Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / arch / s390 / kernel / vtime.c
1 /*
2  *    Virtual cpu timer based timer functions.
3  *
4  *    Copyright IBM Corp. 2004, 2012
5  *    Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6  */
7
8 #include <linux/kernel_stat.h>
9 #include <linux/sched/cputime.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/timex.h>
13 #include <linux/types.h>
14 #include <linux/time.h>
15
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20
21 #include "entry.h"
22
23 static void virt_timer_expire(void);
24
25 static LIST_HEAD(virt_timer_list);
26 static DEFINE_SPINLOCK(virt_timer_lock);
27 static atomic64_t virt_timer_current;
28 static atomic64_t virt_timer_elapsed;
29
30 DEFINE_PER_CPU(u64, mt_cycles[8]);
31 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
32 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
34
35 static inline u64 get_vtimer(void)
36 {
37         u64 timer;
38
39         asm volatile("stpt %0" : "=m" (timer));
40         return timer;
41 }
42
43 static inline void set_vtimer(u64 expires)
44 {
45         u64 timer;
46
47         asm volatile(
48                 "       stpt    %0\n"   /* Store current cpu timer value */
49                 "       spt     %1"     /* Set new value imm. afterwards */
50                 : "=m" (timer) : "m" (expires));
51         S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
52         S390_lowcore.last_update_timer = expires;
53 }
54
55 static inline int virt_timer_forward(u64 elapsed)
56 {
57         BUG_ON(!irqs_disabled());
58
59         if (list_empty(&virt_timer_list))
60                 return 0;
61         elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
62         return elapsed >= atomic64_read(&virt_timer_current);
63 }
64
65 static void update_mt_scaling(void)
66 {
67         u64 cycles_new[8], *cycles_old;
68         u64 delta, fac, mult, div;
69         int i;
70
71         stcctm5(smp_cpu_mtid + 1, cycles_new);
72         cycles_old = this_cpu_ptr(mt_cycles);
73         fac = 1;
74         mult = div = 0;
75         for (i = 0; i <= smp_cpu_mtid; i++) {
76                 delta = cycles_new[i] - cycles_old[i];
77                 div += delta;
78                 mult *= i + 1;
79                 mult += delta * fac;
80                 fac *= i + 1;
81         }
82         div *= fac;
83         if (div > 0) {
84                 /* Update scaling factor */
85                 __this_cpu_write(mt_scaling_mult, mult);
86                 __this_cpu_write(mt_scaling_div, div);
87                 memcpy(cycles_old, cycles_new,
88                        sizeof(u64) * (smp_cpu_mtid + 1));
89         }
90         __this_cpu_write(mt_scaling_jiffies, jiffies_64);
91 }
92
93 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
94 {
95         u64 delta;
96
97         delta = new - *tsk_vtime;
98         *tsk_vtime = new;
99         return delta;
100 }
101
102
103 static inline u64 scale_vtime(u64 vtime)
104 {
105         u64 mult = __this_cpu_read(mt_scaling_mult);
106         u64 div = __this_cpu_read(mt_scaling_div);
107
108         if (smp_cpu_mtid)
109                 return vtime * mult / div;
110         return vtime;
111 }
112
113 static void account_system_index_scaled(struct task_struct *p,
114                                         u64 cputime, u64 scaled,
115                                         enum cpu_usage_stat index)
116 {
117         p->stimescaled += cputime_to_nsecs(scaled);
118         account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122  * Update process times based on virtual cpu times stored by entry.S
123  * to the lowcore fields user_timer, system_timer & steal_clock.
124  */
125 static int do_account_vtime(struct task_struct *tsk)
126 {
127         u64 timer, clock, user, guest, system, hardirq, softirq, steal;
128
129         timer = S390_lowcore.last_update_timer;
130         clock = S390_lowcore.last_update_clock;
131         asm volatile(
132                 "       stpt    %0\n"   /* Store current cpu timer value */
133 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
134                 "       stckf   %1"     /* Store current tod clock value */
135 #else
136                 "       stck    %1"     /* Store current tod clock value */
137 #endif
138                 : "=m" (S390_lowcore.last_update_timer),
139                   "=m" (S390_lowcore.last_update_clock));
140         clock = S390_lowcore.last_update_clock - clock;
141         timer -= S390_lowcore.last_update_timer;
142
143         if (hardirq_count())
144                 S390_lowcore.hardirq_timer += timer;
145         else
146                 S390_lowcore.system_timer += timer;
147
148         /* Update MT utilization calculation */
149         if (smp_cpu_mtid &&
150             time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
151                 update_mt_scaling();
152
153         /* Calculate cputime delta */
154         user = update_tsk_timer(&tsk->thread.user_timer,
155                                 READ_ONCE(S390_lowcore.user_timer));
156         guest = update_tsk_timer(&tsk->thread.guest_timer,
157                                  READ_ONCE(S390_lowcore.guest_timer));
158         system = update_tsk_timer(&tsk->thread.system_timer,
159                                   READ_ONCE(S390_lowcore.system_timer));
160         hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
161                                    READ_ONCE(S390_lowcore.hardirq_timer));
162         softirq = update_tsk_timer(&tsk->thread.softirq_timer,
163                                    READ_ONCE(S390_lowcore.softirq_timer));
164         S390_lowcore.steal_timer +=
165                 clock - user - guest - system - hardirq - softirq;
166
167         /* Push account value */
168         if (user) {
169                 account_user_time(tsk, cputime_to_nsecs(user));
170                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
171         }
172
173         if (guest) {
174                 account_guest_time(tsk, cputime_to_nsecs(guest));
175                 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
176         }
177
178         if (system)
179                 account_system_index_scaled(tsk, system, scale_vtime(system),
180                                             CPUTIME_SYSTEM);
181         if (hardirq)
182                 account_system_index_scaled(tsk, hardirq, scale_vtime(hardirq),
183                                             CPUTIME_IRQ);
184         if (softirq)
185                 account_system_index_scaled(tsk, softirq, scale_vtime(softirq),
186                                             CPUTIME_SOFTIRQ);
187
188         steal = S390_lowcore.steal_timer;
189         if ((s64) steal > 0) {
190                 S390_lowcore.steal_timer = 0;
191                 account_steal_time(cputime_to_nsecs(steal));
192         }
193
194         return virt_timer_forward(user + guest + system + hardirq + softirq);
195 }
196
197 void vtime_task_switch(struct task_struct *prev)
198 {
199         do_account_vtime(prev);
200         prev->thread.user_timer = S390_lowcore.user_timer;
201         prev->thread.guest_timer = S390_lowcore.guest_timer;
202         prev->thread.system_timer = S390_lowcore.system_timer;
203         prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
204         prev->thread.softirq_timer = S390_lowcore.softirq_timer;
205         S390_lowcore.user_timer = current->thread.user_timer;
206         S390_lowcore.guest_timer = current->thread.guest_timer;
207         S390_lowcore.system_timer = current->thread.system_timer;
208         S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
209         S390_lowcore.softirq_timer = current->thread.softirq_timer;
210 }
211
212 /*
213  * In s390, accounting pending user time also implies
214  * accounting system time in order to correctly compute
215  * the stolen time accounting.
216  */
217 void vtime_flush(struct task_struct *tsk)
218 {
219         if (do_account_vtime(tsk))
220                 virt_timer_expire();
221 }
222
223 /*
224  * Update process times based on virtual cpu times stored by entry.S
225  * to the lowcore fields user_timer, system_timer & steal_clock.
226  */
227 void vtime_account_irq_enter(struct task_struct *tsk)
228 {
229         u64 timer;
230
231         timer = S390_lowcore.last_update_timer;
232         S390_lowcore.last_update_timer = get_vtimer();
233         timer -= S390_lowcore.last_update_timer;
234
235         if ((tsk->flags & PF_VCPU) && (irq_count() == 0))
236                 S390_lowcore.guest_timer += timer;
237         else if (hardirq_count())
238                 S390_lowcore.hardirq_timer += timer;
239         else if (in_serving_softirq())
240                 S390_lowcore.softirq_timer += timer;
241         else
242                 S390_lowcore.system_timer += timer;
243
244         virt_timer_forward(timer);
245 }
246 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
247
248 void vtime_account_system(struct task_struct *tsk)
249 __attribute__((alias("vtime_account_irq_enter")));
250 EXPORT_SYMBOL_GPL(vtime_account_system);
251
252 /*
253  * Sorted add to a list. List is linear searched until first bigger
254  * element is found.
255  */
256 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
257 {
258         struct vtimer_list *tmp;
259
260         list_for_each_entry(tmp, head, entry) {
261                 if (tmp->expires > timer->expires) {
262                         list_add_tail(&timer->entry, &tmp->entry);
263                         return;
264                 }
265         }
266         list_add_tail(&timer->entry, head);
267 }
268
269 /*
270  * Handler for expired virtual CPU timer.
271  */
272 static void virt_timer_expire(void)
273 {
274         struct vtimer_list *timer, *tmp;
275         unsigned long elapsed;
276         LIST_HEAD(cb_list);
277
278         /* walk timer list, fire all expired timers */
279         spin_lock(&virt_timer_lock);
280         elapsed = atomic64_read(&virt_timer_elapsed);
281         list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
282                 if (timer->expires < elapsed)
283                         /* move expired timer to the callback queue */
284                         list_move_tail(&timer->entry, &cb_list);
285                 else
286                         timer->expires -= elapsed;
287         }
288         if (!list_empty(&virt_timer_list)) {
289                 timer = list_first_entry(&virt_timer_list,
290                                          struct vtimer_list, entry);
291                 atomic64_set(&virt_timer_current, timer->expires);
292         }
293         atomic64_sub(elapsed, &virt_timer_elapsed);
294         spin_unlock(&virt_timer_lock);
295
296         /* Do callbacks and recharge periodic timers */
297         list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
298                 list_del_init(&timer->entry);
299                 timer->function(timer->data);
300                 if (timer->interval) {
301                         /* Recharge interval timer */
302                         timer->expires = timer->interval +
303                                 atomic64_read(&virt_timer_elapsed);
304                         spin_lock(&virt_timer_lock);
305                         list_add_sorted(timer, &virt_timer_list);
306                         spin_unlock(&virt_timer_lock);
307                 }
308         }
309 }
310
311 void init_virt_timer(struct vtimer_list *timer)
312 {
313         timer->function = NULL;
314         INIT_LIST_HEAD(&timer->entry);
315 }
316 EXPORT_SYMBOL(init_virt_timer);
317
318 static inline int vtimer_pending(struct vtimer_list *timer)
319 {
320         return !list_empty(&timer->entry);
321 }
322
323 static void internal_add_vtimer(struct vtimer_list *timer)
324 {
325         if (list_empty(&virt_timer_list)) {
326                 /* First timer, just program it. */
327                 atomic64_set(&virt_timer_current, timer->expires);
328                 atomic64_set(&virt_timer_elapsed, 0);
329                 list_add(&timer->entry, &virt_timer_list);
330         } else {
331                 /* Update timer against current base. */
332                 timer->expires += atomic64_read(&virt_timer_elapsed);
333                 if (likely((s64) timer->expires <
334                            (s64) atomic64_read(&virt_timer_current)))
335                         /* The new timer expires before the current timer. */
336                         atomic64_set(&virt_timer_current, timer->expires);
337                 /* Insert new timer into the list. */
338                 list_add_sorted(timer, &virt_timer_list);
339         }
340 }
341
342 static void __add_vtimer(struct vtimer_list *timer, int periodic)
343 {
344         unsigned long flags;
345
346         timer->interval = periodic ? timer->expires : 0;
347         spin_lock_irqsave(&virt_timer_lock, flags);
348         internal_add_vtimer(timer);
349         spin_unlock_irqrestore(&virt_timer_lock, flags);
350 }
351
352 /*
353  * add_virt_timer - add a oneshot virtual CPU timer
354  */
355 void add_virt_timer(struct vtimer_list *timer)
356 {
357         __add_vtimer(timer, 0);
358 }
359 EXPORT_SYMBOL(add_virt_timer);
360
361 /*
362  * add_virt_timer_int - add an interval virtual CPU timer
363  */
364 void add_virt_timer_periodic(struct vtimer_list *timer)
365 {
366         __add_vtimer(timer, 1);
367 }
368 EXPORT_SYMBOL(add_virt_timer_periodic);
369
370 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
371 {
372         unsigned long flags;
373         int rc;
374
375         BUG_ON(!timer->function);
376
377         if (timer->expires == expires && vtimer_pending(timer))
378                 return 1;
379         spin_lock_irqsave(&virt_timer_lock, flags);
380         rc = vtimer_pending(timer);
381         if (rc)
382                 list_del_init(&timer->entry);
383         timer->interval = periodic ? expires : 0;
384         timer->expires = expires;
385         internal_add_vtimer(timer);
386         spin_unlock_irqrestore(&virt_timer_lock, flags);
387         return rc;
388 }
389
390 /*
391  * returns whether it has modified a pending timer (1) or not (0)
392  */
393 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
394 {
395         return __mod_vtimer(timer, expires, 0);
396 }
397 EXPORT_SYMBOL(mod_virt_timer);
398
399 /*
400  * returns whether it has modified a pending timer (1) or not (0)
401  */
402 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
403 {
404         return __mod_vtimer(timer, expires, 1);
405 }
406 EXPORT_SYMBOL(mod_virt_timer_periodic);
407
408 /*
409  * Delete a virtual timer.
410  *
411  * returns whether the deleted timer was pending (1) or not (0)
412  */
413 int del_virt_timer(struct vtimer_list *timer)
414 {
415         unsigned long flags;
416
417         if (!vtimer_pending(timer))
418                 return 0;
419         spin_lock_irqsave(&virt_timer_lock, flags);
420         list_del_init(&timer->entry);
421         spin_unlock_irqrestore(&virt_timer_lock, flags);
422         return 1;
423 }
424 EXPORT_SYMBOL(del_virt_timer);
425
426 /*
427  * Start the virtual CPU timer on the current CPU.
428  */
429 void vtime_init(void)
430 {
431         /* set initial cpu timer */
432         set_vtimer(VTIMER_MAX_SLICE);
433         /* Setup initial MT scaling values */
434         if (smp_cpu_mtid) {
435                 __this_cpu_write(mt_scaling_jiffies, jiffies);
436                 __this_cpu_write(mt_scaling_mult, 1);
437                 __this_cpu_write(mt_scaling_div, 1);
438                 stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
439         }
440 }