Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[sfrench/cifs-2.6.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54
55 /* logical cpu to cpu address */
56 int __cpu_logical_map[NR_CPUS];
57
58 static struct task_struct *current_set[NR_CPUS];
59
60 static u8 smp_cpu_type;
61 static int smp_use_sigp_detection;
62
63 enum s390_cpu_state {
64         CPU_STATE_STANDBY,
65         CPU_STATE_CONFIGURED,
66 };
67
68 DEFINE_MUTEX(smp_cpu_state_mutex);
69 int smp_cpu_polarization[NR_CPUS];
70 static int smp_cpu_state[NR_CPUS];
71 static int cpu_management;
72
73 static DEFINE_PER_CPU(struct cpu, cpu_devices);
74
75 static void smp_ext_bitcall(int, ec_bit_sig);
76
77 static int cpu_stopped(int cpu)
78 {
79         __u32 status;
80
81         switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
82         case sigp_status_stored:
83                 /* Check for stopped and check stop state */
84                 if (status & 0x50)
85                         return 1;
86                 break;
87         default:
88                 break;
89         }
90         return 0;
91 }
92
93 void smp_send_stop(void)
94 {
95         int cpu, rc;
96
97         /* Disable all interrupts/machine checks */
98         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
99         trace_hardirqs_off();
100
101         /* stop all processors */
102         for_each_online_cpu(cpu) {
103                 if (cpu == smp_processor_id())
104                         continue;
105                 do {
106                         rc = signal_processor(cpu, sigp_stop);
107                 } while (rc == sigp_busy);
108
109                 while (!cpu_stopped(cpu))
110                         cpu_relax();
111         }
112 }
113
114 /*
115  * This is the main routine where commands issued by other
116  * cpus are handled.
117  */
118
119 static void do_ext_call_interrupt(__u16 code)
120 {
121         unsigned long bits;
122
123         /*
124          * handle bit signal external calls
125          *
126          * For the ec_schedule signal we have to do nothing. All the work
127          * is done automatically when we return from the interrupt.
128          */
129         bits = xchg(&S390_lowcore.ext_call_fast, 0);
130
131         if (test_bit(ec_call_function, &bits))
132                 generic_smp_call_function_interrupt();
133
134         if (test_bit(ec_call_function_single, &bits))
135                 generic_smp_call_function_single_interrupt();
136 }
137
138 /*
139  * Send an external call sigp to another cpu and return without waiting
140  * for its completion.
141  */
142 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
143 {
144         /*
145          * Set signaling bit in lowcore of target cpu and kick it
146          */
147         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
148         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
149                 udelay(10);
150 }
151
152 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
153 {
154         int cpu;
155
156         for_each_cpu(cpu, mask)
157                 smp_ext_bitcall(cpu, ec_call_function);
158 }
159
160 void arch_send_call_function_single_ipi(int cpu)
161 {
162         smp_ext_bitcall(cpu, ec_call_function_single);
163 }
164
165 #ifndef CONFIG_64BIT
166 /*
167  * this function sends a 'purge tlb' signal to another CPU.
168  */
169 static void smp_ptlb_callback(void *info)
170 {
171         __tlb_flush_local();
172 }
173
174 void smp_ptlb_all(void)
175 {
176         on_each_cpu(smp_ptlb_callback, NULL, 1);
177 }
178 EXPORT_SYMBOL(smp_ptlb_all);
179 #endif /* ! CONFIG_64BIT */
180
181 /*
182  * this function sends a 'reschedule' IPI to another CPU.
183  * it goes straight through and wastes no time serializing
184  * anything. Worst case is that we lose a reschedule ...
185  */
186 void smp_send_reschedule(int cpu)
187 {
188         smp_ext_bitcall(cpu, ec_schedule);
189 }
190
191 /*
192  * parameter area for the set/clear control bit callbacks
193  */
194 struct ec_creg_mask_parms {
195         unsigned long orvals[16];
196         unsigned long andvals[16];
197 };
198
199 /*
200  * callback for setting/clearing control bits
201  */
202 static void smp_ctl_bit_callback(void *info)
203 {
204         struct ec_creg_mask_parms *pp = info;
205         unsigned long cregs[16];
206         int i;
207
208         __ctl_store(cregs, 0, 15);
209         for (i = 0; i <= 15; i++)
210                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
211         __ctl_load(cregs, 0, 15);
212 }
213
214 /*
215  * Set a bit in a control register of all cpus
216  */
217 void smp_ctl_set_bit(int cr, int bit)
218 {
219         struct ec_creg_mask_parms parms;
220
221         memset(&parms.orvals, 0, sizeof(parms.orvals));
222         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
223         parms.orvals[cr] = 1 << bit;
224         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
225 }
226 EXPORT_SYMBOL(smp_ctl_set_bit);
227
228 /*
229  * Clear a bit in a control register of all cpus
230  */
231 void smp_ctl_clear_bit(int cr, int bit)
232 {
233         struct ec_creg_mask_parms parms;
234
235         memset(&parms.orvals, 0, sizeof(parms.orvals));
236         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
237         parms.andvals[cr] = ~(1L << bit);
238         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
239 }
240 EXPORT_SYMBOL(smp_ctl_clear_bit);
241
242 /*
243  * In early ipl state a temp. logically cpu number is needed, so the sigp
244  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
245  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
246  */
247 #define CPU_INIT_NO     1
248
249 #ifdef CONFIG_ZFCPDUMP
250
251 /*
252  * zfcpdump_prefix_array holds prefix registers for the following scenario:
253  * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
254  * save its prefix registers, since they get lost, when switching from 31 bit
255  * to 64 bit.
256  */
257 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
258         __attribute__((__section__(".data")));
259
260 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
261 {
262         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
263                 return;
264         if (cpu >= NR_CPUS) {
265                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
266                            "the dump\n", cpu, NR_CPUS - 1);
267                 return;
268         }
269         zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
270         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
271         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
272                sigp_busy)
273                 cpu_relax();
274         memcpy(zfcpdump_save_areas[cpu],
275                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
276                SAVE_AREA_SIZE);
277 #ifdef CONFIG_64BIT
278         /* copy original prefix register */
279         zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
280 #endif
281 }
282
283 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
284 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
285
286 #else
287
288 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
289
290 #endif /* CONFIG_ZFCPDUMP */
291
292 static int cpu_known(int cpu_id)
293 {
294         int cpu;
295
296         for_each_present_cpu(cpu) {
297                 if (__cpu_logical_map[cpu] == cpu_id)
298                         return 1;
299         }
300         return 0;
301 }
302
303 static int smp_rescan_cpus_sigp(cpumask_t avail)
304 {
305         int cpu_id, logical_cpu;
306
307         logical_cpu = cpumask_first(&avail);
308         if (logical_cpu >= nr_cpu_ids)
309                 return 0;
310         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
311                 if (cpu_known(cpu_id))
312                         continue;
313                 __cpu_logical_map[logical_cpu] = cpu_id;
314                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
315                 if (!cpu_stopped(logical_cpu))
316                         continue;
317                 cpu_set(logical_cpu, cpu_present_map);
318                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
319                 logical_cpu = cpumask_next(logical_cpu, &avail);
320                 if (logical_cpu >= nr_cpu_ids)
321                         break;
322         }
323         return 0;
324 }
325
326 static int smp_rescan_cpus_sclp(cpumask_t avail)
327 {
328         struct sclp_cpu_info *info;
329         int cpu_id, logical_cpu, cpu;
330         int rc;
331
332         logical_cpu = cpumask_first(&avail);
333         if (logical_cpu >= nr_cpu_ids)
334                 return 0;
335         info = kmalloc(sizeof(*info), GFP_KERNEL);
336         if (!info)
337                 return -ENOMEM;
338         rc = sclp_get_cpu_info(info);
339         if (rc)
340                 goto out;
341         for (cpu = 0; cpu < info->combined; cpu++) {
342                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
343                         continue;
344                 cpu_id = info->cpu[cpu].address;
345                 if (cpu_known(cpu_id))
346                         continue;
347                 __cpu_logical_map[logical_cpu] = cpu_id;
348                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
349                 cpu_set(logical_cpu, cpu_present_map);
350                 if (cpu >= info->configured)
351                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
352                 else
353                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
354                 logical_cpu = cpumask_next(logical_cpu, &avail);
355                 if (logical_cpu >= nr_cpu_ids)
356                         break;
357         }
358 out:
359         kfree(info);
360         return rc;
361 }
362
363 static int __smp_rescan_cpus(void)
364 {
365         cpumask_t avail;
366
367         cpus_xor(avail, cpu_possible_map, cpu_present_map);
368         if (smp_use_sigp_detection)
369                 return smp_rescan_cpus_sigp(avail);
370         else
371                 return smp_rescan_cpus_sclp(avail);
372 }
373
374 static void __init smp_detect_cpus(void)
375 {
376         unsigned int cpu, c_cpus, s_cpus;
377         struct sclp_cpu_info *info;
378         u16 boot_cpu_addr, cpu_addr;
379
380         c_cpus = 1;
381         s_cpus = 0;
382         boot_cpu_addr = __cpu_logical_map[0];
383         info = kmalloc(sizeof(*info), GFP_KERNEL);
384         if (!info)
385                 panic("smp_detect_cpus failed to allocate memory\n");
386         /* Use sigp detection algorithm if sclp doesn't work. */
387         if (sclp_get_cpu_info(info)) {
388                 smp_use_sigp_detection = 1;
389                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
390                         if (cpu == boot_cpu_addr)
391                                 continue;
392                         __cpu_logical_map[CPU_INIT_NO] = cpu;
393                         if (!cpu_stopped(CPU_INIT_NO))
394                                 continue;
395                         smp_get_save_area(c_cpus, cpu);
396                         c_cpus++;
397                 }
398                 goto out;
399         }
400
401         if (info->has_cpu_type) {
402                 for (cpu = 0; cpu < info->combined; cpu++) {
403                         if (info->cpu[cpu].address == boot_cpu_addr) {
404                                 smp_cpu_type = info->cpu[cpu].type;
405                                 break;
406                         }
407                 }
408         }
409
410         for (cpu = 0; cpu < info->combined; cpu++) {
411                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
412                         continue;
413                 cpu_addr = info->cpu[cpu].address;
414                 if (cpu_addr == boot_cpu_addr)
415                         continue;
416                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
417                 if (!cpu_stopped(CPU_INIT_NO)) {
418                         s_cpus++;
419                         continue;
420                 }
421                 smp_get_save_area(c_cpus, cpu_addr);
422                 c_cpus++;
423         }
424 out:
425         kfree(info);
426         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
427         get_online_cpus();
428         __smp_rescan_cpus();
429         put_online_cpus();
430 }
431
432 /*
433  *      Activate a secondary processor.
434  */
435 int __cpuinit start_secondary(void *cpuvoid)
436 {
437         /* Setup the cpu */
438         cpu_init();
439         preempt_disable();
440         /* Enable TOD clock interrupts on the secondary cpu. */
441         init_cpu_timer();
442         /* Enable cpu timer interrupts on the secondary cpu. */
443         init_cpu_vtimer();
444         /* Enable pfault pseudo page faults on this cpu. */
445         pfault_init();
446
447         /* call cpu notifiers */
448         notify_cpu_starting(smp_processor_id());
449         /* Mark this cpu as online */
450         ipi_call_lock();
451         cpu_set(smp_processor_id(), cpu_online_map);
452         ipi_call_unlock();
453         /* Switch on interrupts */
454         local_irq_enable();
455         /* Print info about this processor */
456         print_cpu_info();
457         /* cpu_idle will call schedule for us */
458         cpu_idle();
459         return 0;
460 }
461
462 static void __init smp_create_idle(unsigned int cpu)
463 {
464         struct task_struct *p;
465
466         /*
467          *  don't care about the psw and regs settings since we'll never
468          *  reschedule the forked task.
469          */
470         p = fork_idle(cpu);
471         if (IS_ERR(p))
472                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
473         current_set[cpu] = p;
474 }
475
476 static int __cpuinit smp_alloc_lowcore(int cpu)
477 {
478         unsigned long async_stack, panic_stack;
479         struct _lowcore *lowcore;
480
481         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
482         if (!lowcore)
483                 return -ENOMEM;
484         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
485         panic_stack = __get_free_page(GFP_KERNEL);
486         if (!panic_stack || !async_stack)
487                 goto out;
488         memcpy(lowcore, &S390_lowcore, 512);
489         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
490         lowcore->async_stack = async_stack + ASYNC_SIZE;
491         lowcore->panic_stack = panic_stack + PAGE_SIZE;
492
493 #ifndef CONFIG_64BIT
494         if (MACHINE_HAS_IEEE) {
495                 unsigned long save_area;
496
497                 save_area = get_zeroed_page(GFP_KERNEL);
498                 if (!save_area)
499                         goto out;
500                 lowcore->extended_save_area_addr = (u32) save_area;
501         }
502 #else
503         if (vdso_alloc_per_cpu(cpu, lowcore))
504                 goto out;
505 #endif
506         lowcore_ptr[cpu] = lowcore;
507         return 0;
508
509 out:
510         free_page(panic_stack);
511         free_pages(async_stack, ASYNC_ORDER);
512         free_pages((unsigned long) lowcore, LC_ORDER);
513         return -ENOMEM;
514 }
515
516 static void smp_free_lowcore(int cpu)
517 {
518         struct _lowcore *lowcore;
519
520         lowcore = lowcore_ptr[cpu];
521 #ifndef CONFIG_64BIT
522         if (MACHINE_HAS_IEEE)
523                 free_page((unsigned long) lowcore->extended_save_area_addr);
524 #else
525         vdso_free_per_cpu(cpu, lowcore);
526 #endif
527         free_page(lowcore->panic_stack - PAGE_SIZE);
528         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
529         free_pages((unsigned long) lowcore, LC_ORDER);
530         lowcore_ptr[cpu] = NULL;
531 }
532
533 /* Upping and downing of CPUs */
534 int __cpuinit __cpu_up(unsigned int cpu)
535 {
536         struct task_struct *idle;
537         struct _lowcore *cpu_lowcore;
538         struct stack_frame *sf;
539         sigp_ccode ccode;
540         u32 lowcore;
541
542         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
543                 return -EIO;
544         if (smp_alloc_lowcore(cpu))
545                 return -ENOMEM;
546         do {
547                 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
548                 if (ccode == sigp_busy)
549                         udelay(10);
550                 if (ccode == sigp_not_operational)
551                         goto err_out;
552         } while (ccode == sigp_busy);
553
554         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
555         while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
556                 udelay(10);
557
558         idle = current_set[cpu];
559         cpu_lowcore = lowcore_ptr[cpu];
560         cpu_lowcore->kernel_stack = (unsigned long)
561                 task_stack_page(idle) + THREAD_SIZE;
562         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
563         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
564                                      - sizeof(struct pt_regs)
565                                      - sizeof(struct stack_frame));
566         memset(sf, 0, sizeof(struct stack_frame));
567         sf->gprs[9] = (unsigned long) sf;
568         cpu_lowcore->save_area[15] = (unsigned long) sf;
569         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
570         asm volatile(
571                 "       stam    0,15,0(%0)"
572                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
573         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
574         cpu_lowcore->current_task = (unsigned long) idle;
575         cpu_lowcore->cpu_nr = cpu;
576         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
577         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
578         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
579         eieio();
580
581         while (signal_processor(cpu, sigp_restart) == sigp_busy)
582                 udelay(10);
583
584         while (!cpu_online(cpu))
585                 cpu_relax();
586         return 0;
587
588 err_out:
589         smp_free_lowcore(cpu);
590         return -EIO;
591 }
592
593 static int __init setup_possible_cpus(char *s)
594 {
595         int pcpus, cpu;
596
597         pcpus = simple_strtoul(s, NULL, 0);
598         init_cpu_possible(cpumask_of(0));
599         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
600                 set_cpu_possible(cpu, true);
601         return 0;
602 }
603 early_param("possible_cpus", setup_possible_cpus);
604
605 #ifdef CONFIG_HOTPLUG_CPU
606
607 int __cpu_disable(void)
608 {
609         struct ec_creg_mask_parms cr_parms;
610         int cpu = smp_processor_id();
611
612         cpu_clear(cpu, cpu_online_map);
613
614         /* Disable pfault pseudo page faults on this cpu. */
615         pfault_fini();
616
617         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
618         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
619
620         /* disable all external interrupts */
621         cr_parms.orvals[0] = 0;
622         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
623                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
624         /* disable all I/O interrupts */
625         cr_parms.orvals[6] = 0;
626         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
627                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
628         /* disable most machine checks */
629         cr_parms.orvals[14] = 0;
630         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
631                                  1 << 25 | 1 << 24);
632
633         smp_ctl_bit_callback(&cr_parms);
634
635         return 0;
636 }
637
638 void __cpu_die(unsigned int cpu)
639 {
640         /* Wait until target cpu is down */
641         while (!cpu_stopped(cpu))
642                 cpu_relax();
643         while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
644                 udelay(10);
645         smp_free_lowcore(cpu);
646         pr_info("Processor %d stopped\n", cpu);
647 }
648
649 void cpu_die(void)
650 {
651         idle_task_exit();
652         while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
653                 cpu_relax();
654         for (;;);
655 }
656
657 #endif /* CONFIG_HOTPLUG_CPU */
658
659 void __init smp_prepare_cpus(unsigned int max_cpus)
660 {
661 #ifndef CONFIG_64BIT
662         unsigned long save_area = 0;
663 #endif
664         unsigned long async_stack, panic_stack;
665         struct _lowcore *lowcore;
666         unsigned int cpu;
667
668         smp_detect_cpus();
669
670         /* request the 0x1201 emergency signal external interrupt */
671         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
672                 panic("Couldn't request external interrupt 0x1201");
673         print_cpu_info();
674
675         /* Reallocate current lowcore, but keep its contents. */
676         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
677         panic_stack = __get_free_page(GFP_KERNEL);
678         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
679         BUG_ON(!lowcore || !panic_stack || !async_stack);
680 #ifndef CONFIG_64BIT
681         if (MACHINE_HAS_IEEE)
682                 save_area = get_zeroed_page(GFP_KERNEL);
683 #endif
684         local_irq_disable();
685         local_mcck_disable();
686         lowcore_ptr[smp_processor_id()] = lowcore;
687         *lowcore = S390_lowcore;
688         lowcore->panic_stack = panic_stack + PAGE_SIZE;
689         lowcore->async_stack = async_stack + ASYNC_SIZE;
690 #ifndef CONFIG_64BIT
691         if (MACHINE_HAS_IEEE)
692                 lowcore->extended_save_area_addr = (u32) save_area;
693 #endif
694         set_prefix((u32)(unsigned long) lowcore);
695         local_mcck_enable();
696         local_irq_enable();
697 #ifdef CONFIG_64BIT
698         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
699                 BUG();
700 #endif
701         for_each_possible_cpu(cpu)
702                 if (cpu != smp_processor_id())
703                         smp_create_idle(cpu);
704 }
705
706 void __init smp_prepare_boot_cpu(void)
707 {
708         BUG_ON(smp_processor_id() != 0);
709
710         current_thread_info()->cpu = 0;
711         cpu_set(0, cpu_present_map);
712         cpu_set(0, cpu_online_map);
713         S390_lowcore.percpu_offset = __per_cpu_offset[0];
714         current_set[0] = current;
715         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
716         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
717 }
718
719 void __init smp_cpus_done(unsigned int max_cpus)
720 {
721 }
722
723 void __init smp_setup_processor_id(void)
724 {
725         S390_lowcore.cpu_nr = 0;
726         __cpu_logical_map[0] = stap();
727 }
728
729 /*
730  * the frequency of the profiling timer can be changed
731  * by writing a multiplier value into /proc/profile.
732  *
733  * usually you want to run this on all CPUs ;)
734  */
735 int setup_profiling_timer(unsigned int multiplier)
736 {
737         return 0;
738 }
739
740 #ifdef CONFIG_HOTPLUG_CPU
741 static ssize_t cpu_configure_show(struct sys_device *dev,
742                                 struct sysdev_attribute *attr, char *buf)
743 {
744         ssize_t count;
745
746         mutex_lock(&smp_cpu_state_mutex);
747         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
748         mutex_unlock(&smp_cpu_state_mutex);
749         return count;
750 }
751
752 static ssize_t cpu_configure_store(struct sys_device *dev,
753                                   struct sysdev_attribute *attr,
754                                   const char *buf, size_t count)
755 {
756         int cpu = dev->id;
757         int val, rc;
758         char delim;
759
760         if (sscanf(buf, "%d %c", &val, &delim) != 1)
761                 return -EINVAL;
762         if (val != 0 && val != 1)
763                 return -EINVAL;
764
765         get_online_cpus();
766         mutex_lock(&smp_cpu_state_mutex);
767         rc = -EBUSY;
768         if (cpu_online(cpu))
769                 goto out;
770         rc = 0;
771         switch (val) {
772         case 0:
773                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
774                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
775                         if (!rc) {
776                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
777                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
778                         }
779                 }
780                 break;
781         case 1:
782                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
783                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
784                         if (!rc) {
785                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
786                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
787                         }
788                 }
789                 break;
790         default:
791                 break;
792         }
793 out:
794         mutex_unlock(&smp_cpu_state_mutex);
795         put_online_cpus();
796         return rc ? rc : count;
797 }
798 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
799 #endif /* CONFIG_HOTPLUG_CPU */
800
801 static ssize_t cpu_polarization_show(struct sys_device *dev,
802                                      struct sysdev_attribute *attr, char *buf)
803 {
804         int cpu = dev->id;
805         ssize_t count;
806
807         mutex_lock(&smp_cpu_state_mutex);
808         switch (smp_cpu_polarization[cpu]) {
809         case POLARIZATION_HRZ:
810                 count = sprintf(buf, "horizontal\n");
811                 break;
812         case POLARIZATION_VL:
813                 count = sprintf(buf, "vertical:low\n");
814                 break;
815         case POLARIZATION_VM:
816                 count = sprintf(buf, "vertical:medium\n");
817                 break;
818         case POLARIZATION_VH:
819                 count = sprintf(buf, "vertical:high\n");
820                 break;
821         default:
822                 count = sprintf(buf, "unknown\n");
823                 break;
824         }
825         mutex_unlock(&smp_cpu_state_mutex);
826         return count;
827 }
828 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
829
830 static ssize_t show_cpu_address(struct sys_device *dev,
831                                 struct sysdev_attribute *attr, char *buf)
832 {
833         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
834 }
835 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
836
837
838 static struct attribute *cpu_common_attrs[] = {
839 #ifdef CONFIG_HOTPLUG_CPU
840         &attr_configure.attr,
841 #endif
842         &attr_address.attr,
843         &attr_polarization.attr,
844         NULL,
845 };
846
847 static struct attribute_group cpu_common_attr_group = {
848         .attrs = cpu_common_attrs,
849 };
850
851 static ssize_t show_capability(struct sys_device *dev,
852                                 struct sysdev_attribute *attr, char *buf)
853 {
854         unsigned int capability;
855         int rc;
856
857         rc = get_cpu_capability(&capability);
858         if (rc)
859                 return rc;
860         return sprintf(buf, "%u\n", capability);
861 }
862 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
863
864 static ssize_t show_idle_count(struct sys_device *dev,
865                                 struct sysdev_attribute *attr, char *buf)
866 {
867         struct s390_idle_data *idle;
868         unsigned long long idle_count;
869         unsigned int sequence;
870
871         idle = &per_cpu(s390_idle, dev->id);
872 repeat:
873         sequence = idle->sequence;
874         smp_rmb();
875         if (sequence & 1)
876                 goto repeat;
877         idle_count = idle->idle_count;
878         if (idle->idle_enter)
879                 idle_count++;
880         smp_rmb();
881         if (idle->sequence != sequence)
882                 goto repeat;
883         return sprintf(buf, "%llu\n", idle_count);
884 }
885 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
886
887 static ssize_t show_idle_time(struct sys_device *dev,
888                                 struct sysdev_attribute *attr, char *buf)
889 {
890         struct s390_idle_data *idle;
891         unsigned long long now, idle_time, idle_enter;
892         unsigned int sequence;
893
894         idle = &per_cpu(s390_idle, dev->id);
895         now = get_clock();
896 repeat:
897         sequence = idle->sequence;
898         smp_rmb();
899         if (sequence & 1)
900                 goto repeat;
901         idle_time = idle->idle_time;
902         idle_enter = idle->idle_enter;
903         if (idle_enter != 0ULL && idle_enter < now)
904                 idle_time += now - idle_enter;
905         smp_rmb();
906         if (idle->sequence != sequence)
907                 goto repeat;
908         return sprintf(buf, "%llu\n", idle_time >> 12);
909 }
910 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
911
912 static struct attribute *cpu_online_attrs[] = {
913         &attr_capability.attr,
914         &attr_idle_count.attr,
915         &attr_idle_time_us.attr,
916         NULL,
917 };
918
919 static struct attribute_group cpu_online_attr_group = {
920         .attrs = cpu_online_attrs,
921 };
922
923 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
924                                     unsigned long action, void *hcpu)
925 {
926         unsigned int cpu = (unsigned int)(long)hcpu;
927         struct cpu *c = &per_cpu(cpu_devices, cpu);
928         struct sys_device *s = &c->sysdev;
929         struct s390_idle_data *idle;
930
931         switch (action) {
932         case CPU_ONLINE:
933         case CPU_ONLINE_FROZEN:
934                 idle = &per_cpu(s390_idle, cpu);
935                 memset(idle, 0, sizeof(struct s390_idle_data));
936                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
937                         return NOTIFY_BAD;
938                 break;
939         case CPU_DEAD:
940         case CPU_DEAD_FROZEN:
941                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
942                 break;
943         }
944         return NOTIFY_OK;
945 }
946
947 static struct notifier_block __cpuinitdata smp_cpu_nb = {
948         .notifier_call = smp_cpu_notify,
949 };
950
951 static int __devinit smp_add_present_cpu(int cpu)
952 {
953         struct cpu *c = &per_cpu(cpu_devices, cpu);
954         struct sys_device *s = &c->sysdev;
955         int rc;
956
957         c->hotpluggable = 1;
958         rc = register_cpu(c, cpu);
959         if (rc)
960                 goto out;
961         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
962         if (rc)
963                 goto out_cpu;
964         if (!cpu_online(cpu))
965                 goto out;
966         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
967         if (!rc)
968                 return 0;
969         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
970 out_cpu:
971 #ifdef CONFIG_HOTPLUG_CPU
972         unregister_cpu(c);
973 #endif
974 out:
975         return rc;
976 }
977
978 #ifdef CONFIG_HOTPLUG_CPU
979
980 int __ref smp_rescan_cpus(void)
981 {
982         cpumask_t newcpus;
983         int cpu;
984         int rc;
985
986         get_online_cpus();
987         mutex_lock(&smp_cpu_state_mutex);
988         newcpus = cpu_present_map;
989         rc = __smp_rescan_cpus();
990         if (rc)
991                 goto out;
992         cpus_andnot(newcpus, cpu_present_map, newcpus);
993         for_each_cpu_mask(cpu, newcpus) {
994                 rc = smp_add_present_cpu(cpu);
995                 if (rc)
996                         cpu_clear(cpu, cpu_present_map);
997         }
998         rc = 0;
999 out:
1000         mutex_unlock(&smp_cpu_state_mutex);
1001         put_online_cpus();
1002         if (!cpus_empty(newcpus))
1003                 topology_schedule_update();
1004         return rc;
1005 }
1006
1007 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
1008                                   size_t count)
1009 {
1010         int rc;
1011
1012         rc = smp_rescan_cpus();
1013         return rc ? rc : count;
1014 }
1015 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1016 #endif /* CONFIG_HOTPLUG_CPU */
1017
1018 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1019 {
1020         ssize_t count;
1021
1022         mutex_lock(&smp_cpu_state_mutex);
1023         count = sprintf(buf, "%d\n", cpu_management);
1024         mutex_unlock(&smp_cpu_state_mutex);
1025         return count;
1026 }
1027
1028 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1029                                  size_t count)
1030 {
1031         int val, rc;
1032         char delim;
1033
1034         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1035                 return -EINVAL;
1036         if (val != 0 && val != 1)
1037                 return -EINVAL;
1038         rc = 0;
1039         get_online_cpus();
1040         mutex_lock(&smp_cpu_state_mutex);
1041         if (cpu_management == val)
1042                 goto out;
1043         rc = topology_set_cpu_management(val);
1044         if (!rc)
1045                 cpu_management = val;
1046 out:
1047         mutex_unlock(&smp_cpu_state_mutex);
1048         put_online_cpus();
1049         return rc ? rc : count;
1050 }
1051 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1052                          dispatching_store);
1053
1054 static int __init topology_init(void)
1055 {
1056         int cpu;
1057         int rc;
1058
1059         register_cpu_notifier(&smp_cpu_nb);
1060
1061 #ifdef CONFIG_HOTPLUG_CPU
1062         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1063         if (rc)
1064                 return rc;
1065 #endif
1066         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1067         if (rc)
1068                 return rc;
1069         for_each_present_cpu(cpu) {
1070                 rc = smp_add_present_cpu(cpu);
1071                 if (rc)
1072                         return rc;
1073         }
1074         return 0;
1075 }
1076 subsys_initcall(topology_init);