Merge remote-tracking branches 'asoc/topic/wm9712', 'asoc/topic/wm9713' and 'asoc...
[sfrench/cifs-2.6.git] / arch / s390 / kvm / sthyi.c
1 /*
2  * store hypervisor information instruction emulation functions.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License (version 2 only)
6  * as published by the Free Software Foundation.
7  *
8  * Copyright IBM Corp. 2016
9  * Author(s): Janosch Frank <frankja@linux.vnet.ibm.com>
10  */
11 #include <linux/kvm_host.h>
12 #include <linux/errno.h>
13 #include <linux/pagemap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/ratelimit.h>
16
17 #include <asm/kvm_host.h>
18 #include <asm/asm-offsets.h>
19 #include <asm/sclp.h>
20 #include <asm/diag.h>
21 #include <asm/sysinfo.h>
22 #include <asm/ebcdic.h>
23
24 #include "kvm-s390.h"
25 #include "gaccess.h"
26 #include "trace.h"
27
28 #define DED_WEIGHT 0xffff
29 /*
30  * CP and IFL as EBCDIC strings, SP/0x40 determines the end of string
31  * as they are justified with spaces.
32  */
33 #define CP  0xc3d7404040404040UL
34 #define IFL 0xc9c6d34040404040UL
35
36 enum hdr_flags {
37         HDR_NOT_LPAR   = 0x10,
38         HDR_STACK_INCM = 0x20,
39         HDR_STSI_UNAV  = 0x40,
40         HDR_PERF_UNAV  = 0x80,
41 };
42
43 enum mac_validity {
44         MAC_NAME_VLD = 0x20,
45         MAC_ID_VLD   = 0x40,
46         MAC_CNT_VLD  = 0x80,
47 };
48
49 enum par_flag {
50         PAR_MT_EN = 0x80,
51 };
52
53 enum par_validity {
54         PAR_GRP_VLD  = 0x08,
55         PAR_ID_VLD   = 0x10,
56         PAR_ABS_VLD  = 0x20,
57         PAR_WGHT_VLD = 0x40,
58         PAR_PCNT_VLD  = 0x80,
59 };
60
61 struct hdr_sctn {
62         u8 infhflg1;
63         u8 infhflg2; /* reserved */
64         u8 infhval1; /* reserved */
65         u8 infhval2; /* reserved */
66         u8 reserved[3];
67         u8 infhygct;
68         u16 infhtotl;
69         u16 infhdln;
70         u16 infmoff;
71         u16 infmlen;
72         u16 infpoff;
73         u16 infplen;
74         u16 infhoff1;
75         u16 infhlen1;
76         u16 infgoff1;
77         u16 infglen1;
78         u16 infhoff2;
79         u16 infhlen2;
80         u16 infgoff2;
81         u16 infglen2;
82         u16 infhoff3;
83         u16 infhlen3;
84         u16 infgoff3;
85         u16 infglen3;
86         u8 reserved2[4];
87 } __packed;
88
89 struct mac_sctn {
90         u8 infmflg1; /* reserved */
91         u8 infmflg2; /* reserved */
92         u8 infmval1;
93         u8 infmval2; /* reserved */
94         u16 infmscps;
95         u16 infmdcps;
96         u16 infmsifl;
97         u16 infmdifl;
98         char infmname[8];
99         char infmtype[4];
100         char infmmanu[16];
101         char infmseq[16];
102         char infmpman[4];
103         u8 reserved[4];
104 } __packed;
105
106 struct par_sctn {
107         u8 infpflg1;
108         u8 infpflg2; /* reserved */
109         u8 infpval1;
110         u8 infpval2; /* reserved */
111         u16 infppnum;
112         u16 infpscps;
113         u16 infpdcps;
114         u16 infpsifl;
115         u16 infpdifl;
116         u16 reserved;
117         char infppnam[8];
118         u32 infpwbcp;
119         u32 infpabcp;
120         u32 infpwbif;
121         u32 infpabif;
122         char infplgnm[8];
123         u32 infplgcp;
124         u32 infplgif;
125 } __packed;
126
127 struct sthyi_sctns {
128         struct hdr_sctn hdr;
129         struct mac_sctn mac;
130         struct par_sctn par;
131 } __packed;
132
133 struct cpu_inf {
134         u64 lpar_cap;
135         u64 lpar_grp_cap;
136         u64 lpar_weight;
137         u64 all_weight;
138         int cpu_num_ded;
139         int cpu_num_shd;
140 };
141
142 struct lpar_cpu_inf {
143         struct cpu_inf cp;
144         struct cpu_inf ifl;
145 };
146
147 static inline u64 cpu_id(u8 ctidx, void *diag224_buf)
148 {
149         return *((u64 *)(diag224_buf + (ctidx + 1) * DIAG204_CPU_NAME_LEN));
150 }
151
152 /*
153  * Scales the cpu capping from the lpar range to the one expected in
154  * sthyi data.
155  *
156  * diag204 reports a cap in hundredths of processor units.
157  * z/VM's range for one core is 0 - 0x10000.
158  */
159 static u32 scale_cap(u32 in)
160 {
161         return (0x10000 * in) / 100;
162 }
163
164 static void fill_hdr(struct sthyi_sctns *sctns)
165 {
166         sctns->hdr.infhdln = sizeof(sctns->hdr);
167         sctns->hdr.infmoff = sizeof(sctns->hdr);
168         sctns->hdr.infmlen = sizeof(sctns->mac);
169         sctns->hdr.infplen = sizeof(sctns->par);
170         sctns->hdr.infpoff = sctns->hdr.infhdln + sctns->hdr.infmlen;
171         sctns->hdr.infhtotl = sctns->hdr.infpoff + sctns->hdr.infplen;
172 }
173
174 static void fill_stsi_mac(struct sthyi_sctns *sctns,
175                           struct sysinfo_1_1_1 *sysinfo)
176 {
177         if (stsi(sysinfo, 1, 1, 1))
178                 return;
179
180         sclp_ocf_cpc_name_copy(sctns->mac.infmname);
181
182         memcpy(sctns->mac.infmtype, sysinfo->type, sizeof(sctns->mac.infmtype));
183         memcpy(sctns->mac.infmmanu, sysinfo->manufacturer, sizeof(sctns->mac.infmmanu));
184         memcpy(sctns->mac.infmpman, sysinfo->plant, sizeof(sctns->mac.infmpman));
185         memcpy(sctns->mac.infmseq, sysinfo->sequence, sizeof(sctns->mac.infmseq));
186
187         sctns->mac.infmval1 |= MAC_ID_VLD | MAC_NAME_VLD;
188 }
189
190 static void fill_stsi_par(struct sthyi_sctns *sctns,
191                           struct sysinfo_2_2_2 *sysinfo)
192 {
193         if (stsi(sysinfo, 2, 2, 2))
194                 return;
195
196         sctns->par.infppnum = sysinfo->lpar_number;
197         memcpy(sctns->par.infppnam, sysinfo->name, sizeof(sctns->par.infppnam));
198
199         sctns->par.infpval1 |= PAR_ID_VLD;
200 }
201
202 static void fill_stsi(struct sthyi_sctns *sctns)
203 {
204         void *sysinfo;
205
206         /* Errors are handled through the validity bits in the response. */
207         sysinfo = (void *)__get_free_page(GFP_KERNEL);
208         if (!sysinfo)
209                 return;
210
211         fill_stsi_mac(sctns, sysinfo);
212         fill_stsi_par(sctns, sysinfo);
213
214         free_pages((unsigned long)sysinfo, 0);
215 }
216
217 static void fill_diag_mac(struct sthyi_sctns *sctns,
218                           struct diag204_x_phys_block *block,
219                           void *diag224_buf)
220 {
221         int i;
222
223         for (i = 0; i < block->hdr.cpus; i++) {
224                 switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
225                 case CP:
226                         if (block->cpus[i].weight == DED_WEIGHT)
227                                 sctns->mac.infmdcps++;
228                         else
229                                 sctns->mac.infmscps++;
230                         break;
231                 case IFL:
232                         if (block->cpus[i].weight == DED_WEIGHT)
233                                 sctns->mac.infmdifl++;
234                         else
235                                 sctns->mac.infmsifl++;
236                         break;
237                 }
238         }
239         sctns->mac.infmval1 |= MAC_CNT_VLD;
240 }
241
242 /* Returns a pointer to the the next partition block. */
243 static struct diag204_x_part_block *lpar_cpu_inf(struct lpar_cpu_inf *part_inf,
244                                                  bool this_lpar,
245                                                  void *diag224_buf,
246                                                  struct diag204_x_part_block *block)
247 {
248         int i, capped = 0, weight_cp = 0, weight_ifl = 0;
249         struct cpu_inf *cpu_inf;
250
251         for (i = 0; i < block->hdr.rcpus; i++) {
252                 if (!(block->cpus[i].cflag & DIAG204_CPU_ONLINE))
253                         continue;
254
255                 switch (cpu_id(block->cpus[i].ctidx, diag224_buf)) {
256                 case CP:
257                         cpu_inf = &part_inf->cp;
258                         if (block->cpus[i].cur_weight < DED_WEIGHT)
259                                 weight_cp |= block->cpus[i].cur_weight;
260                         break;
261                 case IFL:
262                         cpu_inf = &part_inf->ifl;
263                         if (block->cpus[i].cur_weight < DED_WEIGHT)
264                                 weight_ifl |= block->cpus[i].cur_weight;
265                         break;
266                 default:
267                         continue;
268                 }
269
270                 if (!this_lpar)
271                         continue;
272
273                 capped |= block->cpus[i].cflag & DIAG204_CPU_CAPPED;
274                 cpu_inf->lpar_cap |= block->cpus[i].cpu_type_cap;
275                 cpu_inf->lpar_grp_cap |= block->cpus[i].group_cpu_type_cap;
276
277                 if (block->cpus[i].weight == DED_WEIGHT)
278                         cpu_inf->cpu_num_ded += 1;
279                 else
280                         cpu_inf->cpu_num_shd += 1;
281         }
282
283         if (this_lpar && capped) {
284                 part_inf->cp.lpar_weight = weight_cp;
285                 part_inf->ifl.lpar_weight = weight_ifl;
286         }
287         part_inf->cp.all_weight += weight_cp;
288         part_inf->ifl.all_weight += weight_ifl;
289         return (struct diag204_x_part_block *)&block->cpus[i];
290 }
291
292 static void fill_diag(struct sthyi_sctns *sctns)
293 {
294         int i, r, pages;
295         bool this_lpar;
296         void *diag204_buf;
297         void *diag224_buf = NULL;
298         struct diag204_x_info_blk_hdr *ti_hdr;
299         struct diag204_x_part_block *part_block;
300         struct diag204_x_phys_block *phys_block;
301         struct lpar_cpu_inf lpar_inf = {};
302
303         /* Errors are handled through the validity bits in the response. */
304         pages = diag204((unsigned long)DIAG204_SUBC_RSI |
305                         (unsigned long)DIAG204_INFO_EXT, 0, NULL);
306         if (pages <= 0)
307                 return;
308
309         diag204_buf = vmalloc(PAGE_SIZE * pages);
310         if (!diag204_buf)
311                 return;
312
313         r = diag204((unsigned long)DIAG204_SUBC_STIB7 |
314                     (unsigned long)DIAG204_INFO_EXT, pages, diag204_buf);
315         if (r < 0)
316                 goto out;
317
318         diag224_buf = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
319         if (!diag224_buf || diag224(diag224_buf))
320                 goto out;
321
322         ti_hdr = diag204_buf;
323         part_block = diag204_buf + sizeof(*ti_hdr);
324
325         for (i = 0; i < ti_hdr->npar; i++) {
326                 /*
327                  * For the calling lpar we also need to get the cpu
328                  * caps and weights. The time information block header
329                  * specifies the offset to the partition block of the
330                  * caller lpar, so we know when we process its data.
331                  */
332                 this_lpar = (void *)part_block - diag204_buf == ti_hdr->this_part;
333                 part_block = lpar_cpu_inf(&lpar_inf, this_lpar, diag224_buf,
334                                           part_block);
335         }
336
337         phys_block = (struct diag204_x_phys_block *)part_block;
338         part_block = diag204_buf + ti_hdr->this_part;
339         if (part_block->hdr.mtid)
340                 sctns->par.infpflg1 = PAR_MT_EN;
341
342         sctns->par.infpval1 |= PAR_GRP_VLD;
343         sctns->par.infplgcp = scale_cap(lpar_inf.cp.lpar_grp_cap);
344         sctns->par.infplgif = scale_cap(lpar_inf.ifl.lpar_grp_cap);
345         memcpy(sctns->par.infplgnm, part_block->hdr.hardware_group_name,
346                sizeof(sctns->par.infplgnm));
347
348         sctns->par.infpscps = lpar_inf.cp.cpu_num_shd;
349         sctns->par.infpdcps = lpar_inf.cp.cpu_num_ded;
350         sctns->par.infpsifl = lpar_inf.ifl.cpu_num_shd;
351         sctns->par.infpdifl = lpar_inf.ifl.cpu_num_ded;
352         sctns->par.infpval1 |= PAR_PCNT_VLD;
353
354         sctns->par.infpabcp = scale_cap(lpar_inf.cp.lpar_cap);
355         sctns->par.infpabif = scale_cap(lpar_inf.ifl.lpar_cap);
356         sctns->par.infpval1 |= PAR_ABS_VLD;
357
358         /*
359          * Everything below needs global performance data to be
360          * meaningful.
361          */
362         if (!(ti_hdr->flags & DIAG204_LPAR_PHYS_FLG)) {
363                 sctns->hdr.infhflg1 |= HDR_PERF_UNAV;
364                 goto out;
365         }
366
367         fill_diag_mac(sctns, phys_block, diag224_buf);
368
369         if (lpar_inf.cp.lpar_weight) {
370                 sctns->par.infpwbcp = sctns->mac.infmscps * 0x10000 *
371                         lpar_inf.cp.lpar_weight / lpar_inf.cp.all_weight;
372         }
373
374         if (lpar_inf.ifl.lpar_weight) {
375                 sctns->par.infpwbif = sctns->mac.infmsifl * 0x10000 *
376                         lpar_inf.ifl.lpar_weight / lpar_inf.ifl.all_weight;
377         }
378         sctns->par.infpval1 |= PAR_WGHT_VLD;
379
380 out:
381         free_page((unsigned long)diag224_buf);
382         vfree(diag204_buf);
383 }
384
385 static int sthyi(u64 vaddr)
386 {
387         register u64 code asm("0") = 0;
388         register u64 addr asm("2") = vaddr;
389         int cc;
390
391         asm volatile(
392                 ".insn   rre,0xB2560000,%[code],%[addr]\n"
393                 "ipm     %[cc]\n"
394                 "srl     %[cc],28\n"
395                 : [cc] "=d" (cc)
396                 : [code] "d" (code), [addr] "a" (addr)
397                 : "memory", "cc");
398         return cc;
399 }
400
401 int handle_sthyi(struct kvm_vcpu *vcpu)
402 {
403         int reg1, reg2, r = 0;
404         u64 code, addr, cc = 0;
405         struct sthyi_sctns *sctns = NULL;
406
407         /*
408          * STHYI requires extensive locking in the higher hypervisors
409          * and is very computational/memory expensive. Therefore we
410          * ratelimit the executions per VM.
411          */
412         if (!__ratelimit(&vcpu->kvm->arch.sthyi_limit)) {
413                 kvm_s390_retry_instr(vcpu);
414                 return 0;
415         }
416
417         kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
418         code = vcpu->run->s.regs.gprs[reg1];
419         addr = vcpu->run->s.regs.gprs[reg2];
420
421         vcpu->stat.instruction_sthyi++;
422         VCPU_EVENT(vcpu, 3, "STHYI: fc: %llu addr: 0x%016llx", code, addr);
423         trace_kvm_s390_handle_sthyi(vcpu, code, addr);
424
425         if (reg1 == reg2 || reg1 & 1 || reg2 & 1 || addr & ~PAGE_MASK)
426                 return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
427
428         if (code & 0xffff) {
429                 cc = 3;
430                 goto out;
431         }
432
433         /*
434          * If the page has not yet been faulted in, we want to do that
435          * now and not after all the expensive calculations.
436          */
437         r = write_guest(vcpu, addr, reg2, &cc, 1);
438         if (r)
439                 return kvm_s390_inject_prog_cond(vcpu, r);
440
441         sctns = (void *)get_zeroed_page(GFP_KERNEL);
442         if (!sctns)
443                 return -ENOMEM;
444
445         /*
446          * If we are a guest, we don't want to emulate an emulated
447          * instruction. We ask the hypervisor to provide the data.
448          */
449         if (test_facility(74)) {
450                 cc = sthyi((u64)sctns);
451                 goto out;
452         }
453
454         fill_hdr(sctns);
455         fill_stsi(sctns);
456         fill_diag(sctns);
457
458 out:
459         if (!cc) {
460                 r = write_guest(vcpu, addr, reg2, sctns, PAGE_SIZE);
461                 if (r) {
462                         free_page((unsigned long)sctns);
463                         return kvm_s390_inject_prog_cond(vcpu, r);
464                 }
465         }
466
467         free_page((unsigned long)sctns);
468         vcpu->run->s.regs.gprs[reg2 + 1] = cc ? 4 : 0;
469         kvm_s390_set_psw_cc(vcpu, cc);
470         return r;
471 }