Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / s390 / kernel / vtime.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Virtual cpu timer based timer functions.
4  *
5  *    Copyright IBM Corp. 2004, 2012
6  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7  */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36 static inline u64 get_vtimer(void)
37 {
38         u64 timer;
39
40         asm volatile("stpt %0" : "=Q" (timer));
41         return timer;
42 }
43
44 static inline void set_vtimer(u64 expires)
45 {
46         u64 timer;
47
48         asm volatile(
49                 "       stpt    %0\n"   /* Store current cpu timer value */
50                 "       spt     %1"     /* Set new value imm. afterwards */
51                 : "=Q" (timer) : "Q" (expires));
52         S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53         S390_lowcore.last_update_timer = expires;
54 }
55
56 static inline int virt_timer_forward(u64 elapsed)
57 {
58         BUG_ON(!irqs_disabled());
59
60         if (list_empty(&virt_timer_list))
61                 return 0;
62         elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63         return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
66 static void update_mt_scaling(void)
67 {
68         u64 cycles_new[8], *cycles_old;
69         u64 delta, fac, mult, div;
70         int i;
71
72         stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73         cycles_old = this_cpu_ptr(mt_cycles);
74         fac = 1;
75         mult = div = 0;
76         for (i = 0; i <= smp_cpu_mtid; i++) {
77                 delta = cycles_new[i] - cycles_old[i];
78                 div += delta;
79                 mult *= i + 1;
80                 mult += delta * fac;
81                 fac *= i + 1;
82         }
83         div *= fac;
84         if (div > 0) {
85                 /* Update scaling factor */
86                 __this_cpu_write(mt_scaling_mult, mult);
87                 __this_cpu_write(mt_scaling_div, div);
88                 memcpy(cycles_old, cycles_new,
89                        sizeof(u64) * (smp_cpu_mtid + 1));
90         }
91         __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96         u64 delta;
97
98         delta = new - *tsk_vtime;
99         *tsk_vtime = new;
100         return delta;
101 }
102
103
104 static inline u64 scale_vtime(u64 vtime)
105 {
106         u64 mult = __this_cpu_read(mt_scaling_mult);
107         u64 div = __this_cpu_read(mt_scaling_div);
108
109         if (smp_cpu_mtid)
110                 return vtime * mult / div;
111         return vtime;
112 }
113
114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115                                         enum cpu_usage_stat index)
116 {
117         p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118         account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127         u64 timer, clock, user, guest, system, hardirq, softirq;
128
129         timer = S390_lowcore.last_update_timer;
130         clock = S390_lowcore.last_update_clock;
131         asm volatile(
132                 "       stpt    %0\n"   /* Store current cpu timer value */
133 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
134                 "       stckf   %1"     /* Store current tod clock value */
135 #else
136                 "       stck    %1"     /* Store current tod clock value */
137 #endif
138                 : "=Q" (S390_lowcore.last_update_timer),
139                   "=Q" (S390_lowcore.last_update_clock));
140         clock = S390_lowcore.last_update_clock - clock;
141         timer -= S390_lowcore.last_update_timer;
142
143         if (hardirq_count())
144                 S390_lowcore.hardirq_timer += timer;
145         else
146                 S390_lowcore.system_timer += timer;
147
148         /* Update MT utilization calculation */
149         if (smp_cpu_mtid &&
150             time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
151                 update_mt_scaling();
152
153         /* Calculate cputime delta */
154         user = update_tsk_timer(&tsk->thread.user_timer,
155                                 READ_ONCE(S390_lowcore.user_timer));
156         guest = update_tsk_timer(&tsk->thread.guest_timer,
157                                  READ_ONCE(S390_lowcore.guest_timer));
158         system = update_tsk_timer(&tsk->thread.system_timer,
159                                   READ_ONCE(S390_lowcore.system_timer));
160         hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
161                                    READ_ONCE(S390_lowcore.hardirq_timer));
162         softirq = update_tsk_timer(&tsk->thread.softirq_timer,
163                                    READ_ONCE(S390_lowcore.softirq_timer));
164         S390_lowcore.steal_timer +=
165                 clock - user - guest - system - hardirq - softirq;
166
167         /* Push account value */
168         if (user) {
169                 account_user_time(tsk, cputime_to_nsecs(user));
170                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
171         }
172
173         if (guest) {
174                 account_guest_time(tsk, cputime_to_nsecs(guest));
175                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
176         }
177
178         if (system)
179                 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
180         if (hardirq)
181                 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
182         if (softirq)
183                 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
184
185         return virt_timer_forward(user + guest + system + hardirq + softirq);
186 }
187
188 void vtime_task_switch(struct task_struct *prev)
189 {
190         do_account_vtime(prev);
191         prev->thread.user_timer = S390_lowcore.user_timer;
192         prev->thread.guest_timer = S390_lowcore.guest_timer;
193         prev->thread.system_timer = S390_lowcore.system_timer;
194         prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
195         prev->thread.softirq_timer = S390_lowcore.softirq_timer;
196         S390_lowcore.user_timer = current->thread.user_timer;
197         S390_lowcore.guest_timer = current->thread.guest_timer;
198         S390_lowcore.system_timer = current->thread.system_timer;
199         S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
200         S390_lowcore.softirq_timer = current->thread.softirq_timer;
201 }
202
203 /*
204  * In s390, accounting pending user time also implies
205  * accounting system time in order to correctly compute
206  * the stolen time accounting.
207  */
208 void vtime_flush(struct task_struct *tsk)
209 {
210         u64 steal, avg_steal;
211
212         if (do_account_vtime(tsk))
213                 virt_timer_expire();
214
215         steal = S390_lowcore.steal_timer;
216         avg_steal = S390_lowcore.avg_steal_timer / 2;
217         if ((s64) steal > 0) {
218                 S390_lowcore.steal_timer = 0;
219                 account_steal_time(steal);
220                 avg_steal += steal;
221         }
222         S390_lowcore.avg_steal_timer = avg_steal;
223 }
224
225 /*
226  * Update process times based on virtual cpu times stored by entry.S
227  * to the lowcore fields user_timer, system_timer & steal_clock.
228  */
229 void vtime_account_irq_enter(struct task_struct *tsk)
230 {
231         u64 timer;
232
233         timer = S390_lowcore.last_update_timer;
234         S390_lowcore.last_update_timer = get_vtimer();
235         timer -= S390_lowcore.last_update_timer;
236
237         if ((tsk->flags & PF_VCPU) && (irq_count() == 0))
238                 S390_lowcore.guest_timer += timer;
239         else if (hardirq_count())
240                 S390_lowcore.hardirq_timer += timer;
241         else if (in_serving_softirq())
242                 S390_lowcore.softirq_timer += timer;
243         else
244                 S390_lowcore.system_timer += timer;
245
246         virt_timer_forward(timer);
247 }
248 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
249
250 void vtime_account_system(struct task_struct *tsk)
251 __attribute__((alias("vtime_account_irq_enter")));
252 EXPORT_SYMBOL_GPL(vtime_account_system);
253
254 /*
255  * Sorted add to a list. List is linear searched until first bigger
256  * element is found.
257  */
258 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
259 {
260         struct vtimer_list *tmp;
261
262         list_for_each_entry(tmp, head, entry) {
263                 if (tmp->expires > timer->expires) {
264                         list_add_tail(&timer->entry, &tmp->entry);
265                         return;
266                 }
267         }
268         list_add_tail(&timer->entry, head);
269 }
270
271 /*
272  * Handler for expired virtual CPU timer.
273  */
274 static void virt_timer_expire(void)
275 {
276         struct vtimer_list *timer, *tmp;
277         unsigned long elapsed;
278         LIST_HEAD(cb_list);
279
280         /* walk timer list, fire all expired timers */
281         spin_lock(&virt_timer_lock);
282         elapsed = atomic64_read(&virt_timer_elapsed);
283         list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
284                 if (timer->expires < elapsed)
285                         /* move expired timer to the callback queue */
286                         list_move_tail(&timer->entry, &cb_list);
287                 else
288                         timer->expires -= elapsed;
289         }
290         if (!list_empty(&virt_timer_list)) {
291                 timer = list_first_entry(&virt_timer_list,
292                                          struct vtimer_list, entry);
293                 atomic64_set(&virt_timer_current, timer->expires);
294         }
295         atomic64_sub(elapsed, &virt_timer_elapsed);
296         spin_unlock(&virt_timer_lock);
297
298         /* Do callbacks and recharge periodic timers */
299         list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
300                 list_del_init(&timer->entry);
301                 timer->function(timer->data);
302                 if (timer->interval) {
303                         /* Recharge interval timer */
304                         timer->expires = timer->interval +
305                                 atomic64_read(&virt_timer_elapsed);
306                         spin_lock(&virt_timer_lock);
307                         list_add_sorted(timer, &virt_timer_list);
308                         spin_unlock(&virt_timer_lock);
309                 }
310         }
311 }
312
313 void init_virt_timer(struct vtimer_list *timer)
314 {
315         timer->function = NULL;
316         INIT_LIST_HEAD(&timer->entry);
317 }
318 EXPORT_SYMBOL(init_virt_timer);
319
320 static inline int vtimer_pending(struct vtimer_list *timer)
321 {
322         return !list_empty(&timer->entry);
323 }
324
325 static void internal_add_vtimer(struct vtimer_list *timer)
326 {
327         if (list_empty(&virt_timer_list)) {
328                 /* First timer, just program it. */
329                 atomic64_set(&virt_timer_current, timer->expires);
330                 atomic64_set(&virt_timer_elapsed, 0);
331                 list_add(&timer->entry, &virt_timer_list);
332         } else {
333                 /* Update timer against current base. */
334                 timer->expires += atomic64_read(&virt_timer_elapsed);
335                 if (likely((s64) timer->expires <
336                            (s64) atomic64_read(&virt_timer_current)))
337                         /* The new timer expires before the current timer. */
338                         atomic64_set(&virt_timer_current, timer->expires);
339                 /* Insert new timer into the list. */
340                 list_add_sorted(timer, &virt_timer_list);
341         }
342 }
343
344 static void __add_vtimer(struct vtimer_list *timer, int periodic)
345 {
346         unsigned long flags;
347
348         timer->interval = periodic ? timer->expires : 0;
349         spin_lock_irqsave(&virt_timer_lock, flags);
350         internal_add_vtimer(timer);
351         spin_unlock_irqrestore(&virt_timer_lock, flags);
352 }
353
354 /*
355  * add_virt_timer - add a oneshot virtual CPU timer
356  */
357 void add_virt_timer(struct vtimer_list *timer)
358 {
359         __add_vtimer(timer, 0);
360 }
361 EXPORT_SYMBOL(add_virt_timer);
362
363 /*
364  * add_virt_timer_int - add an interval virtual CPU timer
365  */
366 void add_virt_timer_periodic(struct vtimer_list *timer)
367 {
368         __add_vtimer(timer, 1);
369 }
370 EXPORT_SYMBOL(add_virt_timer_periodic);
371
372 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
373 {
374         unsigned long flags;
375         int rc;
376
377         BUG_ON(!timer->function);
378
379         if (timer->expires == expires && vtimer_pending(timer))
380                 return 1;
381         spin_lock_irqsave(&virt_timer_lock, flags);
382         rc = vtimer_pending(timer);
383         if (rc)
384                 list_del_init(&timer->entry);
385         timer->interval = periodic ? expires : 0;
386         timer->expires = expires;
387         internal_add_vtimer(timer);
388         spin_unlock_irqrestore(&virt_timer_lock, flags);
389         return rc;
390 }
391
392 /*
393  * returns whether it has modified a pending timer (1) or not (0)
394  */
395 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
396 {
397         return __mod_vtimer(timer, expires, 0);
398 }
399 EXPORT_SYMBOL(mod_virt_timer);
400
401 /*
402  * returns whether it has modified a pending timer (1) or not (0)
403  */
404 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
405 {
406         return __mod_vtimer(timer, expires, 1);
407 }
408 EXPORT_SYMBOL(mod_virt_timer_periodic);
409
410 /*
411  * Delete a virtual timer.
412  *
413  * returns whether the deleted timer was pending (1) or not (0)
414  */
415 int del_virt_timer(struct vtimer_list *timer)
416 {
417         unsigned long flags;
418
419         if (!vtimer_pending(timer))
420                 return 0;
421         spin_lock_irqsave(&virt_timer_lock, flags);
422         list_del_init(&timer->entry);
423         spin_unlock_irqrestore(&virt_timer_lock, flags);
424         return 1;
425 }
426 EXPORT_SYMBOL(del_virt_timer);
427
428 /*
429  * Start the virtual CPU timer on the current CPU.
430  */
431 void vtime_init(void)
432 {
433         /* set initial cpu timer */
434         set_vtimer(VTIMER_MAX_SLICE);
435         /* Setup initial MT scaling values */
436         if (smp_cpu_mtid) {
437                 __this_cpu_write(mt_scaling_jiffies, jiffies);
438                 __this_cpu_write(mt_scaling_mult, 1);
439                 __this_cpu_write(mt_scaling_div, 1);
440                 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
441         }
442 }