Merge branch 'linus' into core/objtool, to pick up dependent commits
[sfrench/cifs-2.6.git] / arch / s390 / mm / vmem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2006
4  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
5  */
6
7 #include <linux/bootmem.h>
8 #include <linux/pfn.h>
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/list.h>
12 #include <linux/hugetlb.h>
13 #include <linux/slab.h>
14 #include <linux/memblock.h>
15 #include <asm/cacheflush.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/set_memory.h>
22
23 static DEFINE_MUTEX(vmem_mutex);
24
25 struct memory_segment {
26         struct list_head list;
27         unsigned long start;
28         unsigned long size;
29 };
30
31 static LIST_HEAD(mem_segs);
32
33 static void __ref *vmem_alloc_pages(unsigned int order)
34 {
35         unsigned long size = PAGE_SIZE << order;
36
37         if (slab_is_available())
38                 return (void *)__get_free_pages(GFP_KERNEL, order);
39         return (void *) memblock_alloc(size, size);
40 }
41
42 void *vmem_crst_alloc(unsigned long val)
43 {
44         unsigned long *table;
45
46         table = vmem_alloc_pages(CRST_ALLOC_ORDER);
47         if (table)
48                 crst_table_init(table, val);
49         return table;
50 }
51
52 pte_t __ref *vmem_pte_alloc(void)
53 {
54         unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
55         pte_t *pte;
56
57         if (slab_is_available())
58                 pte = (pte_t *) page_table_alloc(&init_mm);
59         else
60                 pte = (pte_t *) memblock_alloc(size, size);
61         if (!pte)
62                 return NULL;
63         memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
64         return pte;
65 }
66
67 /*
68  * Add a physical memory range to the 1:1 mapping.
69  */
70 static int vmem_add_mem(unsigned long start, unsigned long size)
71 {
72         unsigned long pgt_prot, sgt_prot, r3_prot;
73         unsigned long pages4k, pages1m, pages2g;
74         unsigned long end = start + size;
75         unsigned long address = start;
76         pgd_t *pg_dir;
77         p4d_t *p4_dir;
78         pud_t *pu_dir;
79         pmd_t *pm_dir;
80         pte_t *pt_dir;
81         int ret = -ENOMEM;
82
83         pgt_prot = pgprot_val(PAGE_KERNEL);
84         sgt_prot = pgprot_val(SEGMENT_KERNEL);
85         r3_prot = pgprot_val(REGION3_KERNEL);
86         if (!MACHINE_HAS_NX) {
87                 pgt_prot &= ~_PAGE_NOEXEC;
88                 sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
89                 r3_prot &= ~_REGION_ENTRY_NOEXEC;
90         }
91         pages4k = pages1m = pages2g = 0;
92         while (address < end) {
93                 pg_dir = pgd_offset_k(address);
94                 if (pgd_none(*pg_dir)) {
95                         p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
96                         if (!p4_dir)
97                                 goto out;
98                         pgd_populate(&init_mm, pg_dir, p4_dir);
99                 }
100                 p4_dir = p4d_offset(pg_dir, address);
101                 if (p4d_none(*p4_dir)) {
102                         pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
103                         if (!pu_dir)
104                                 goto out;
105                         p4d_populate(&init_mm, p4_dir, pu_dir);
106                 }
107                 pu_dir = pud_offset(p4_dir, address);
108                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
109                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
110                      !debug_pagealloc_enabled()) {
111                         pud_val(*pu_dir) = address | r3_prot;
112                         address += PUD_SIZE;
113                         pages2g++;
114                         continue;
115                 }
116                 if (pud_none(*pu_dir)) {
117                         pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
118                         if (!pm_dir)
119                                 goto out;
120                         pud_populate(&init_mm, pu_dir, pm_dir);
121                 }
122                 pm_dir = pmd_offset(pu_dir, address);
123                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
124                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
125                     !debug_pagealloc_enabled()) {
126                         pmd_val(*pm_dir) = address | sgt_prot;
127                         address += PMD_SIZE;
128                         pages1m++;
129                         continue;
130                 }
131                 if (pmd_none(*pm_dir)) {
132                         pt_dir = vmem_pte_alloc();
133                         if (!pt_dir)
134                                 goto out;
135                         pmd_populate(&init_mm, pm_dir, pt_dir);
136                 }
137
138                 pt_dir = pte_offset_kernel(pm_dir, address);
139                 pte_val(*pt_dir) = address | pgt_prot;
140                 address += PAGE_SIZE;
141                 pages4k++;
142         }
143         ret = 0;
144 out:
145         update_page_count(PG_DIRECT_MAP_4K, pages4k);
146         update_page_count(PG_DIRECT_MAP_1M, pages1m);
147         update_page_count(PG_DIRECT_MAP_2G, pages2g);
148         return ret;
149 }
150
151 /*
152  * Remove a physical memory range from the 1:1 mapping.
153  * Currently only invalidates page table entries.
154  */
155 static void vmem_remove_range(unsigned long start, unsigned long size)
156 {
157         unsigned long pages4k, pages1m, pages2g;
158         unsigned long end = start + size;
159         unsigned long address = start;
160         pgd_t *pg_dir;
161         p4d_t *p4_dir;
162         pud_t *pu_dir;
163         pmd_t *pm_dir;
164         pte_t *pt_dir;
165
166         pages4k = pages1m = pages2g = 0;
167         while (address < end) {
168                 pg_dir = pgd_offset_k(address);
169                 if (pgd_none(*pg_dir)) {
170                         address += PGDIR_SIZE;
171                         continue;
172                 }
173                 p4_dir = p4d_offset(pg_dir, address);
174                 if (p4d_none(*p4_dir)) {
175                         address += P4D_SIZE;
176                         continue;
177                 }
178                 pu_dir = pud_offset(p4_dir, address);
179                 if (pud_none(*pu_dir)) {
180                         address += PUD_SIZE;
181                         continue;
182                 }
183                 if (pud_large(*pu_dir)) {
184                         pud_clear(pu_dir);
185                         address += PUD_SIZE;
186                         pages2g++;
187                         continue;
188                 }
189                 pm_dir = pmd_offset(pu_dir, address);
190                 if (pmd_none(*pm_dir)) {
191                         address += PMD_SIZE;
192                         continue;
193                 }
194                 if (pmd_large(*pm_dir)) {
195                         pmd_clear(pm_dir);
196                         address += PMD_SIZE;
197                         pages1m++;
198                         continue;
199                 }
200                 pt_dir = pte_offset_kernel(pm_dir, address);
201                 pte_clear(&init_mm, address, pt_dir);
202                 address += PAGE_SIZE;
203                 pages4k++;
204         }
205         flush_tlb_kernel_range(start, end);
206         update_page_count(PG_DIRECT_MAP_4K, -pages4k);
207         update_page_count(PG_DIRECT_MAP_1M, -pages1m);
208         update_page_count(PG_DIRECT_MAP_2G, -pages2g);
209 }
210
211 /*
212  * Add a backed mem_map array to the virtual mem_map array.
213  */
214 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
215 {
216         unsigned long pgt_prot, sgt_prot;
217         unsigned long address = start;
218         pgd_t *pg_dir;
219         p4d_t *p4_dir;
220         pud_t *pu_dir;
221         pmd_t *pm_dir;
222         pte_t *pt_dir;
223         int ret = -ENOMEM;
224
225         pgt_prot = pgprot_val(PAGE_KERNEL);
226         sgt_prot = pgprot_val(SEGMENT_KERNEL);
227         if (!MACHINE_HAS_NX) {
228                 pgt_prot &= ~_PAGE_NOEXEC;
229                 sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
230         }
231         for (address = start; address < end;) {
232                 pg_dir = pgd_offset_k(address);
233                 if (pgd_none(*pg_dir)) {
234                         p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
235                         if (!p4_dir)
236                                 goto out;
237                         pgd_populate(&init_mm, pg_dir, p4_dir);
238                 }
239
240                 p4_dir = p4d_offset(pg_dir, address);
241                 if (p4d_none(*p4_dir)) {
242                         pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
243                         if (!pu_dir)
244                                 goto out;
245                         p4d_populate(&init_mm, p4_dir, pu_dir);
246                 }
247
248                 pu_dir = pud_offset(p4_dir, address);
249                 if (pud_none(*pu_dir)) {
250                         pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
251                         if (!pm_dir)
252                                 goto out;
253                         pud_populate(&init_mm, pu_dir, pm_dir);
254                 }
255
256                 pm_dir = pmd_offset(pu_dir, address);
257                 if (pmd_none(*pm_dir)) {
258                         /* Use 1MB frames for vmemmap if available. We always
259                          * use large frames even if they are only partially
260                          * used.
261                          * Otherwise we would have also page tables since
262                          * vmemmap_populate gets called for each section
263                          * separately. */
264                         if (MACHINE_HAS_EDAT1) {
265                                 void *new_page;
266
267                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
268                                 if (!new_page)
269                                         goto out;
270                                 pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
271                                 address = (address + PMD_SIZE) & PMD_MASK;
272                                 continue;
273                         }
274                         pt_dir = vmem_pte_alloc();
275                         if (!pt_dir)
276                                 goto out;
277                         pmd_populate(&init_mm, pm_dir, pt_dir);
278                 } else if (pmd_large(*pm_dir)) {
279                         address = (address + PMD_SIZE) & PMD_MASK;
280                         continue;
281                 }
282
283                 pt_dir = pte_offset_kernel(pm_dir, address);
284                 if (pte_none(*pt_dir)) {
285                         void *new_page;
286
287                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
288                         if (!new_page)
289                                 goto out;
290                         pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
291                 }
292                 address += PAGE_SIZE;
293         }
294         ret = 0;
295 out:
296         return ret;
297 }
298
299 void vmemmap_free(unsigned long start, unsigned long end)
300 {
301 }
302
303 /*
304  * Add memory segment to the segment list if it doesn't overlap with
305  * an already present segment.
306  */
307 static int insert_memory_segment(struct memory_segment *seg)
308 {
309         struct memory_segment *tmp;
310
311         if (seg->start + seg->size > VMEM_MAX_PHYS ||
312             seg->start + seg->size < seg->start)
313                 return -ERANGE;
314
315         list_for_each_entry(tmp, &mem_segs, list) {
316                 if (seg->start >= tmp->start + tmp->size)
317                         continue;
318                 if (seg->start + seg->size <= tmp->start)
319                         continue;
320                 return -ENOSPC;
321         }
322         list_add(&seg->list, &mem_segs);
323         return 0;
324 }
325
326 /*
327  * Remove memory segment from the segment list.
328  */
329 static void remove_memory_segment(struct memory_segment *seg)
330 {
331         list_del(&seg->list);
332 }
333
334 static void __remove_shared_memory(struct memory_segment *seg)
335 {
336         remove_memory_segment(seg);
337         vmem_remove_range(seg->start, seg->size);
338 }
339
340 int vmem_remove_mapping(unsigned long start, unsigned long size)
341 {
342         struct memory_segment *seg;
343         int ret;
344
345         mutex_lock(&vmem_mutex);
346
347         ret = -ENOENT;
348         list_for_each_entry(seg, &mem_segs, list) {
349                 if (seg->start == start && seg->size == size)
350                         break;
351         }
352
353         if (seg->start != start || seg->size != size)
354                 goto out;
355
356         ret = 0;
357         __remove_shared_memory(seg);
358         kfree(seg);
359 out:
360         mutex_unlock(&vmem_mutex);
361         return ret;
362 }
363
364 int vmem_add_mapping(unsigned long start, unsigned long size)
365 {
366         struct memory_segment *seg;
367         int ret;
368
369         mutex_lock(&vmem_mutex);
370         ret = -ENOMEM;
371         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372         if (!seg)
373                 goto out;
374         seg->start = start;
375         seg->size = size;
376
377         ret = insert_memory_segment(seg);
378         if (ret)
379                 goto out_free;
380
381         ret = vmem_add_mem(start, size);
382         if (ret)
383                 goto out_remove;
384         goto out;
385
386 out_remove:
387         __remove_shared_memory(seg);
388 out_free:
389         kfree(seg);
390 out:
391         mutex_unlock(&vmem_mutex);
392         return ret;
393 }
394
395 /*
396  * map whole physical memory to virtual memory (identity mapping)
397  * we reserve enough space in the vmalloc area for vmemmap to hotplug
398  * additional memory segments.
399  */
400 void __init vmem_map_init(void)
401 {
402         struct memblock_region *reg;
403
404         for_each_memblock(memory, reg)
405                 vmem_add_mem(reg->base, reg->size);
406         __set_memory((unsigned long)_stext,
407                      (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
408                      SET_MEMORY_RO | SET_MEMORY_X);
409         __set_memory((unsigned long)_etext,
410                      (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
411                      SET_MEMORY_RO);
412         __set_memory((unsigned long)_sinittext,
413                      (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
414                      SET_MEMORY_RO | SET_MEMORY_X);
415         pr_info("Write protected kernel read-only data: %luk\n",
416                 (unsigned long)(__end_rodata - _stext) >> 10);
417 }
418
419 /*
420  * Convert memblock.memory  to a memory segment list so there is a single
421  * list that contains all memory segments.
422  */
423 static int __init vmem_convert_memory_chunk(void)
424 {
425         struct memblock_region *reg;
426         struct memory_segment *seg;
427
428         mutex_lock(&vmem_mutex);
429         for_each_memblock(memory, reg) {
430                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
431                 if (!seg)
432                         panic("Out of memory...\n");
433                 seg->start = reg->base;
434                 seg->size = reg->size;
435                 insert_memory_segment(seg);
436         }
437         mutex_unlock(&vmem_mutex);
438         return 0;
439 }
440
441 core_initcall(vmem_convert_memory_chunk);