Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[sfrench/cifs-2.6.git] / arch / sparc / kernel / cpumap.c
1 /* cpumap.c: used for optimizing CPU assignment
2  *
3  * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com>
4  */
5
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/cpumask.h>
11 #include <linux/spinlock.h>
12 #include <asm/cpudata.h>
13 #include "cpumap.h"
14
15
16 enum {
17         CPUINFO_LVL_ROOT = 0,
18         CPUINFO_LVL_NODE,
19         CPUINFO_LVL_CORE,
20         CPUINFO_LVL_PROC,
21         CPUINFO_LVL_MAX,
22 };
23
24 enum {
25         ROVER_NO_OP              = 0,
26         /* Increment rover every time level is visited */
27         ROVER_INC_ON_VISIT       = 1 << 0,
28         /* Increment parent's rover every time rover wraps around */
29         ROVER_INC_PARENT_ON_LOOP = 1 << 1,
30 };
31
32 struct cpuinfo_node {
33         int id;
34         int level;
35         int num_cpus;    /* Number of CPUs in this hierarchy */
36         int parent_index;
37         int child_start; /* Array index of the first child node */
38         int child_end;   /* Array index of the last child node */
39         int rover;       /* Child node iterator */
40 };
41
42 struct cpuinfo_level {
43         int start_index; /* Index of first node of a level in a cpuinfo tree */
44         int end_index;   /* Index of last node of a level in a cpuinfo tree */
45         int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */
46 };
47
48 struct cpuinfo_tree {
49         int total_nodes;
50
51         /* Offsets into nodes[] for each level of the tree */
52         struct cpuinfo_level level[CPUINFO_LVL_MAX];
53         struct cpuinfo_node  nodes[0];
54 };
55
56
57 static struct cpuinfo_tree *cpuinfo_tree;
58
59 static u16 cpu_distribution_map[NR_CPUS];
60 static DEFINE_SPINLOCK(cpu_map_lock);
61
62
63 /* Niagara optimized cpuinfo tree traversal. */
64 static const int niagara_iterate_method[] = {
65         [CPUINFO_LVL_ROOT] = ROVER_NO_OP,
66
67         /* Strands (or virtual CPUs) within a core may not run concurrently
68          * on the Niagara, as instruction pipeline(s) are shared.  Distribute
69          * work to strands in different cores first for better concurrency.
70          * Go to next NUMA node when all cores are used.
71          */
72         [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
73
74         /* Strands are grouped together by proc_id in cpuinfo_sparc, i.e.
75          * a proc_id represents an instruction pipeline.  Distribute work to
76          * strands in different proc_id groups if the core has multiple
77          * instruction pipelines (e.g. the Niagara 2/2+ has two).
78          */
79         [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
80
81         /* Pick the next strand in the proc_id group. */
82         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
83 };
84
85 /* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA
86  * nodes.
87  */
88 static const int generic_iterate_method[] = {
89         [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
90         [CPUINFO_LVL_NODE] = ROVER_NO_OP,
91         [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
92         [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
93 };
94
95
96 static int cpuinfo_id(int cpu, int level)
97 {
98         int id;
99
100         switch (level) {
101         case CPUINFO_LVL_ROOT:
102                 id = 0;
103                 break;
104         case CPUINFO_LVL_NODE:
105                 id = cpu_to_node(cpu);
106                 break;
107         case CPUINFO_LVL_CORE:
108                 id = cpu_data(cpu).core_id;
109                 break;
110         case CPUINFO_LVL_PROC:
111                 id = cpu_data(cpu).proc_id;
112                 break;
113         default:
114                 id = -EINVAL;
115         }
116         return id;
117 }
118
119 /*
120  * Enumerate the CPU information in __cpu_data to determine the start index,
121  * end index, and number of nodes for each level in the cpuinfo tree.  The
122  * total number of cpuinfo nodes required to build the tree is returned.
123  */
124 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
125 {
126         int prev_id[CPUINFO_LVL_MAX];
127         int i, n, num_nodes;
128
129         for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
130                 struct cpuinfo_level *lv = &tree_level[i];
131
132                 prev_id[i] = -1;
133                 lv->start_index = lv->end_index = lv->num_nodes = 0;
134         }
135
136         num_nodes = 1; /* Include the root node */
137
138         for (i = 0; i < num_possible_cpus(); i++) {
139                 if (!cpu_online(i))
140                         continue;
141
142                 n = cpuinfo_id(i, CPUINFO_LVL_NODE);
143                 if (n > prev_id[CPUINFO_LVL_NODE]) {
144                         tree_level[CPUINFO_LVL_NODE].num_nodes++;
145                         prev_id[CPUINFO_LVL_NODE] = n;
146                         num_nodes++;
147                 }
148                 n = cpuinfo_id(i, CPUINFO_LVL_CORE);
149                 if (n > prev_id[CPUINFO_LVL_CORE]) {
150                         tree_level[CPUINFO_LVL_CORE].num_nodes++;
151                         prev_id[CPUINFO_LVL_CORE] = n;
152                         num_nodes++;
153                 }
154                 n = cpuinfo_id(i, CPUINFO_LVL_PROC);
155                 if (n > prev_id[CPUINFO_LVL_PROC]) {
156                         tree_level[CPUINFO_LVL_PROC].num_nodes++;
157                         prev_id[CPUINFO_LVL_PROC] = n;
158                         num_nodes++;
159                 }
160         }
161
162         tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
163
164         n = tree_level[CPUINFO_LVL_NODE].num_nodes;
165         tree_level[CPUINFO_LVL_NODE].start_index = 1;
166         tree_level[CPUINFO_LVL_NODE].end_index   = n;
167
168         n++;
169         tree_level[CPUINFO_LVL_CORE].start_index = n;
170         n += tree_level[CPUINFO_LVL_CORE].num_nodes;
171         tree_level[CPUINFO_LVL_CORE].end_index   = n - 1;
172
173         tree_level[CPUINFO_LVL_PROC].start_index = n;
174         n += tree_level[CPUINFO_LVL_PROC].num_nodes;
175         tree_level[CPUINFO_LVL_PROC].end_index   = n - 1;
176
177         return num_nodes;
178 }
179
180 /* Build a tree representation of the CPU hierarchy using the per CPU
181  * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are
182  * assumed to be sorted in ascending order based on node, core_id, and
183  * proc_id (in order of significance).
184  */
185 static struct cpuinfo_tree *build_cpuinfo_tree(void)
186 {
187         struct cpuinfo_tree *new_tree;
188         struct cpuinfo_node *node;
189         struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
190         int num_cpus[CPUINFO_LVL_MAX];
191         int level_rover[CPUINFO_LVL_MAX];
192         int prev_id[CPUINFO_LVL_MAX];
193         int n, id, cpu, prev_cpu, last_cpu, level;
194
195         n = enumerate_cpuinfo_nodes(tmp_level);
196
197         new_tree = kzalloc(sizeof(struct cpuinfo_tree) +
198                            (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC);
199         if (!new_tree)
200                 return NULL;
201
202         new_tree->total_nodes = n;
203         memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
204
205         prev_cpu = cpu = first_cpu(cpu_online_map);
206
207         /* Initialize all levels in the tree with the first CPU */
208         for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
209                 n = new_tree->level[level].start_index;
210
211                 level_rover[level] = n;
212                 node = &new_tree->nodes[n];
213
214                 id = cpuinfo_id(cpu, level);
215                 if (unlikely(id < 0)) {
216                         kfree(new_tree);
217                         return NULL;
218                 }
219                 node->id = id;
220                 node->level = level;
221                 node->num_cpus = 1;
222
223                 node->parent_index = (level > CPUINFO_LVL_ROOT)
224                     ? new_tree->level[level - 1].start_index : -1;
225
226                 node->child_start = node->child_end = node->rover =
227                     (level == CPUINFO_LVL_PROC)
228                     ? cpu : new_tree->level[level + 1].start_index;
229
230                 prev_id[level] = node->id;
231                 num_cpus[level] = 1;
232         }
233
234         for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
235                 if (cpu_online(last_cpu))
236                         break;
237         }
238
239         while (++cpu <= last_cpu) {
240                 if (!cpu_online(cpu))
241                         continue;
242
243                 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
244                      level--) {
245                         id = cpuinfo_id(cpu, level);
246                         if (unlikely(id < 0)) {
247                                 kfree(new_tree);
248                                 return NULL;
249                         }
250
251                         if ((id != prev_id[level]) || (cpu == last_cpu)) {
252                                 prev_id[level] = id;
253                                 node = &new_tree->nodes[level_rover[level]];
254                                 node->num_cpus = num_cpus[level];
255                                 num_cpus[level] = 1;
256
257                                 if (cpu == last_cpu)
258                                         node->num_cpus++;
259
260                                 /* Connect tree node to parent */
261                                 if (level == CPUINFO_LVL_ROOT)
262                                         node->parent_index = -1;
263                                 else
264                                         node->parent_index =
265                                             level_rover[level - 1];
266
267                                 if (level == CPUINFO_LVL_PROC) {
268                                         node->child_end =
269                                             (cpu == last_cpu) ? cpu : prev_cpu;
270                                 } else {
271                                         node->child_end =
272                                             level_rover[level + 1] - 1;
273                                 }
274
275                                 /* Initialize the next node in the same level */
276                                 n = ++level_rover[level];
277                                 if (n <= new_tree->level[level].end_index) {
278                                         node = &new_tree->nodes[n];
279                                         node->id = id;
280                                         node->level = level;
281
282                                         /* Connect node to child */
283                                         node->child_start = node->child_end =
284                                         node->rover =
285                                             (level == CPUINFO_LVL_PROC)
286                                             ? cpu : level_rover[level + 1];
287                                 }
288                         } else
289                                 num_cpus[level]++;
290                 }
291                 prev_cpu = cpu;
292         }
293
294         return new_tree;
295 }
296
297 static void increment_rover(struct cpuinfo_tree *t, int node_index,
298                             int root_index, const int *rover_inc_table)
299 {
300         struct cpuinfo_node *node = &t->nodes[node_index];
301         int top_level, level;
302
303         top_level = t->nodes[root_index].level;
304         for (level = node->level; level >= top_level; level--) {
305                 node->rover++;
306                 if (node->rover <= node->child_end)
307                         return;
308
309                 node->rover = node->child_start;
310                 /* If parent's rover does not need to be adjusted, stop here. */
311                 if ((level == top_level) ||
312                     !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
313                         return;
314
315                 node = &t->nodes[node->parent_index];
316         }
317 }
318
319 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
320 {
321         const int *rover_inc_table;
322         int level, new_index, index = root_index;
323
324         switch (sun4v_chip_type) {
325         case SUN4V_CHIP_NIAGARA1:
326         case SUN4V_CHIP_NIAGARA2:
327                 rover_inc_table = niagara_iterate_method;
328                 break;
329         default:
330                 rover_inc_table = generic_iterate_method;
331         }
332
333         for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
334              level++) {
335                 new_index = t->nodes[index].rover;
336                 if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
337                         increment_rover(t, index, root_index, rover_inc_table);
338
339                 index = new_index;
340         }
341         return index;
342 }
343
344 static void _cpu_map_rebuild(void)
345 {
346         int i;
347
348         if (cpuinfo_tree) {
349                 kfree(cpuinfo_tree);
350                 cpuinfo_tree = NULL;
351         }
352
353         cpuinfo_tree = build_cpuinfo_tree();
354         if (!cpuinfo_tree)
355                 return;
356
357         /* Build CPU distribution map that spans all online CPUs.  No need
358          * to check if the CPU is online, as that is done when the cpuinfo
359          * tree is being built.
360          */
361         for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
362                 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
363 }
364
365 /* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear
366  * round robin.
367  */
368 static int simple_map_to_cpu(unsigned int index)
369 {
370         int i, end, cpu_rover;
371
372         cpu_rover = 0;
373         end = index % num_online_cpus();
374         for (i = 0; i < num_possible_cpus(); i++) {
375                 if (cpu_online(cpu_rover)) {
376                         if (cpu_rover >= end)
377                                 return cpu_rover;
378
379                         cpu_rover++;
380                 }
381         }
382
383         /* Impossible, since num_online_cpus() <= num_possible_cpus() */
384         return first_cpu(cpu_online_map);
385 }
386
387 static int _map_to_cpu(unsigned int index)
388 {
389         struct cpuinfo_node *root_node;
390
391         if (unlikely(!cpuinfo_tree)) {
392                 _cpu_map_rebuild();
393                 if (!cpuinfo_tree)
394                         return simple_map_to_cpu(index);
395         }
396
397         root_node = &cpuinfo_tree->nodes[0];
398 #ifdef CONFIG_HOTPLUG_CPU
399         if (unlikely(root_node->num_cpus != num_online_cpus())) {
400                 _cpu_map_rebuild();
401                 if (!cpuinfo_tree)
402                         return simple_map_to_cpu(index);
403         }
404 #endif
405         return cpu_distribution_map[index % root_node->num_cpus];
406 }
407
408 int map_to_cpu(unsigned int index)
409 {
410         int mapped_cpu;
411         unsigned long flag;
412
413         spin_lock_irqsave(&cpu_map_lock, flag);
414         mapped_cpu = _map_to_cpu(index);
415
416 #ifdef CONFIG_HOTPLUG_CPU
417         while (unlikely(!cpu_online(mapped_cpu)))
418                 mapped_cpu = _map_to_cpu(index);
419 #endif
420         spin_unlock_irqrestore(&cpu_map_lock, flag);
421         return mapped_cpu;
422 }
423 EXPORT_SYMBOL(map_to_cpu);
424
425 void cpu_map_rebuild(void)
426 {
427         unsigned long flag;
428
429         spin_lock_irqsave(&cpu_map_lock, flag);
430         _cpu_map_rebuild();
431         spin_unlock_irqrestore(&cpu_map_lock, flag);
432 }