Merge remote-tracking branches 'spi/topic/spidev', 'spi/topic/st-ssc4' and 'spi/topic...
[sfrench/cifs-2.6.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/hotplug.h>
10 #include <linux/mm.h>
11 #include <linux/pagemap.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ftrace.h>
27 #include <linux/cpu.h>
28 #include <linux/slab.h>
29 #include <linux/kgdb.h>
30
31 #include <asm/head.h>
32 #include <asm/ptrace.h>
33 #include <linux/atomic.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cpudata.h>
37 #include <asm/hvtramp.h>
38 #include <asm/io.h>
39 #include <asm/timer.h>
40 #include <asm/setup.h>
41
42 #include <asm/irq.h>
43 #include <asm/irq_regs.h>
44 #include <asm/page.h>
45 #include <asm/pgtable.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/sections.h>
51 #include <asm/prom.h>
52 #include <asm/mdesc.h>
53 #include <asm/ldc.h>
54 #include <asm/hypervisor.h>
55 #include <asm/pcr.h>
56
57 #include "cpumap.h"
58 #include "kernel.h"
59
60 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
61 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
62         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63
64 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
65         [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66
67 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
68         [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
69
70 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
71 EXPORT_SYMBOL(cpu_core_map);
72 EXPORT_SYMBOL(cpu_core_sib_map);
73 EXPORT_SYMBOL(cpu_core_sib_cache_map);
74
75 static cpumask_t smp_commenced_mask;
76
77 void smp_info(struct seq_file *m)
78 {
79         int i;
80         
81         seq_printf(m, "State:\n");
82         for_each_online_cpu(i)
83                 seq_printf(m, "CPU%d:\t\tonline\n", i);
84 }
85
86 void smp_bogo(struct seq_file *m)
87 {
88         int i;
89         
90         for_each_online_cpu(i)
91                 seq_printf(m,
92                            "Cpu%dClkTck\t: %016lx\n",
93                            i, cpu_data(i).clock_tick);
94 }
95
96 extern void setup_sparc64_timer(void);
97
98 static volatile unsigned long callin_flag = 0;
99
100 void smp_callin(void)
101 {
102         int cpuid = hard_smp_processor_id();
103
104         __local_per_cpu_offset = __per_cpu_offset(cpuid);
105
106         if (tlb_type == hypervisor)
107                 sun4v_ktsb_register();
108
109         __flush_tlb_all();
110
111         setup_sparc64_timer();
112
113         if (cheetah_pcache_forced_on)
114                 cheetah_enable_pcache();
115
116         callin_flag = 1;
117         __asm__ __volatile__("membar #Sync\n\t"
118                              "flush  %%g6" : : : "memory");
119
120         /* Clear this or we will die instantly when we
121          * schedule back to this idler...
122          */
123         current_thread_info()->new_child = 0;
124
125         /* Attach to the address space of init_task. */
126         mmgrab(&init_mm);
127         current->active_mm = &init_mm;
128
129         /* inform the notifiers about the new cpu */
130         notify_cpu_starting(cpuid);
131
132         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
133                 rmb();
134
135         set_cpu_online(cpuid, true);
136
137         /* idle thread is expected to have preempt disabled */
138         preempt_disable();
139
140         local_irq_enable();
141
142         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
143 }
144
145 void cpu_panic(void)
146 {
147         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
148         panic("SMP bolixed\n");
149 }
150
151 /* This tick register synchronization scheme is taken entirely from
152  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
153  *
154  * The only change I've made is to rework it so that the master
155  * initiates the synchonization instead of the slave. -DaveM
156  */
157
158 #define MASTER  0
159 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
160
161 #define NUM_ROUNDS      64      /* magic value */
162 #define NUM_ITERS       5       /* likewise */
163
164 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
165 static unsigned long go[SLAVE + 1];
166
167 #define DEBUG_TICK_SYNC 0
168
169 static inline long get_delta (long *rt, long *master)
170 {
171         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
172         unsigned long tcenter, t0, t1, tm;
173         unsigned long i;
174
175         for (i = 0; i < NUM_ITERS; i++) {
176                 t0 = tick_ops->get_tick();
177                 go[MASTER] = 1;
178                 membar_safe("#StoreLoad");
179                 while (!(tm = go[SLAVE]))
180                         rmb();
181                 go[SLAVE] = 0;
182                 wmb();
183                 t1 = tick_ops->get_tick();
184
185                 if (t1 - t0 < best_t1 - best_t0)
186                         best_t0 = t0, best_t1 = t1, best_tm = tm;
187         }
188
189         *rt = best_t1 - best_t0;
190         *master = best_tm - best_t0;
191
192         /* average best_t0 and best_t1 without overflow: */
193         tcenter = (best_t0/2 + best_t1/2);
194         if (best_t0 % 2 + best_t1 % 2 == 2)
195                 tcenter++;
196         return tcenter - best_tm;
197 }
198
199 void smp_synchronize_tick_client(void)
200 {
201         long i, delta, adj, adjust_latency = 0, done = 0;
202         unsigned long flags, rt, master_time_stamp;
203 #if DEBUG_TICK_SYNC
204         struct {
205                 long rt;        /* roundtrip time */
206                 long master;    /* master's timestamp */
207                 long diff;      /* difference between midpoint and master's timestamp */
208                 long lat;       /* estimate of itc adjustment latency */
209         } t[NUM_ROUNDS];
210 #endif
211
212         go[MASTER] = 1;
213
214         while (go[MASTER])
215                 rmb();
216
217         local_irq_save(flags);
218         {
219                 for (i = 0; i < NUM_ROUNDS; i++) {
220                         delta = get_delta(&rt, &master_time_stamp);
221                         if (delta == 0)
222                                 done = 1;       /* let's lock on to this... */
223
224                         if (!done) {
225                                 if (i > 0) {
226                                         adjust_latency += -delta;
227                                         adj = -delta + adjust_latency/4;
228                                 } else
229                                         adj = -delta;
230
231                                 tick_ops->add_tick(adj);
232                         }
233 #if DEBUG_TICK_SYNC
234                         t[i].rt = rt;
235                         t[i].master = master_time_stamp;
236                         t[i].diff = delta;
237                         t[i].lat = adjust_latency/4;
238 #endif
239                 }
240         }
241         local_irq_restore(flags);
242
243 #if DEBUG_TICK_SYNC
244         for (i = 0; i < NUM_ROUNDS; i++)
245                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
246                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
247 #endif
248
249         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
250                "(last diff %ld cycles, maxerr %lu cycles)\n",
251                smp_processor_id(), delta, rt);
252 }
253
254 static void smp_start_sync_tick_client(int cpu);
255
256 static void smp_synchronize_one_tick(int cpu)
257 {
258         unsigned long flags, i;
259
260         go[MASTER] = 0;
261
262         smp_start_sync_tick_client(cpu);
263
264         /* wait for client to be ready */
265         while (!go[MASTER])
266                 rmb();
267
268         /* now let the client proceed into his loop */
269         go[MASTER] = 0;
270         membar_safe("#StoreLoad");
271
272         raw_spin_lock_irqsave(&itc_sync_lock, flags);
273         {
274                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
275                         while (!go[MASTER])
276                                 rmb();
277                         go[MASTER] = 0;
278                         wmb();
279                         go[SLAVE] = tick_ops->get_tick();
280                         membar_safe("#StoreLoad");
281                 }
282         }
283         raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
284 }
285
286 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
287 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
288                                 void **descrp)
289 {
290         extern unsigned long sparc64_ttable_tl0;
291         extern unsigned long kern_locked_tte_data;
292         struct hvtramp_descr *hdesc;
293         unsigned long trampoline_ra;
294         struct trap_per_cpu *tb;
295         u64 tte_vaddr, tte_data;
296         unsigned long hv_err;
297         int i;
298
299         hdesc = kzalloc(sizeof(*hdesc) +
300                         (sizeof(struct hvtramp_mapping) *
301                          num_kernel_image_mappings - 1),
302                         GFP_KERNEL);
303         if (!hdesc) {
304                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
305                        "hvtramp_descr.\n");
306                 return;
307         }
308         *descrp = hdesc;
309
310         hdesc->cpu = cpu;
311         hdesc->num_mappings = num_kernel_image_mappings;
312
313         tb = &trap_block[cpu];
314
315         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
316         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
317
318         hdesc->thread_reg = thread_reg;
319
320         tte_vaddr = (unsigned long) KERNBASE;
321         tte_data = kern_locked_tte_data;
322
323         for (i = 0; i < hdesc->num_mappings; i++) {
324                 hdesc->maps[i].vaddr = tte_vaddr;
325                 hdesc->maps[i].tte   = tte_data;
326                 tte_vaddr += 0x400000;
327                 tte_data  += 0x400000;
328         }
329
330         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
331
332         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
333                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
334                                  __pa(hdesc));
335         if (hv_err)
336                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
337                        "gives error %lu\n", hv_err);
338 }
339 #endif
340
341 extern unsigned long sparc64_cpu_startup;
342
343 /* The OBP cpu startup callback truncates the 3rd arg cookie to
344  * 32-bits (I think) so to be safe we have it read the pointer
345  * contained here so we work on >4GB machines. -DaveM
346  */
347 static struct thread_info *cpu_new_thread = NULL;
348
349 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
350 {
351         unsigned long entry =
352                 (unsigned long)(&sparc64_cpu_startup);
353         unsigned long cookie =
354                 (unsigned long)(&cpu_new_thread);
355         void *descr = NULL;
356         int timeout, ret;
357
358         callin_flag = 0;
359         cpu_new_thread = task_thread_info(idle);
360
361         if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363                 if (ldom_domaining_enabled)
364                         ldom_startcpu_cpuid(cpu,
365                                             (unsigned long) cpu_new_thread,
366                                             &descr);
367                 else
368 #endif
369                         prom_startcpu_cpuid(cpu, entry, cookie);
370         } else {
371                 struct device_node *dp = of_find_node_by_cpuid(cpu);
372
373                 prom_startcpu(dp->phandle, entry, cookie);
374         }
375
376         for (timeout = 0; timeout < 50000; timeout++) {
377                 if (callin_flag)
378                         break;
379                 udelay(100);
380         }
381
382         if (callin_flag) {
383                 ret = 0;
384         } else {
385                 printk("Processor %d is stuck.\n", cpu);
386                 ret = -ENODEV;
387         }
388         cpu_new_thread = NULL;
389
390         kfree(descr);
391
392         return ret;
393 }
394
395 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396 {
397         u64 result, target;
398         int stuck, tmp;
399
400         if (this_is_starfire) {
401                 /* map to real upaid */
402                 cpu = (((cpu & 0x3c) << 1) |
403                         ((cpu & 0x40) >> 4) |
404                         (cpu & 0x3));
405         }
406
407         target = (cpu << 14) | 0x70;
408 again:
409         /* Ok, this is the real Spitfire Errata #54.
410          * One must read back from a UDB internal register
411          * after writes to the UDB interrupt dispatch, but
412          * before the membar Sync for that write.
413          * So we use the high UDB control register (ASI 0x7f,
414          * ADDR 0x20) for the dummy read. -DaveM
415          */
416         tmp = 0x40;
417         __asm__ __volatile__(
418         "wrpr   %1, %2, %%pstate\n\t"
419         "stxa   %4, [%0] %3\n\t"
420         "stxa   %5, [%0+%8] %3\n\t"
421         "add    %0, %8, %0\n\t"
422         "stxa   %6, [%0+%8] %3\n\t"
423         "membar #Sync\n\t"
424         "stxa   %%g0, [%7] %3\n\t"
425         "membar #Sync\n\t"
426         "mov    0x20, %%g1\n\t"
427         "ldxa   [%%g1] 0x7f, %%g0\n\t"
428         "membar #Sync"
429         : "=r" (tmp)
430         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431           "r" (data0), "r" (data1), "r" (data2), "r" (target),
432           "r" (0x10), "0" (tmp)
433         : "g1");
434
435         /* NOTE: PSTATE_IE is still clear. */
436         stuck = 100000;
437         do {
438                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439                         : "=r" (result)
440                         : "i" (ASI_INTR_DISPATCH_STAT));
441                 if (result == 0) {
442                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443                                              : : "r" (pstate));
444                         return;
445                 }
446                 stuck -= 1;
447                 if (stuck == 0)
448                         break;
449         } while (result & 0x1);
450         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451                              : : "r" (pstate));
452         if (stuck == 0) {
453                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
454                        smp_processor_id(), result);
455         } else {
456                 udelay(2);
457                 goto again;
458         }
459 }
460
461 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
462 {
463         u64 *mondo, data0, data1, data2;
464         u16 *cpu_list;
465         u64 pstate;
466         int i;
467
468         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469         cpu_list = __va(tb->cpu_list_pa);
470         mondo = __va(tb->cpu_mondo_block_pa);
471         data0 = mondo[0];
472         data1 = mondo[1];
473         data2 = mondo[2];
474         for (i = 0; i < cnt; i++)
475                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
476 }
477
478 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
479  * packet, but we have no use for that.  However we do take advantage of
480  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
481  */
482 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
483 {
484         int nack_busy_id, is_jbus, need_more;
485         u64 *mondo, pstate, ver, busy_mask;
486         u16 *cpu_list;
487
488         cpu_list = __va(tb->cpu_list_pa);
489         mondo = __va(tb->cpu_mondo_block_pa);
490
491         /* Unfortunately, someone at Sun had the brilliant idea to make the
492          * busy/nack fields hard-coded by ITID number for this Ultra-III
493          * derivative processor.
494          */
495         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
496         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
497                    (ver >> 32) == __SERRANO_ID);
498
499         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
500
501 retry:
502         need_more = 0;
503         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
504                              : : "r" (pstate), "i" (PSTATE_IE));
505
506         /* Setup the dispatch data registers. */
507         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
508                              "stxa      %1, [%4] %6\n\t"
509                              "stxa      %2, [%5] %6\n\t"
510                              "membar    #Sync\n\t"
511                              : /* no outputs */
512                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
513                                "r" (0x40), "r" (0x50), "r" (0x60),
514                                "i" (ASI_INTR_W));
515
516         nack_busy_id = 0;
517         busy_mask = 0;
518         {
519                 int i;
520
521                 for (i = 0; i < cnt; i++) {
522                         u64 target, nr;
523
524                         nr = cpu_list[i];
525                         if (nr == 0xffff)
526                                 continue;
527
528                         target = (nr << 14) | 0x70;
529                         if (is_jbus) {
530                                 busy_mask |= (0x1UL << (nr * 2));
531                         } else {
532                                 target |= (nack_busy_id << 24);
533                                 busy_mask |= (0x1UL <<
534                                               (nack_busy_id * 2));
535                         }
536                         __asm__ __volatile__(
537                                 "stxa   %%g0, [%0] %1\n\t"
538                                 "membar #Sync\n\t"
539                                 : /* no outputs */
540                                 : "r" (target), "i" (ASI_INTR_W));
541                         nack_busy_id++;
542                         if (nack_busy_id == 32) {
543                                 need_more = 1;
544                                 break;
545                         }
546                 }
547         }
548
549         /* Now, poll for completion. */
550         {
551                 u64 dispatch_stat, nack_mask;
552                 long stuck;
553
554                 stuck = 100000 * nack_busy_id;
555                 nack_mask = busy_mask << 1;
556                 do {
557                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
558                                              : "=r" (dispatch_stat)
559                                              : "i" (ASI_INTR_DISPATCH_STAT));
560                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
561                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
562                                                      : : "r" (pstate));
563                                 if (unlikely(need_more)) {
564                                         int i, this_cnt = 0;
565                                         for (i = 0; i < cnt; i++) {
566                                                 if (cpu_list[i] == 0xffff)
567                                                         continue;
568                                                 cpu_list[i] = 0xffff;
569                                                 this_cnt++;
570                                                 if (this_cnt == 32)
571                                                         break;
572                                         }
573                                         goto retry;
574                                 }
575                                 return;
576                         }
577                         if (!--stuck)
578                                 break;
579                 } while (dispatch_stat & busy_mask);
580
581                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
582                                      : : "r" (pstate));
583
584                 if (dispatch_stat & busy_mask) {
585                         /* Busy bits will not clear, continue instead
586                          * of freezing up on this cpu.
587                          */
588                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
589                                smp_processor_id(), dispatch_stat);
590                 } else {
591                         int i, this_busy_nack = 0;
592
593                         /* Delay some random time with interrupts enabled
594                          * to prevent deadlock.
595                          */
596                         udelay(2 * nack_busy_id);
597
598                         /* Clear out the mask bits for cpus which did not
599                          * NACK us.
600                          */
601                         for (i = 0; i < cnt; i++) {
602                                 u64 check_mask, nr;
603
604                                 nr = cpu_list[i];
605                                 if (nr == 0xffff)
606                                         continue;
607
608                                 if (is_jbus)
609                                         check_mask = (0x2UL << (2*nr));
610                                 else
611                                         check_mask = (0x2UL <<
612                                                       this_busy_nack);
613                                 if ((dispatch_stat & check_mask) == 0)
614                                         cpu_list[i] = 0xffff;
615                                 this_busy_nack += 2;
616                                 if (this_busy_nack == 64)
617                                         break;
618                         }
619
620                         goto retry;
621                 }
622         }
623 }
624
625 /* Multi-cpu list version.  */
626 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
627 {
628         int retries, this_cpu, prev_sent, i, saw_cpu_error;
629         unsigned long status;
630         u16 *cpu_list;
631
632         this_cpu = smp_processor_id();
633
634         cpu_list = __va(tb->cpu_list_pa);
635
636         saw_cpu_error = 0;
637         retries = 0;
638         prev_sent = 0;
639         do {
640                 int forward_progress, n_sent;
641
642                 status = sun4v_cpu_mondo_send(cnt,
643                                               tb->cpu_list_pa,
644                                               tb->cpu_mondo_block_pa);
645
646                 /* HV_EOK means all cpus received the xcall, we're done.  */
647                 if (likely(status == HV_EOK))
648                         break;
649
650                 /* First, see if we made any forward progress.
651                  *
652                  * The hypervisor indicates successful sends by setting
653                  * cpu list entries to the value 0xffff.
654                  */
655                 n_sent = 0;
656                 for (i = 0; i < cnt; i++) {
657                         if (likely(cpu_list[i] == 0xffff))
658                                 n_sent++;
659                 }
660
661                 forward_progress = 0;
662                 if (n_sent > prev_sent)
663                         forward_progress = 1;
664
665                 prev_sent = n_sent;
666
667                 /* If we get a HV_ECPUERROR, then one or more of the cpus
668                  * in the list are in error state.  Use the cpu_state()
669                  * hypervisor call to find out which cpus are in error state.
670                  */
671                 if (unlikely(status == HV_ECPUERROR)) {
672                         for (i = 0; i < cnt; i++) {
673                                 long err;
674                                 u16 cpu;
675
676                                 cpu = cpu_list[i];
677                                 if (cpu == 0xffff)
678                                         continue;
679
680                                 err = sun4v_cpu_state(cpu);
681                                 if (err == HV_CPU_STATE_ERROR) {
682                                         saw_cpu_error = (cpu + 1);
683                                         cpu_list[i] = 0xffff;
684                                 }
685                         }
686                 } else if (unlikely(status != HV_EWOULDBLOCK))
687                         goto fatal_mondo_error;
688
689                 /* Don't bother rewriting the CPU list, just leave the
690                  * 0xffff and non-0xffff entries in there and the
691                  * hypervisor will do the right thing.
692                  *
693                  * Only advance timeout state if we didn't make any
694                  * forward progress.
695                  */
696                 if (unlikely(!forward_progress)) {
697                         if (unlikely(++retries > 10000))
698                                 goto fatal_mondo_timeout;
699
700                         /* Delay a little bit to let other cpus catch up
701                          * on their cpu mondo queue work.
702                          */
703                         udelay(2 * cnt);
704                 }
705         } while (1);
706
707         if (unlikely(saw_cpu_error))
708                 goto fatal_mondo_cpu_error;
709
710         return;
711
712 fatal_mondo_cpu_error:
713         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
714                "(including %d) were in error state\n",
715                this_cpu, saw_cpu_error - 1);
716         return;
717
718 fatal_mondo_timeout:
719         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
720                " progress after %d retries.\n",
721                this_cpu, retries);
722         goto dump_cpu_list_and_out;
723
724 fatal_mondo_error:
725         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
726                this_cpu, status);
727         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
728                "mondo_block_pa(%lx)\n",
729                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
730
731 dump_cpu_list_and_out:
732         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
733         for (i = 0; i < cnt; i++)
734                 printk("%u ", cpu_list[i]);
735         printk("]\n");
736 }
737
738 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
739
740 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
741 {
742         struct trap_per_cpu *tb;
743         int this_cpu, i, cnt;
744         unsigned long flags;
745         u16 *cpu_list;
746         u64 *mondo;
747
748         /* We have to do this whole thing with interrupts fully disabled.
749          * Otherwise if we send an xcall from interrupt context it will
750          * corrupt both our mondo block and cpu list state.
751          *
752          * One consequence of this is that we cannot use timeout mechanisms
753          * that depend upon interrupts being delivered locally.  So, for
754          * example, we cannot sample jiffies and expect it to advance.
755          *
756          * Fortunately, udelay() uses %stick/%tick so we can use that.
757          */
758         local_irq_save(flags);
759
760         this_cpu = smp_processor_id();
761         tb = &trap_block[this_cpu];
762
763         mondo = __va(tb->cpu_mondo_block_pa);
764         mondo[0] = data0;
765         mondo[1] = data1;
766         mondo[2] = data2;
767         wmb();
768
769         cpu_list = __va(tb->cpu_list_pa);
770
771         /* Setup the initial cpu list.  */
772         cnt = 0;
773         for_each_cpu(i, mask) {
774                 if (i == this_cpu || !cpu_online(i))
775                         continue;
776                 cpu_list[cnt++] = i;
777         }
778
779         if (cnt)
780                 xcall_deliver_impl(tb, cnt);
781
782         local_irq_restore(flags);
783 }
784
785 /* Send cross call to all processors mentioned in MASK_P
786  * except self.  Really, there are only two cases currently,
787  * "cpu_online_mask" and "mm_cpumask(mm)".
788  */
789 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
790 {
791         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
792
793         xcall_deliver(data0, data1, data2, mask);
794 }
795
796 /* Send cross call to all processors except self. */
797 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
798 {
799         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
800 }
801
802 extern unsigned long xcall_sync_tick;
803
804 static void smp_start_sync_tick_client(int cpu)
805 {
806         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
807                       cpumask_of(cpu));
808 }
809
810 extern unsigned long xcall_call_function;
811
812 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
813 {
814         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
815 }
816
817 extern unsigned long xcall_call_function_single;
818
819 void arch_send_call_function_single_ipi(int cpu)
820 {
821         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
822                       cpumask_of(cpu));
823 }
824
825 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
826 {
827         clear_softint(1 << irq);
828         irq_enter();
829         generic_smp_call_function_interrupt();
830         irq_exit();
831 }
832
833 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
834 {
835         clear_softint(1 << irq);
836         irq_enter();
837         generic_smp_call_function_single_interrupt();
838         irq_exit();
839 }
840
841 static void tsb_sync(void *info)
842 {
843         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
844         struct mm_struct *mm = info;
845
846         /* It is not valid to test "current->active_mm == mm" here.
847          *
848          * The value of "current" is not changed atomically with
849          * switch_mm().  But that's OK, we just need to check the
850          * current cpu's trap block PGD physical address.
851          */
852         if (tp->pgd_paddr == __pa(mm->pgd))
853                 tsb_context_switch(mm);
854 }
855
856 void smp_tsb_sync(struct mm_struct *mm)
857 {
858         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
859 }
860
861 extern unsigned long xcall_flush_tlb_mm;
862 extern unsigned long xcall_flush_tlb_page;
863 extern unsigned long xcall_flush_tlb_kernel_range;
864 extern unsigned long xcall_fetch_glob_regs;
865 extern unsigned long xcall_fetch_glob_pmu;
866 extern unsigned long xcall_fetch_glob_pmu_n4;
867 extern unsigned long xcall_receive_signal;
868 extern unsigned long xcall_new_mmu_context_version;
869 #ifdef CONFIG_KGDB
870 extern unsigned long xcall_kgdb_capture;
871 #endif
872
873 #ifdef DCACHE_ALIASING_POSSIBLE
874 extern unsigned long xcall_flush_dcache_page_cheetah;
875 #endif
876 extern unsigned long xcall_flush_dcache_page_spitfire;
877
878 static inline void __local_flush_dcache_page(struct page *page)
879 {
880 #ifdef DCACHE_ALIASING_POSSIBLE
881         __flush_dcache_page(page_address(page),
882                             ((tlb_type == spitfire) &&
883                              page_mapping(page) != NULL));
884 #else
885         if (page_mapping(page) != NULL &&
886             tlb_type == spitfire)
887                 __flush_icache_page(__pa(page_address(page)));
888 #endif
889 }
890
891 void smp_flush_dcache_page_impl(struct page *page, int cpu)
892 {
893         int this_cpu;
894
895         if (tlb_type == hypervisor)
896                 return;
897
898 #ifdef CONFIG_DEBUG_DCFLUSH
899         atomic_inc(&dcpage_flushes);
900 #endif
901
902         this_cpu = get_cpu();
903
904         if (cpu == this_cpu) {
905                 __local_flush_dcache_page(page);
906         } else if (cpu_online(cpu)) {
907                 void *pg_addr = page_address(page);
908                 u64 data0 = 0;
909
910                 if (tlb_type == spitfire) {
911                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
912                         if (page_mapping(page) != NULL)
913                                 data0 |= ((u64)1 << 32);
914                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
915 #ifdef DCACHE_ALIASING_POSSIBLE
916                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
917 #endif
918                 }
919                 if (data0) {
920                         xcall_deliver(data0, __pa(pg_addr),
921                                       (u64) pg_addr, cpumask_of(cpu));
922 #ifdef CONFIG_DEBUG_DCFLUSH
923                         atomic_inc(&dcpage_flushes_xcall);
924 #endif
925                 }
926         }
927
928         put_cpu();
929 }
930
931 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932 {
933         void *pg_addr;
934         u64 data0;
935
936         if (tlb_type == hypervisor)
937                 return;
938
939         preempt_disable();
940
941 #ifdef CONFIG_DEBUG_DCFLUSH
942         atomic_inc(&dcpage_flushes);
943 #endif
944         data0 = 0;
945         pg_addr = page_address(page);
946         if (tlb_type == spitfire) {
947                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948                 if (page_mapping(page) != NULL)
949                         data0 |= ((u64)1 << 32);
950         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951 #ifdef DCACHE_ALIASING_POSSIBLE
952                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953 #endif
954         }
955         if (data0) {
956                 xcall_deliver(data0, __pa(pg_addr),
957                               (u64) pg_addr, cpu_online_mask);
958 #ifdef CONFIG_DEBUG_DCFLUSH
959                 atomic_inc(&dcpage_flushes_xcall);
960 #endif
961         }
962         __local_flush_dcache_page(page);
963
964         preempt_enable();
965 }
966
967 #ifdef CONFIG_KGDB
968 void kgdb_roundup_cpus(unsigned long flags)
969 {
970         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
971 }
972 #endif
973
974 void smp_fetch_global_regs(void)
975 {
976         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
977 }
978
979 void smp_fetch_global_pmu(void)
980 {
981         if (tlb_type == hypervisor &&
982             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
983                 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
984         else
985                 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
986 }
987
988 /* We know that the window frames of the user have been flushed
989  * to the stack before we get here because all callers of us
990  * are flush_tlb_*() routines, and these run after flush_cache_*()
991  * which performs the flushw.
992  *
993  * The SMP TLB coherency scheme we use works as follows:
994  *
995  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
996  *    space has (potentially) executed on, this is the heuristic
997  *    we use to avoid doing cross calls.
998  *
999  *    Also, for flushing from kswapd and also for clones, we
1000  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1001  *
1002  * 2) TLB context numbers are shared globally across all processors
1003  *    in the system, this allows us to play several games to avoid
1004  *    cross calls.
1005  *
1006  *    One invariant is that when a cpu switches to a process, and
1007  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1008  *    current cpu's bit set, that tlb context is flushed locally.
1009  *
1010  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1011  *    cross calls when we want to flush the currently running process's
1012  *    tlb state.  This is done by clearing all cpu bits except the current
1013  *    processor's in current->mm->cpu_vm_mask and performing the
1014  *    flush locally only.  This will force any subsequent cpus which run
1015  *    this task to flush the context from the local tlb if the process
1016  *    migrates to another cpu (again).
1017  *
1018  * 3) For shared address spaces (threads) and swapping we bite the
1019  *    bullet for most cases and perform the cross call (but only to
1020  *    the cpus listed in cpu_vm_mask).
1021  *
1022  *    The performance gain from "optimizing" away the cross call for threads is
1023  *    questionable (in theory the big win for threads is the massive sharing of
1024  *    address space state across processors).
1025  */
1026
1027 /* This currently is only used by the hugetlb arch pre-fault
1028  * hook on UltraSPARC-III+ and later when changing the pagesize
1029  * bits of the context register for an address space.
1030  */
1031 void smp_flush_tlb_mm(struct mm_struct *mm)
1032 {
1033         u32 ctx = CTX_HWBITS(mm->context);
1034         int cpu = get_cpu();
1035
1036         if (atomic_read(&mm->mm_users) == 1) {
1037                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1038                 goto local_flush_and_out;
1039         }
1040
1041         smp_cross_call_masked(&xcall_flush_tlb_mm,
1042                               ctx, 0, 0,
1043                               mm_cpumask(mm));
1044
1045 local_flush_and_out:
1046         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1047
1048         put_cpu();
1049 }
1050
1051 struct tlb_pending_info {
1052         unsigned long ctx;
1053         unsigned long nr;
1054         unsigned long *vaddrs;
1055 };
1056
1057 static void tlb_pending_func(void *info)
1058 {
1059         struct tlb_pending_info *t = info;
1060
1061         __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1062 }
1063
1064 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1065 {
1066         u32 ctx = CTX_HWBITS(mm->context);
1067         struct tlb_pending_info info;
1068         int cpu = get_cpu();
1069
1070         info.ctx = ctx;
1071         info.nr = nr;
1072         info.vaddrs = vaddrs;
1073
1074         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076         else
1077                 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1078                                        &info, 1);
1079
1080         __flush_tlb_pending(ctx, nr, vaddrs);
1081
1082         put_cpu();
1083 }
1084
1085 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1086 {
1087         unsigned long context = CTX_HWBITS(mm->context);
1088         int cpu = get_cpu();
1089
1090         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1091                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1092         else
1093                 smp_cross_call_masked(&xcall_flush_tlb_page,
1094                                       context, vaddr, 0,
1095                                       mm_cpumask(mm));
1096         __flush_tlb_page(context, vaddr);
1097
1098         put_cpu();
1099 }
1100
1101 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1102 {
1103         start &= PAGE_MASK;
1104         end    = PAGE_ALIGN(end);
1105         if (start != end) {
1106                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1107                                0, start, end);
1108
1109                 __flush_tlb_kernel_range(start, end);
1110         }
1111 }
1112
1113 /* CPU capture. */
1114 /* #define CAPTURE_DEBUG */
1115 extern unsigned long xcall_capture;
1116
1117 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1118 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1119 static unsigned long penguins_are_doing_time;
1120
1121 void smp_capture(void)
1122 {
1123         int result = atomic_add_return(1, &smp_capture_depth);
1124
1125         if (result == 1) {
1126                 int ncpus = num_online_cpus();
1127
1128 #ifdef CAPTURE_DEBUG
1129                 printk("CPU[%d]: Sending penguins to jail...",
1130                        smp_processor_id());
1131 #endif
1132                 penguins_are_doing_time = 1;
1133                 atomic_inc(&smp_capture_registry);
1134                 smp_cross_call(&xcall_capture, 0, 0, 0);
1135                 while (atomic_read(&smp_capture_registry) != ncpus)
1136                         rmb();
1137 #ifdef CAPTURE_DEBUG
1138                 printk("done\n");
1139 #endif
1140         }
1141 }
1142
1143 void smp_release(void)
1144 {
1145         if (atomic_dec_and_test(&smp_capture_depth)) {
1146 #ifdef CAPTURE_DEBUG
1147                 printk("CPU[%d]: Giving pardon to "
1148                        "imprisoned penguins\n",
1149                        smp_processor_id());
1150 #endif
1151                 penguins_are_doing_time = 0;
1152                 membar_safe("#StoreLoad");
1153                 atomic_dec(&smp_capture_registry);
1154         }
1155 }
1156
1157 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1158  * set, so they can service tlb flush xcalls...
1159  */
1160 extern void prom_world(int);
1161
1162 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1163 {
1164         clear_softint(1 << irq);
1165
1166         preempt_disable();
1167
1168         __asm__ __volatile__("flushw");
1169         prom_world(1);
1170         atomic_inc(&smp_capture_registry);
1171         membar_safe("#StoreLoad");
1172         while (penguins_are_doing_time)
1173                 rmb();
1174         atomic_dec(&smp_capture_registry);
1175         prom_world(0);
1176
1177         preempt_enable();
1178 }
1179
1180 /* /proc/profile writes can call this, don't __init it please. */
1181 int setup_profiling_timer(unsigned int multiplier)
1182 {
1183         return -EINVAL;
1184 }
1185
1186 void __init smp_prepare_cpus(unsigned int max_cpus)
1187 {
1188 }
1189
1190 void smp_prepare_boot_cpu(void)
1191 {
1192 }
1193
1194 void __init smp_setup_processor_id(void)
1195 {
1196         if (tlb_type == spitfire)
1197                 xcall_deliver_impl = spitfire_xcall_deliver;
1198         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1199                 xcall_deliver_impl = cheetah_xcall_deliver;
1200         else
1201                 xcall_deliver_impl = hypervisor_xcall_deliver;
1202 }
1203
1204 void __init smp_fill_in_cpu_possible_map(void)
1205 {
1206         int possible_cpus = num_possible_cpus();
1207         int i;
1208
1209         if (possible_cpus > nr_cpu_ids)
1210                 possible_cpus = nr_cpu_ids;
1211
1212         for (i = 0; i < possible_cpus; i++)
1213                 set_cpu_possible(i, true);
1214         for (; i < NR_CPUS; i++)
1215                 set_cpu_possible(i, false);
1216 }
1217
1218 void smp_fill_in_sib_core_maps(void)
1219 {
1220         unsigned int i;
1221
1222         for_each_present_cpu(i) {
1223                 unsigned int j;
1224
1225                 cpumask_clear(&cpu_core_map[i]);
1226                 if (cpu_data(i).core_id == 0) {
1227                         cpumask_set_cpu(i, &cpu_core_map[i]);
1228                         continue;
1229                 }
1230
1231                 for_each_present_cpu(j) {
1232                         if (cpu_data(i).core_id ==
1233                             cpu_data(j).core_id)
1234                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1235                 }
1236         }
1237
1238         for_each_present_cpu(i)  {
1239                 unsigned int j;
1240
1241                 for_each_present_cpu(j)  {
1242                         if (cpu_data(i).max_cache_id ==
1243                             cpu_data(j).max_cache_id)
1244                                 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1245
1246                         if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1247                                 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1248                 }
1249         }
1250
1251         for_each_present_cpu(i) {
1252                 unsigned int j;
1253
1254                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1255                 if (cpu_data(i).proc_id == -1) {
1256                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1257                         continue;
1258                 }
1259
1260                 for_each_present_cpu(j) {
1261                         if (cpu_data(i).proc_id ==
1262                             cpu_data(j).proc_id)
1263                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1264                 }
1265         }
1266 }
1267
1268 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1269 {
1270         int ret = smp_boot_one_cpu(cpu, tidle);
1271
1272         if (!ret) {
1273                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1274                 while (!cpu_online(cpu))
1275                         mb();
1276                 if (!cpu_online(cpu)) {
1277                         ret = -ENODEV;
1278                 } else {
1279                         /* On SUN4V, writes to %tick and %stick are
1280                          * not allowed.
1281                          */
1282                         if (tlb_type != hypervisor)
1283                                 smp_synchronize_one_tick(cpu);
1284                 }
1285         }
1286         return ret;
1287 }
1288
1289 #ifdef CONFIG_HOTPLUG_CPU
1290 void cpu_play_dead(void)
1291 {
1292         int cpu = smp_processor_id();
1293         unsigned long pstate;
1294
1295         idle_task_exit();
1296
1297         if (tlb_type == hypervisor) {
1298                 struct trap_per_cpu *tb = &trap_block[cpu];
1299
1300                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1301                                 tb->cpu_mondo_pa, 0);
1302                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1303                                 tb->dev_mondo_pa, 0);
1304                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1305                                 tb->resum_mondo_pa, 0);
1306                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1307                                 tb->nonresum_mondo_pa, 0);
1308         }
1309
1310         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1311         membar_safe("#Sync");
1312
1313         local_irq_disable();
1314
1315         __asm__ __volatile__(
1316                 "rdpr   %%pstate, %0\n\t"
1317                 "wrpr   %0, %1, %%pstate"
1318                 : "=r" (pstate)
1319                 : "i" (PSTATE_IE));
1320
1321         while (1)
1322                 barrier();
1323 }
1324
1325 int __cpu_disable(void)
1326 {
1327         int cpu = smp_processor_id();
1328         cpuinfo_sparc *c;
1329         int i;
1330
1331         for_each_cpu(i, &cpu_core_map[cpu])
1332                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1333         cpumask_clear(&cpu_core_map[cpu]);
1334
1335         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1336                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1337         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1338
1339         c = &cpu_data(cpu);
1340
1341         c->core_id = 0;
1342         c->proc_id = -1;
1343
1344         smp_wmb();
1345
1346         /* Make sure no interrupts point to this cpu.  */
1347         fixup_irqs();
1348
1349         local_irq_enable();
1350         mdelay(1);
1351         local_irq_disable();
1352
1353         set_cpu_online(cpu, false);
1354
1355         cpu_map_rebuild();
1356
1357         return 0;
1358 }
1359
1360 void __cpu_die(unsigned int cpu)
1361 {
1362         int i;
1363
1364         for (i = 0; i < 100; i++) {
1365                 smp_rmb();
1366                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1367                         break;
1368                 msleep(100);
1369         }
1370         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1371                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1372         } else {
1373 #if defined(CONFIG_SUN_LDOMS)
1374                 unsigned long hv_err;
1375                 int limit = 100;
1376
1377                 do {
1378                         hv_err = sun4v_cpu_stop(cpu);
1379                         if (hv_err == HV_EOK) {
1380                                 set_cpu_present(cpu, false);
1381                                 break;
1382                         }
1383                 } while (--limit > 0);
1384                 if (limit <= 0) {
1385                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1386                                hv_err);
1387                 }
1388 #endif
1389         }
1390 }
1391 #endif
1392
1393 void __init smp_cpus_done(unsigned int max_cpus)
1394 {
1395 }
1396
1397 void smp_send_reschedule(int cpu)
1398 {
1399         if (cpu == smp_processor_id()) {
1400                 WARN_ON_ONCE(preemptible());
1401                 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1402         } else {
1403                 xcall_deliver((u64) &xcall_receive_signal,
1404                               0, 0, cpumask_of(cpu));
1405         }
1406 }
1407
1408 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1409 {
1410         clear_softint(1 << irq);
1411         scheduler_ipi();
1412 }
1413
1414 static void stop_this_cpu(void *dummy)
1415 {
1416         set_cpu_online(smp_processor_id(), false);
1417         prom_stopself();
1418 }
1419
1420 void smp_send_stop(void)
1421 {
1422         int cpu;
1423
1424         if (tlb_type == hypervisor) {
1425                 int this_cpu = smp_processor_id();
1426 #ifdef CONFIG_SERIAL_SUNHV
1427                 sunhv_migrate_hvcons_irq(this_cpu);
1428 #endif
1429                 for_each_online_cpu(cpu) {
1430                         if (cpu == this_cpu)
1431                                 continue;
1432
1433                         set_cpu_online(cpu, false);
1434 #ifdef CONFIG_SUN_LDOMS
1435                         if (ldom_domaining_enabled) {
1436                                 unsigned long hv_err;
1437                                 hv_err = sun4v_cpu_stop(cpu);
1438                                 if (hv_err)
1439                                         printk(KERN_ERR "sun4v_cpu_stop() "
1440                                                "failed err=%lu\n", hv_err);
1441                         } else
1442 #endif
1443                                 prom_stopcpu_cpuid(cpu);
1444                 }
1445         } else
1446                 smp_call_function(stop_this_cpu, NULL, 0);
1447 }
1448
1449 /**
1450  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1451  * @cpu: cpu to allocate for
1452  * @size: size allocation in bytes
1453  * @align: alignment
1454  *
1455  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1456  * does the right thing for NUMA regardless of the current
1457  * configuration.
1458  *
1459  * RETURNS:
1460  * Pointer to the allocated area on success, NULL on failure.
1461  */
1462 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1463                                         size_t align)
1464 {
1465         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1466 #ifdef CONFIG_NEED_MULTIPLE_NODES
1467         int node = cpu_to_node(cpu);
1468         void *ptr;
1469
1470         if (!node_online(node) || !NODE_DATA(node)) {
1471                 ptr = __alloc_bootmem(size, align, goal);
1472                 pr_info("cpu %d has no node %d or node-local memory\n",
1473                         cpu, node);
1474                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1475                          cpu, size, __pa(ptr));
1476         } else {
1477                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1478                                            size, align, goal);
1479                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1480                          "%016lx\n", cpu, size, node, __pa(ptr));
1481         }
1482         return ptr;
1483 #else
1484         return __alloc_bootmem(size, align, goal);
1485 #endif
1486 }
1487
1488 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1489 {
1490         free_bootmem(__pa(ptr), size);
1491 }
1492
1493 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1494 {
1495         if (cpu_to_node(from) == cpu_to_node(to))
1496                 return LOCAL_DISTANCE;
1497         else
1498                 return REMOTE_DISTANCE;
1499 }
1500
1501 static void __init pcpu_populate_pte(unsigned long addr)
1502 {
1503         pgd_t *pgd = pgd_offset_k(addr);
1504         pud_t *pud;
1505         pmd_t *pmd;
1506
1507         if (pgd_none(*pgd)) {
1508                 pud_t *new;
1509
1510                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1511                 pgd_populate(&init_mm, pgd, new);
1512         }
1513
1514         pud = pud_offset(pgd, addr);
1515         if (pud_none(*pud)) {
1516                 pmd_t *new;
1517
1518                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1519                 pud_populate(&init_mm, pud, new);
1520         }
1521
1522         pmd = pmd_offset(pud, addr);
1523         if (!pmd_present(*pmd)) {
1524                 pte_t *new;
1525
1526                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1527                 pmd_populate_kernel(&init_mm, pmd, new);
1528         }
1529 }
1530
1531 void __init setup_per_cpu_areas(void)
1532 {
1533         unsigned long delta;
1534         unsigned int cpu;
1535         int rc = -EINVAL;
1536
1537         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1538                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1539                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1540                                             pcpu_cpu_distance,
1541                                             pcpu_alloc_bootmem,
1542                                             pcpu_free_bootmem);
1543                 if (rc)
1544                         pr_warning("PERCPU: %s allocator failed (%d), "
1545                                    "falling back to page size\n",
1546                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1547         }
1548         if (rc < 0)
1549                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550                                            pcpu_alloc_bootmem,
1551                                            pcpu_free_bootmem,
1552                                            pcpu_populate_pte);
1553         if (rc < 0)
1554                 panic("cannot initialize percpu area (err=%d)", rc);
1555
1556         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1557         for_each_possible_cpu(cpu)
1558                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1559
1560         /* Setup %g5 for the boot cpu.  */
1561         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1562
1563         of_fill_in_cpu_data();
1564         if (tlb_type == hypervisor)
1565                 mdesc_fill_in_cpu_data(cpu_all_mask);
1566 }