         return vstart;
1562 }
1563
1564 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1565                                    bool guard)
1566 {
1567         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1568                 return true;
1569
1570         return false;
1571 }
1572
1573 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1574                                               unsigned long vend,
1575                                               pmd_t *pmd)
1576 {
1577         const unsigned long mask256mb = (1UL << 28) - 1UL;
1578         const unsigned long mask2gb = (1UL << 31) - 1UL;
1579         u64 pte_val = vstart;
1580
1581         /* Each PMD is 8MB */
1582         if ((vstart & mask256mb) ||
1583             (vend - vstart <= mask256mb)) {
1584                 pte_val ^= kern_linear_pte_xor[0];
1585                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1586
1587                 return vstart + PMD_SIZE;
1588         }
1589
1590         if ((vstart & mask2gb) ||
1591             (vend - vstart <= mask2gb)) {
1592                 pte_val ^= kern_linear_pte_xor[1];
1593                 pte_val |= _PAGE_PMD_HUGE;
1594                 vend = vstart + mask256mb + 1UL;
1595         } else {
1596                 pte_val ^= kern_linear_pte_xor[2];
1597                 pte_val |= _PAGE_PMD_HUGE;
1598                 vend = vstart + mask2gb + 1UL;
1599         }
1600
1601         while (vstart < vend) {
1602                 pmd_val(*pmd) = pte_val;
1603
1604                 pte_val += PMD_SIZE;
1605                 vstart += PMD_SIZE;
1606                 pmd++;
1607         }
1608
1609         return vstart;
1610 }
1611
1612 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1613                                    bool guard)
1614 {
1615         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1616                 return true;
1617
1618         return false;
1619 }
1620
1621 static unsigned long __ref kernel_map_range(unsigned long pstart,
1622                                             unsigned long pend, pgprot_t prot,
1623                                             bool use_huge)
1624 {
1625         unsigned long vstart = PAGE_OFFSET + pstart;
1626         unsigned long vend = PAGE_OFFSET + pend;
1627         unsigned long alloc_bytes = 0UL;
1628
1629         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1630                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1631                             vstart, vend);
1632                 prom_halt();
1633         }
1634
1635         while (vstart < vend) {
1636                 unsigned long this_end, paddr = __pa(vstart);
1637                 pgd_t *pgd = pgd_offset_k(vstart);
1638                 pud_t *pud;
1639                 pmd_t *pmd;
1640                 pte_t *pte;
1641
1642                 if (pgd_none(*pgd)) {
1643                         pud_t *new;
1644
1645                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1646                         alloc_bytes += PAGE_SIZE;
1647                         pgd_populate(&init_mm, pgd, new);
1648                 }
1649                 pud = pud_offset(pgd, vstart);
1650                 if (pud_none(*pud)) {
1651                         pmd_t *new;
1652
1653                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1654                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1655                                 continue;
1656                         }
1657                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1658                         alloc_bytes += PAGE_SIZE;
1659                         pud_populate(&init_mm, pud, new);
1660                 }
1661
1662                 pmd = pmd_offset(pud, vstart);
1663                 if (pmd_none(*pmd)) {
1664                         pte_t *new;
1665
1666                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1667                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1668                                 continue;
1669                         }
1670                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1671                         alloc_bytes += PAGE_SIZE;
1672                         pmd_populate_kernel(&init_mm, pmd, new);
1673                 }
1674
1675                 pte = pte_offset_kernel(pmd, vstart);
1676                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1677                 if (this_end > vend)
1678                         this_end = vend;
1679
1680                 while (vstart < this_end) {
1681                         pte_val(*pte) = (paddr | pgprot_val(prot));
1682
1683                         vstart += PAGE_SIZE;
1684                         paddr += PAGE_SIZE;
1685                         pte++;
1686                 }
1687         }
1688
1689         return alloc_bytes;
1690 }
1691
1692 static void __init flush_all_kernel_tsbs(void)
1693 {
1694         int i;
1695
1696         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1697                 struct tsb *ent = &swapper_tsb[i];
1698
1699                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1700         }
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1703                 struct tsb *ent = &swapper_4m_tsb[i];
1704
1705                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1706         }
1707 #endif
1708 }
1709
1710 extern unsigned int kvmap_linear_patch[1];
1711
1712 static void __init kernel_physical_mapping_init(void)
1713 {
1714         unsigned long i, mem_alloced = 0UL;
1715         bool use_huge = true;
1716
1717 #ifdef CONFIG_DEBUG_PAGEALLOC
1718         use_huge = false;
1719 #endif
1720         for (i = 0; i < pall_ents; i++) {
1721                 unsigned long phys_start, phys_end;
1722
1723                 phys_start = pall[i].phys_addr;
1724                 phys_end = phys_start + pall[i].reg_size;
1725
1726                 mem_alloced += kernel_map_range(phys_start, phys_end,
1727                                                 PAGE_KERNEL, use_huge);
1728         }
1729
1730         printk("Allocated %ld bytes for kernel page tables.\n",
1731                mem_alloced);
1732
1733         kvmap_linear_patch[0] = 0x01000000; /* nop */
1734         flushi(&kvmap_linear_patch[0]);
1735
1736         flush_all_kernel_tsbs();
1737
1738         __flush_tlb_all();
1739 }
1740
1741 #ifdef CONFIG_DEBUG_PAGEALLOC
1742 void __kernel_map_pages(struct page *page, int numpages, int enable)
1743 {
1744         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1745         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1746
1747         kernel_map_range(phys_start, phys_end,
1748                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1749
1750         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1751                                PAGE_OFFSET + phys_end);
1752
1753         /* we should perform an IPI and flush all tlbs,
1754          * but that can deadlock->flush only current cpu.
1755          */
1756         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1757                                  PAGE_OFFSET + phys_end);
1758 }
1759 #endif
1760
1761 unsigned long __init find_ecache_flush_span(unsigned long size)
1762 {
1763         int i;
1764
1765         for (i = 0; i < pavail_ents; i++) {
1766                 if (pavail[i].reg_size >= size)
1767                         return pavail[i].phys_addr;
1768         }
1769
1770         return ~0UL;
1771 }
1772
1773 unsigned long PAGE_OFFSET;
1774 EXPORT_SYMBOL(PAGE_OFFSET);
1775
1776 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1777 EXPORT_SYMBOL(VMALLOC_END);
1778
1779 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1780 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1781
1782 static void __init setup_page_offset(void)
1783 {
1784         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1785                 /* Cheetah/Panther support a full 64-bit virtual
1786                  * address, so we can use all that our page tables
1787                  * support.
1788                  */
1789                 sparc64_va_hole_top =    0xfff0000000000000UL;
1790                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1791
1792                 max_phys_bits = 42;
1793         } else if (tlb_type == hypervisor) {
1794                 switch (sun4v_chip_type) {
1795                 case SUN4V_CHIP_NIAGARA1:
1796                 case SUN4V_CHIP_NIAGARA2:
1797                         /* T1 and T2 support 48-bit virtual addresses.  */
1798                         sparc64_va_hole_top =    0xffff800000000000UL;
1799                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1800
1801                         max_phys_bits = 39;
1802                         break;
1803                 case SUN4V_CHIP_NIAGARA3:
1804                         /* T3 supports 48-bit virtual addresses.  */
1805                         sparc64_va_hole_top =    0xffff800000000000UL;
1806                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1807
1808                         max_phys_bits = 43;
1809                         break;
1810                 case SUN4V_CHIP_NIAGARA4:
1811                 case SUN4V_CHIP_NIAGARA5:
1812                 case SUN4V_CHIP_SPARC64X:
1813                 case SUN4V_CHIP_SPARC_M6:
1814                         /* T4 and later support 52-bit virtual addresses.  */
1815                         sparc64_va_hole_top =    0xfff8000000000000UL;
1816                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1817                         max_phys_bits = 47;
1818                         break;
1819                 case SUN4V_CHIP_SPARC_M7:
1820                 case SUN4V_CHIP_SPARC_SN:
1821                 default:
1822                         /* M7 and later support 52-bit virtual addresses.  */
1823                         sparc64_va_hole_top =    0xfff8000000000000UL;
1824                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1825                         max_phys_bits = 49;
1826                         break;
1827                 }
1828         }
1829
1830         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1831                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1832                             max_phys_bits);
1833                 prom_halt();
1834         }
1835
1836         PAGE_OFFSET = sparc64_va_hole_top;
1837         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1838                        (sparc64_va_hole_bottom >> 2));
1839
1840         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1841                 PAGE_OFFSET, max_phys_bits);
1842         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1843                 VMALLOC_START, VMALLOC_END);
1844         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1845                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1846 }
1847
1848 static void __init tsb_phys_patch(void)
1849 {
1850         struct tsb_ldquad_phys_patch_entry *pquad;
1851         struct tsb_phys_patch_entry *p;
1852
1853         pquad = &__tsb_ldquad_phys_patch;
1854         while (pquad < &__tsb_ldquad_phys_patch_end) {
1855                 unsigned long addr = pquad->addr;
1856
1857                 if (tlb_type == hypervisor)
1858                         *(unsigned int *) addr = pquad->sun4v_insn;
1859                 else
1860                         *(unsigned int *) addr = pquad->sun4u_insn;
1861                 wmb();
1862                 __asm__ __volatile__("flush     %0"
1863                                      : /* no outputs */
1864                                      : "r" (addr));
1865
1866                 pquad++;
1867         }
1868
1869         p = &__tsb_phys_patch;
1870         while (p < &__tsb_phys_patch_end) {
1871                 unsigned long addr = p->addr;
1872
1873                 *(unsigned int *) addr = p->insn;
1874                 wmb();
1875                 __asm__ __volatile__("flush     %0"
1876                                      : /* no outputs */
1877                                      : "r" (addr));
1878
1879                 p++;
1880         }
1881 }
1882
1883 /* Don't mark as init, we give this to the Hypervisor.  */
1884 #ifndef CONFIG_DEBUG_PAGEALLOC
1885 #define NUM_KTSB_DESCR  2
1886 #else
1887 #define NUM_KTSB_DESCR  1
1888 #endif
1889 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1890
1891 /* The swapper TSBs are loaded with a base sequence of:
1892  *
1893  *      sethi   %uhi(SYMBOL), REG1
1894  *      sethi   %hi(SYMBOL), REG2
1895  *      or      REG1, %ulo(SYMBOL), REG1
1896  *      or      REG2, %lo(SYMBOL), REG2
1897  *      sllx    REG1, 32, REG1
1898  *      or      REG1, REG2, REG1
1899  *
1900  * When we use physical addressing for the TSB accesses, we patch the
1901  * first four instructions in the above sequence.
1902  */
1903
1904 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1905 {
1906         unsigned long high_bits, low_bits;
1907
1908         high_bits = (pa >> 32) & 0xffffffff;
1909         low_bits = (pa >> 0) & 0xffffffff;
1910
1911         while (start < end) {
1912                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1913
1914                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1915                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1916
1917                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1918                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1919
1920                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1921                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1922
1923                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1924                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1925
1926                 start++;
1927         }
1928 }
1929
1930 static void ktsb_phys_patch(void)
1931 {
1932         extern unsigned int __swapper_tsb_phys_patch;
1933         extern unsigned int __swapper_tsb_phys_patch_end;
1934         unsigned long ktsb_pa;
1935
1936         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1937         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1938                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1939 #ifndef CONFIG_DEBUG_PAGEALLOC
1940         {
1941         extern unsigned int __swapper_4m_tsb_phys_patch;
1942         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1943         ktsb_pa = (kern_base +
1944                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1945         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1946                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1947         }
1948 #endif
1949 }
1950
1951 static void __init sun4v_ktsb_init(void)
1952 {
1953         unsigned long ktsb_pa;
1954
1955         /* First KTSB for PAGE_SIZE mappings.  */
1956         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1957
1958         switch (PAGE_SIZE) {
1959         case 8 * 1024:
1960         default:
1961                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1962                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1963                 break;
1964
1965         case 64 * 1024:
1966                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1967                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1968                 break;
1969
1970         case 512 * 1024:
1971                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1972                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1973                 break;
1974
1975         case 4 * 1024 * 1024:
1976                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1977                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1978                 break;
1979         }
1980
1981         ktsb_descr[0].assoc = 1;
1982         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1983         ktsb_descr[0].ctx_idx = 0;
1984         ktsb_descr[0].tsb_base = ktsb_pa;
1985         ktsb_descr[0].resv = 0;
1986
1987 #ifndef CONFIG_DEBUG_PAGEALLOC
1988         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1989         ktsb_pa = (kern_base +
1990                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1991
1992         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1993         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1994                                     HV_PGSZ_MASK_256MB |
1995                                     HV_PGSZ_MASK_2GB |
1996                                     HV_PGSZ_MASK_16GB) &
1997                                    cpu_pgsz_mask);
1998         ktsb_descr[1].assoc = 1;
1999         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2000         ktsb_descr[1].ctx_idx = 0;
2001         ktsb_descr[1].tsb_base = ktsb_pa;
2002         ktsb_descr[1].resv = 0;
2003 #endif
2004 }
2005
2006 void sun4v_ktsb_register(void)
2007 {
2008         unsigned long pa, ret;
2009
2010         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2011
2012         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2013         if (ret != 0) {
2014                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2015                             "errors with %lx\n", pa, ret);
2016                 prom_halt();
2017         }
2018 }
2019
2020 static void __init sun4u_linear_pte_xor_finalize(void)
2021 {
2022 #ifndef CONFIG_DEBUG_PAGEALLOC
2023         /* This is where we would add Panther support for
2024          * 32MB and 256MB pages.
2025          */
2026 #endif
2027 }
2028
2029 static void __init sun4v_linear_pte_xor_finalize(void)
2030 {
2031         unsigned long pagecv_flag;
2032
2033         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2034          * enables MCD error. Do not set bit 9 on M7 processor.
2035          */
2036         switch (sun4v_chip_type) {
2037         case SUN4V_CHIP_SPARC_M7:
2038         case SUN4V_CHIP_SPARC_SN:
2039                 pagecv_flag = 0x00;
2040                 break;
2041         default:
2042                 pagecv_flag = _PAGE_CV_4V;
2043                 break;
2044         }
2045 #ifndef CONFIG_DEBUG_PAGEALLOC
2046         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2047                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2048                         PAGE_OFFSET;
2049                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2050                                            _PAGE_P_4V | _PAGE_W_4V);
2051         } else {
2052                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2053         }
2054
2055         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2056                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2057                         PAGE_OFFSET;
2058                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2059                                            _PAGE_P_4V | _PAGE_W_4V);
2060         } else {
2061                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2062         }
2063
2064         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2065                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2066                         PAGE_OFFSET;
2067                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2068                                            _PAGE_P_4V | _PAGE_W_4V);
2069         } else {
2070                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2071         }
2072 #endif
2073 }
2074
2075 /* paging_init() sets up the page tables */
2076
2077 static unsigned long last_valid_pfn;
2078
2079 static void sun4u_pgprot_init(void);
2080 static void sun4v_pgprot_init(void);
2081
2082 static phys_addr_t __init available_memory(void)
2083 {
2084         phys_addr_t available = 0ULL;
2085         phys_addr_t pa_start, pa_end;
2086         u64 i;
2087
2088         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2089                                 &pa_end, NULL)
2090                 available = available + (pa_end  - pa_start);
2091
2092         return available;
2093 }
2094
2095 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2096 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2097 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2098 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2099 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2100 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2101
2102 /* We need to exclude reserved regions. This exclusion will include
2103  * vmlinux and initrd. To be more precise the initrd size could be used to
2104  * compute a new lower limit because it is freed later during initialization.
2105  */
2106 static void __init reduce_memory(phys_addr_t limit_ram)
2107 {
2108         phys_addr_t avail_ram = available_memory();
2109         phys_addr_t pa_start, pa_end;
2110         u64 i;
2111
2112         if (limit_ram >= avail_ram)
2113                 return;
2114
2115         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2116                                 &pa_end, NULL) {
2117                 phys_addr_t region_size = pa_end - pa_start;
2118                 phys_addr_t clip_start = pa_start;
2119
2120                 avail_ram = avail_ram - region_size;
2121                 /* Are we consuming too much? */
2122                 if (avail_ram < limit_ram) {
2123                         phys_addr_t give_back = limit_ram - avail_ram;
2124
2125                         region_size = region_size - give_back;
2126                         clip_start = clip_start + give_back;
2127                 }
2128
2129                 memblock_remove(clip_start, region_size);
2130
2131                 if (avail_ram <= limit_ram)
2132                         break;
2133                 i = 0UL;
2134         }
2135 }
2136
2137 void __init paging_init(void)
2138 {
2139         unsigned long end_pfn, shift, phys_base;
2140         unsigned long real_end, i;
2141
2142         setup_page_offset();
2143
2144         /* These build time checkes make sure that the dcache_dirty_cpu()
2145          * page->flags usage will work.
2146          *
2147          * When a page gets marked as dcache-dirty, we store the
2148          * cpu number starting at bit 32 in the page->flags.  Also,
2149          * functions like clear_dcache_dirty_cpu use the cpu mask
2150          * in 13-bit signed-immediate instruction fields.
2151          */
2152
2153         /*
2154          * Page flags must not reach into upper 32 bits that are used
2155          * for the cpu number
2156          */
2157         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2158
2159         /*
2160          * The bit fields placed in the high range must not reach below
2161          * the 32 bit boundary. Otherwise we cannot place the cpu field
2162          * at the 32 bit boundary.
2163          */
2164         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2165                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2166
2167         BUILD_BUG_ON(NR_CPUS > 4096);
2168
2169         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2170         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2171
2172         /* Invalidate both kernel TSBs.  */
2173         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2174 #ifndef CONFIG_DEBUG_PAGEALLOC
2175         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2176 #endif
2177
2178         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2179          * bit on M7 processor. This is a conflicting usage of the same
2180          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2181          * Detection error on all pages and this will lead to problems
2182          * later. Kernel does not run with MCD enabled and hence rest
2183          * of the required steps to fully configure memory corruption
2184          * detection are not taken. We need to ensure TTE.mcde is not
2185          * set on M7 processor. Compute the value of cacheability
2186          * flag for use later taking this into consideration.
2187          */
2188         switch (sun4v_chip_type) {
2189         case SUN4V_CHIP_SPARC_M7:
2190         case SUN4V_CHIP_SPARC_SN:
2191                 page_cache4v_flag = _PAGE_CP_4V;
2192                 break;
2193         default:
2194                 page_cache4v_flag = _PAGE_CACHE_4V;
2195                 break;
2196         }
2197
2198         if (tlb_type == hypervisor)
2199                 sun4v_pgprot_init();
2200         else
2201                 sun4u_pgprot_init();
2202
2203         if (tlb_type == cheetah_plus ||
2204             tlb_type == hypervisor) {
2205                 tsb_phys_patch();
2206                 ktsb_phys_patch();
2207         }
2208
2209         if (tlb_type == hypervisor)
2210                 sun4v_patch_tlb_handlers();
2211
2212         /* Find available physical memory...
2213          *
2214          * Read it twice in order to work around a bug in openfirmware.
2215          * The call to grab this table itself can cause openfirmware to
2216          * allocate memory, which in turn can take away some space from
2217          * the list of available memory.  Reading it twice makes sure
2218          * we really do get the final value.
2219          */
2220         read_obp_translations();
2221         read_obp_memory("reg", &pall[0], &pall_ents);
2222         read_obp_memory("available", &pavail[0], &pavail_ents);
2223         read_obp_memory("available", &pavail[0], &pavail_ents);
2224
2225         phys_base = 0xffffffffffffffffUL;
2226         for (i = 0; i < pavail_ents; i++) {
2227                 phys_base = min(phys_base, pavail[i].phys_addr);
2228                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2229         }
2230
2231         memblock_reserve(kern_base, kern_size);
2232
2233         find_ramdisk(phys_base);
2234
2235         if (cmdline_memory_size)
2236                 reduce_memory(cmdline_memory_size);
2237
2238         memblock_allow_resize();
2239         memblock_dump_all();
2240
2241         set_bit(0, mmu_context_bmap);
2242
2243         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2244
2245         real_end = (unsigned long)_end;
2246         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2247         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2248                num_kernel_image_mappings);
2249
2250         /* Set kernel pgd to upper alias so physical page computations
2251          * work.
2252          */
2253         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2254         
2255         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2256
2257         inherit_prom_mappings();
2258         
2259         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2260         setup_tba();
2261
2262         __flush_tlb_all();
2263
2264         prom_build_devicetree();
2265         of_populate_present_mask();
2266 #ifndef CONFIG_SMP
2267         of_fill_in_cpu_data();
2268 #endif
2269
2270         if (tlb_type == hypervisor) {
2271                 sun4v_mdesc_init();
2272                 mdesc_populate_present_mask(cpu_all_mask);
2273 #ifndef CONFIG_SMP
2274                 mdesc_fill_in_cpu_data(cpu_all_mask);
2275 #endif
2276                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2277
2278                 sun4v_linear_pte_xor_finalize();
2279
2280                 sun4v_ktsb_init();
2281                 sun4v_ktsb_register();
2282         } else {
2283                 unsigned long impl, ver;
2284
2285                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2286                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2287
2288                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2289                 impl = ((ver >> 32) & 0xffff);
2290                 if (impl == PANTHER_IMPL)
2291                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2292                                           HV_PGSZ_MASK_256MB);
2293
2294                 sun4u_linear_pte_xor_finalize();
2295         }
2296
2297         /* Flush the TLBs and the 4M TSB so that the updated linear
2298          * pte XOR settings are realized for all mappings.
2299          */
2300         __flush_tlb_all();
2301 #ifndef CONFIG_DEBUG_PAGEALLOC
2302         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2303 #endif
2304         __flush_tlb_all();
2305
2306         /* Setup bootmem... */
2307         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2308
2309         kernel_physical_mapping_init();
2310
2311         {
2312                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2313
2314                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2315
2316                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2317
2318                 free_area_init_nodes(max_zone_pfns);
2319         }
2320
2321         printk("Booting Linux...\n");
2322 }
2323
2324 int page_in_phys_avail(unsigned long paddr)
2325 {
2326         int i;
2327
2328         paddr &= PAGE_MASK;
2329
2330         for (i = 0; i < pavail_ents; i++) {
2331                 unsigned long start, end;
2332
2333                 start = pavail[i].phys_addr;
2334                 end = start + pavail[i].reg_size;
2335
2336                 if (paddr >= start && paddr < end)
2337                         return 1;
2338         }
2339         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2340                 return 1;
2341 #ifdef CONFIG_BLK_DEV_INITRD
2342         if (paddr >= __pa(initrd_start) &&
2343             paddr < __pa(PAGE_ALIGN(initrd_end)))
2344                 return 1;
2345 #endif
2346
2347         return 0;
2348 }
2349
2350 static void __init register_page_bootmem_info(void)
2351 {
2352 #ifdef CONFIG_NEED_MULTIPLE_NODES
2353         int i;
2354
2355         for_each_online_node(i)
2356                 if (NODE_DATA(i)->node_spanned_pages)
2357                         register_page_bootmem_info_node(NODE_DATA(i));
2358 #endif
2359 }
2360 void __init mem_init(void)
2361 {
2362         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2363
2364         register_page_bootmem_info();
2365         free_all_bootmem();
2366
2367         /*
2368          * Set up the zero page, mark it reserved, so that page count
2369          * is not manipulated when freeing the page from user ptes.
2370          */
2371         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2372         if (mem_map_zero == NULL) {
2373                 prom_printf("paging_init: Cannot alloc zero page.\n");
2374                 prom_halt();
2375         }
2376         mark_page_reserved(mem_map_zero);
2377
2378         mem_init_print_info(NULL);
2379
2380         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2381                 cheetah_ecache_flush_init();
2382 }
2383
2384 void free_initmem(void)
2385 {
2386         unsigned long addr, initend;
2387         int do_free = 1;
2388
2389         /* If the physical memory maps were trimmed by kernel command
2390          * line options, don't even try freeing this initmem stuff up.
2391          * The kernel image could have been in the trimmed out region
2392          * and if so the freeing below will free invalid page structs.
2393          */
2394         if (cmdline_memory_size)
2395                 do_free = 0;
2396
2397         /*
2398          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2399          */
2400         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2401         initend = (unsigned long)(__init_end) & PAGE_MASK;
2402         for (; addr < initend; addr += PAGE_SIZE) {
2403                 unsigned long page;
2404
2405                 page = (addr +
2406                         ((unsigned long) __va(kern_base)) -
2407                         ((unsigned long) KERNBASE));
2408                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2409
2410                 if (do_free)
2411                         free_reserved_page(virt_to_page(page));
2412         }
2413 }
2414
2415 #ifdef CONFIG_BLK_DEV_INITRD
2416 void free_initrd_mem(unsigned long start, unsigned long end)
2417 {
2418         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2419                            "initrd");
2420 }
2421 #endif
2422
2423 pgprot_t PAGE_KERNEL __read_mostly;
2424 EXPORT_SYMBOL(PAGE_KERNEL);
2425
2426 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2427 pgprot_t PAGE_COPY __read_mostly;
2428
2429 pgprot_t PAGE_SHARED __read_mostly;
2430 EXPORT_SYMBOL(PAGE_SHARED);
2431
2432 unsigned long pg_iobits __read_mostly;
2433
2434 unsigned long _PAGE_IE __read_mostly;
2435 EXPORT_SYMBOL(_PAGE_IE);
2436
2437 unsigned long _PAGE_E __read_mostly;
2438 EXPORT_SYMBOL(_PAGE_E);
2439
2440 unsigned long _PAGE_CACHE __read_mostly;
2441 EXPORT_SYMBOL(_PAGE_CACHE);
2442
2443 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2444 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2445                                int node)
2446 {
2447         unsigned long pte_base;
2448
2449         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2450                     _PAGE_CP_4U | _PAGE_CV_4U |
2451                     _PAGE_P_4U | _PAGE_W_4U);
2452         if (tlb_type == hypervisor)
2453                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2454                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2455
2456         pte_base |= _PAGE_PMD_HUGE;
2457
2458         vstart = vstart & PMD_MASK;
2459         vend = ALIGN(vend, PMD_SIZE);
2460         for (; vstart < vend; vstart += PMD_SIZE) {
2461                 pgd_t *pgd = pgd_offset_k(vstart);
2462                 unsigned long pte;
2463                 pud_t *pud;
2464                 pmd_t *pmd;
2465
2466                 if (pgd_none(*pgd)) {
2467                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2468
2469                         if (!new)
2470                                 return -ENOMEM;
2471                         pgd_populate(&init_mm, pgd, new);
2472                 }
2473
2474                 pud = pud_offset(pgd, vstart);
2475                 if (pud_none(*pud)) {
2476                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2477
2478                         if (!new)
2479                                 return -ENOMEM;
2480                         pud_populate(&init_mm, pud, new);
2481                 }
2482
2483                 pmd = pmd_offset(pud, vstart);
2484
2485                 pte = pmd_val(*pmd);
2486                 if (!(pte & _PAGE_VALID)) {
2487                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2488
2489                         if (!block)
2490                                 return -ENOMEM;
2491
2492                         pmd_val(*pmd) = pte_base | __pa(block);
2493                 }
2494         }
2495
2496         return 0;
2497 }
2498
2499 void vmemmap_free(unsigned long start, unsigned long end)
2500 {
2501 }
2502 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2503
2504 static void prot_init_common(unsigned long page_none,
2505                              unsigned long page_shared,
2506                              unsigned long page_copy,
2507                              unsigned long page_readonly,
2508                              unsigned long page_exec_bit)
2509 {
2510         PAGE_COPY = __pgprot(page_copy);
2511         PAGE_SHARED = __pgprot(page_shared);
2512
2513         protection_map[0x0] = __pgprot(page_none);
2514         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2515         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2516         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2517         protection_map[0x4] = __pgprot(page_readonly);
2518         protection_map[0x5] = __pgprot(page_readonly);
2519         protection_map[0x6] = __pgprot(page_copy);
2520         protection_map[0x7] = __pgprot(page_copy);
2521         protection_map[0x8] = __pgprot(page_none);
2522         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2523         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2524         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2525         protection_map[0xc] = __pgprot(page_readonly);
2526         protection_map[0xd] = __pgprot(page_readonly);
2527         protection_map[0xe] = __pgprot(page_shared);
2528         protection_map[0xf] = __pgprot(page_shared);
2529 }
2530
2531 static void __init sun4u_pgprot_init(void)
2532 {
2533         unsigned long page_none, page_shared, page_copy, page_readonly;
2534         unsigned long page_exec_bit;
2535         int i;
2536
2537         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2538                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2539                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2540                                 _PAGE_EXEC_4U);
2541         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2542                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2543                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2544                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2545
2546         _PAGE_IE = _PAGE_IE_4U;
2547         _PAGE_E = _PAGE_E_4U;
2548         _PAGE_CACHE = _PAGE_CACHE_4U;
2549
2550         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2551                      __ACCESS_BITS_4U | _PAGE_E_4U);
2552
2553 #ifdef CONFIG_DEBUG_PAGEALLOC
2554         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2555 #else
2556         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2557                 PAGE_OFFSET;
2558 #endif
2559         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2560                                    _PAGE_P_4U | _PAGE_W_4U);
2561
2562         for (i = 1; i < 4; i++)
2563                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2564
2565         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2566                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2567                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2568
2569
2570         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2571         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2572                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2573         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2574                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2575         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2576                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2577
2578         page_exec_bit = _PAGE_EXEC_4U;
2579
2580         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2581                          page_exec_bit);
2582 }
2583
2584 static void __init sun4v_pgprot_init(void)
2585 {
2586         unsigned long page_none, page_shared, page_copy, page_readonly;
2587         unsigned long page_exec_bit;
2588         int i;
2589
2590         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2591                                 page_cache4v_flag | _PAGE_P_4V |
2592                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2593                                 _PAGE_EXEC_4V);
2594         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2595
2596         _PAGE_IE = _PAGE_IE_4V;
2597         _PAGE_E = _PAGE_E_4V;
2598         _PAGE_CACHE = page_cache4v_flag;
2599
2600 #ifdef CONFIG_DEBUG_PAGEALLOC
2601         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2602 #else
2603         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2604                 PAGE_OFFSET;
2605 #endif
2606         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2607                                    _PAGE_W_4V);
2608
2609         for (i = 1; i < 4; i++)
2610                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2611
2612         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2613                      __ACCESS_BITS_4V | _PAGE_E_4V);
2614
2615         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2616                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2617                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2618                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2619
2620         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2621         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2622                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2623         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2624                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2625         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2626                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2627
2628         page_exec_bit = _PAGE_EXEC_4V;
2629
2630         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2631                          page_exec_bit);
2632 }
2633
2634 unsigned long pte_sz_bits(unsigned long sz)
2635 {
2636         if (tlb_type == hypervisor) {
2637                 switch (sz) {
2638                 case 8 * 1024:
2639                 default:
2640                         return _PAGE_SZ8K_4V;
2641                 case 64 * 1024:
2642                         return _PAGE_SZ64K_4V;
2643                 case 512 * 1024:
2644                         return _PAGE_SZ512K_4V;
2645                 case 4 * 1024 * 1024:
2646                         return _PAGE_SZ4MB_4V;
2647                 }
2648         } else {
2649                 switch (sz) {
2650                 case 8 * 1024:
2651                 default:
2652                         return _PAGE_SZ8K_4U;
2653                 case 64 * 1024:
2654                         return _PAGE_SZ64K_4U;
2655                 case 512 * 1024:
2656                         return _PAGE_SZ512K_4U;
2657                 case 4 * 1024 * 1024:
2658                         return _PAGE_SZ4MB_4U;
2659                 }
2660         }
2661 }
2662
2663 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2664 {
2665         pte_t pte;
2666
2667         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2668         pte_val(pte) |= (((unsigned long)space) << 32);
2669         pte_val(pte) |= pte_sz_bits(page_size);
2670
2671         return pte;
2672 }
2673
2674 static unsigned long kern_large_tte(unsigned long paddr)
2675 {
2676         unsigned long val;
2677
2678         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2679                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2680                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2681         if (tlb_type == hypervisor)
2682                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2683                        page_cache4v_flag | _PAGE_P_4V |
2684                        _PAGE_EXEC_4V | _PAGE_W_4V);
2685
2686         return val | paddr;
2687 }
2688
2689 /* If not locked, zap it. */
2690 void __flush_tlb_all(void)
2691 {
2692         unsigned long pstate;
2693         int i;
2694
2695         __asm__ __volatile__("flushw\n\t"
2696                              "rdpr      %%pstate, %0\n\t"
2697                              "wrpr      %0, %1, %%pstate"
2698                              : "=r" (pstate)
2699                              : "i" (PSTATE_IE));
2700         if (tlb_type == hypervisor) {
2701                 sun4v_mmu_demap_all();
2702         } else if (tlb_type == spitfire) {
2703                 for (i = 0; i < 64; i++) {
2704                         /* Spitfire Errata #32 workaround */
2705                         /* NOTE: Always runs on spitfire, so no
2706                          *       cheetah+ page size encodings.
2707                          */
2708                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2709                                              "flush     %%g6"
2710                                              : /* No outputs */
2711                                              : "r" (0),
2712                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2713
2714                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2715                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2716                                                      "membar #Sync"
2717                                                      : /* no outputs */
2718                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2719                                 spitfire_put_dtlb_data(i, 0x0UL);
2720                         }
2721
2722                         /* Spitfire Errata #32 workaround */
2723                         /* NOTE: Always runs on spitfire, so no
2724                          *       cheetah+ page size encodings.
2725                          */
2726                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2727                                              "flush     %%g6"
2728                                              : /* No outputs */
2729                                              : "r" (0),
2730                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2731
2732                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2733                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2734                                                      "membar #Sync"
2735                                                      : /* no outputs */
2736                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2737                                 spitfire_put_itlb_data(i, 0x0UL);
2738                         }
2739                 }
2740         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2741                 cheetah_flush_dtlb_all();
2742                 cheetah_flush_itlb_all();
2743         }
2744         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2745                              : : "r" (pstate));
2746 }
2747
2748 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2749                             unsigned long address)
2750 {
2751         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2752         pte_t *pte = NULL;
2753
2754         if (page)
2755                 pte = (pte_t *) page_address(page);
2756
2757         return pte;
2758 }
2759
2760 pgtable_t pte_alloc_one(struct mm_struct *mm,
2761                         unsigned long address)
2762 {
2763         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2764         if (!page)
2765                 return NULL;
2766         if (!pgtable_page_ctor(page)) {
2767                 free_hot_cold_page(page, 0);
2768                 return NULL;
2769         }
2770         return (pte_t *) page_address(page);
2771 }
2772
2773 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2774 {
2775         free_page((unsigned long)pte);
2776 }
2777
2778 static void __pte_free(pgtable_t pte)
2779 {
2780         struct page *page = virt_to_page(pte);
2781
2782         pgtable_page_dtor(page);
2783         __free_page(page);
2784 }
2785
2786 void pte_free(struct mm_struct *mm, pgtable_t pte)
2787 {
2788         __pte_free(pte);
2789 }
2790
2791 void pgtable_free(void *table, bool is_page)
2792 {
2793         if (is_page)
2794                 __pte_free(table);
2795         else
2796                 kmem_cache_free(pgtable_cache, table);
2797 }
2798
2799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2800 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2801                           pmd_t *pmd)
2802 {
2803         unsigned long pte, flags;
2804         struct mm_struct *mm;
2805         pmd_t entry = *pmd;
2806
2807         if (!pmd_large(entry) || !pmd_young(entry))
2808                 return;
2809
2810         pte = pmd_val(entry);
2811
2812         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2813         if (!(pte & _PAGE_VALID))
2814                 return;
2815
2816         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2817         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2818
2819         mm = vma->vm_mm;
2820
2821         spin_lock_irqsave(&mm->context.lock, flags);
2822
2823         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2824                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2825                                         addr, pte);
2826
2827         spin_unlock_irqrestore(&mm->context.lock, flags);
2828 }
2829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2830
2831 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2832 static void context_reload(void *__data)
2833 {
2834         struct mm_struct *mm = __data;
2835
2836         if (mm == current->mm)
2837                 load_secondary_context(mm);
2838 }
2839
2840 void hugetlb_setup(struct pt_regs *regs)
2841 {
2842         struct mm_struct *mm = current->mm;
2843         struct tsb_config *tp;
2844
2845         if (faulthandler_disabled() || !mm) {
2846                 const struct exception_table_entry *entry;
2847
2848                 entry = search_exception_tables(regs->tpc);
2849                 if (entry) {
2850                         regs->tpc = entry->fixup;
2851                         regs->tnpc = regs->tpc + 4;
2852                         return;
2853                 }
2854                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2855                 die_if_kernel("HugeTSB in atomic", regs);
2856         }
2857
2858         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2859         if (likely(tp->tsb == NULL))
2860                 tsb_grow(mm, MM_TSB_HUGE, 0);
2861
2862         tsb_context_switch(mm);
2863         smp_tsb_sync(mm);
2864
2865         /* On UltraSPARC-III+ and later, configure the second half of
2866          * the Data-TLB for huge pages.
2867          */
2868         if (tlb_type == cheetah_plus) {
2869                 bool need_context_reload = false;
2870                 unsigned long ctx;
2871
2872                 spin_lock_irq(&ctx_alloc_lock);
2873                 ctx = mm->context.sparc64_ctx_val;
2874                 ctx &= ~CTX_PGSZ_MASK;
2875                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2876                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2877
2878                 if (ctx != mm->context.sparc64_ctx_val) {
2879                         /* When changing the page size fields, we
2880                          * must perform a context flush so that no
2881                          * stale entries match.  This flush must
2882                          * occur with the original context register
2883                          * settings.
2884                          */
2885                         do_flush_tlb_mm(mm);
2886
2887                         /* Reload the context register of all processors
2888                          * also executing in this address space.
2889                          */
2890                         mm->context.sparc64_ctx_val = ctx;
2891                         need_context_reload = true;
2892                 }
2893                 spin_unlock_irq(&ctx_alloc_lock);
2894
2895                 if (need_context_reload)
2896                         on_each_cpu(context_reload, mm, 0);
2897         }
2898 }
2899 #endif
2900
2901 static struct resource code_resource = {
2902         .name   = "Kernel code",
2903         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2904 };
2905
2906 static struct resource data_resource = {
2907         .name   = "Kernel data",
2908         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2909 };
2910
2911 static struct resource bss_resource = {
2912         .name   = "Kernel bss",
2913         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2914 };
2915
2916 static inline resource_size_t compute_kern_paddr(void *addr)
2917 {
2918         return (resource_size_t) (addr - KERNBASE + kern_base);
2919 }
2920
2921 static void __init kernel_lds_init(void)
2922 {
2923         code_resource.start = compute_kern_paddr(_text);
2924         code_resource.end   = compute_kern_paddr(_etext - 1);
2925         data_resource.start = compute_kern_paddr(_etext);
2926         data_resource.end   = compute_kern_paddr(_edata - 1);
2927         bss_resource.start  = compute_kern_paddr(__bss_start);
2928         bss_resource.end    = compute_kern_paddr(_end - 1);
2929 }
2930
2931 static int __init report_memory(void)
2932 {
2933         int i;
2934         struct resource *res;
2935
2936         kernel_lds_init();
2937
2938         for (i = 0; i < pavail_ents; i++) {
2939                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2940
2941                 if (!res) {
2942                         pr_warn("Failed to allocate source.\n");
2943                         break;
2944                 }
2945
2946                 res->name = "System RAM";
2947                 res->start = pavail[i].phys_addr;
2948                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2949                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2950
2951                 if (insert_resource(&iomem_resource, res) < 0) {
2952                         pr_warn("Resource insertion failed.\n");
2953                         break;
2954                 }
2955
2956                 insert_resource(res, &code_resource);
2957                 insert_resource(res, &data_resource);
2958                 insert_resource(res, &bss_resource);
2959         }
2960
2961         return 0;
2962 }
2963 arch_initcall(report_memory);
2964
2965 #ifdef CONFIG_SMP
2966 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2967 #else
2968 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2969 #endif
2970
2971 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2972 {
2973         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2974                 if (start < LOW_OBP_ADDRESS) {
2975                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2976                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2977                 }
2978                 if (end > HI_OBP_ADDRESS) {
2979                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2980                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2981                 }
2982         } else {
2983                 flush_tsb_kernel_range(start, end);
2984                 do_flush_tlb_kernel_range(start, end);
2985         }
2986 }