Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[sfrench/cifs-2.6.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/cpu.h>
33 #include <linux/slab.h>
34 #include <linux/sched/hotplug.h>
35 #include <linux/sched/task_stack.h>
36 #include <linux/crash_dump.h>
37 #include <linux/memblock.h>
38 #include <asm/asm-offsets.h>
39 #include <asm/diag.h>
40 #include <asm/switch_to.h>
41 #include <asm/facility.h>
42 #include <asm/ipl.h>
43 #include <asm/setup.h>
44 #include <asm/irq.h>
45 #include <asm/tlbflush.h>
46 #include <asm/vtimer.h>
47 #include <asm/lowcore.h>
48 #include <asm/sclp.h>
49 #include <asm/vdso.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include "entry.h"
55
56 enum {
57         ec_schedule = 0,
58         ec_call_function_single,
59         ec_stop_cpu,
60 };
61
62 enum {
63         CPU_STATE_STANDBY,
64         CPU_STATE_CONFIGURED,
65 };
66
67 static DEFINE_PER_CPU(struct cpu *, cpu_device);
68
69 struct pcpu {
70         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
71         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
72         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
73         signed char state;              /* physical cpu state */
74         signed char polarization;       /* physical polarization */
75         u16 address;                    /* physical cpu address */
76 };
77
78 static u8 boot_core_type;
79 static struct pcpu pcpu_devices[NR_CPUS];
80
81 unsigned int smp_cpu_mt_shift;
82 EXPORT_SYMBOL(smp_cpu_mt_shift);
83
84 unsigned int smp_cpu_mtid;
85 EXPORT_SYMBOL(smp_cpu_mtid);
86
87 #ifdef CONFIG_CRASH_DUMP
88 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
89 #endif
90
91 static unsigned int smp_max_threads __initdata = -1U;
92
93 static int __init early_nosmt(char *s)
94 {
95         smp_max_threads = 1;
96         return 0;
97 }
98 early_param("nosmt", early_nosmt);
99
100 static int __init early_smt(char *s)
101 {
102         get_option(&s, &smp_max_threads);
103         return 0;
104 }
105 early_param("smt", early_smt);
106
107 /*
108  * The smp_cpu_state_mutex must be held when changing the state or polarization
109  * member of a pcpu data structure within the pcpu_devices arreay.
110  */
111 DEFINE_MUTEX(smp_cpu_state_mutex);
112
113 /*
114  * Signal processor helper functions.
115  */
116 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
117 {
118         int cc;
119
120         while (1) {
121                 cc = __pcpu_sigp(addr, order, parm, NULL);
122                 if (cc != SIGP_CC_BUSY)
123                         return cc;
124                 cpu_relax();
125         }
126 }
127
128 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
129 {
130         int cc, retry;
131
132         for (retry = 0; ; retry++) {
133                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
134                 if (cc != SIGP_CC_BUSY)
135                         break;
136                 if (retry >= 3)
137                         udelay(10);
138         }
139         return cc;
140 }
141
142 static inline int pcpu_stopped(struct pcpu *pcpu)
143 {
144         u32 uninitialized_var(status);
145
146         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
147                         0, &status) != SIGP_CC_STATUS_STORED)
148                 return 0;
149         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
150 }
151
152 static inline int pcpu_running(struct pcpu *pcpu)
153 {
154         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
155                         0, NULL) != SIGP_CC_STATUS_STORED)
156                 return 1;
157         /* Status stored condition code is equivalent to cpu not running. */
158         return 0;
159 }
160
161 /*
162  * Find struct pcpu by cpu address.
163  */
164 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
165 {
166         int cpu;
167
168         for_each_cpu(cpu, mask)
169                 if (pcpu_devices[cpu].address == address)
170                         return pcpu_devices + cpu;
171         return NULL;
172 }
173
174 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
175 {
176         int order;
177
178         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
179                 return;
180         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
181         pcpu->ec_clk = get_tod_clock_fast();
182         pcpu_sigp_retry(pcpu, order, 0);
183 }
184
185 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
186 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
187
188 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190         unsigned long async_stack, panic_stack;
191         struct lowcore *lc;
192
193         if (pcpu != &pcpu_devices[0]) {
194                 pcpu->lowcore = (struct lowcore *)
195                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
197                 panic_stack = __get_free_page(GFP_KERNEL);
198                 if (!pcpu->lowcore || !panic_stack || !async_stack)
199                         goto out;
200         } else {
201                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
202                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
203         }
204         lc = pcpu->lowcore;
205         memcpy(lc, &S390_lowcore, 512);
206         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
207         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
208         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
209         lc->cpu_nr = cpu;
210         lc->spinlock_lockval = arch_spin_lockval(cpu);
211         if (MACHINE_HAS_VX)
212                 lc->vector_save_area_addr =
213                         (unsigned long) &lc->vector_save_area;
214         if (vdso_alloc_per_cpu(lc))
215                 goto out;
216         lowcore_ptr[cpu] = lc;
217         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
218         return 0;
219 out:
220         if (pcpu != &pcpu_devices[0]) {
221                 free_page(panic_stack);
222                 free_pages(async_stack, ASYNC_ORDER);
223                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224         }
225         return -ENOMEM;
226 }
227
228 #ifdef CONFIG_HOTPLUG_CPU
229
230 static void pcpu_free_lowcore(struct pcpu *pcpu)
231 {
232         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
233         lowcore_ptr[pcpu - pcpu_devices] = NULL;
234         vdso_free_per_cpu(pcpu->lowcore);
235         if (pcpu == &pcpu_devices[0])
236                 return;
237         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
238         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
239         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
240 }
241
242 #endif /* CONFIG_HOTPLUG_CPU */
243
244 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
245 {
246         struct lowcore *lc = pcpu->lowcore;
247
248         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
249         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
250         lc->cpu_nr = cpu;
251         lc->spinlock_lockval = arch_spin_lockval(cpu);
252         lc->percpu_offset = __per_cpu_offset[cpu];
253         lc->kernel_asce = S390_lowcore.kernel_asce;
254         lc->machine_flags = S390_lowcore.machine_flags;
255         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
256         __ctl_store(lc->cregs_save_area, 0, 15);
257         save_access_regs((unsigned int *) lc->access_regs_save_area);
258         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
259                MAX_FACILITY_BIT/8);
260 }
261
262 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
263 {
264         struct lowcore *lc = pcpu->lowcore;
265
266         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
267                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
268         lc->current_task = (unsigned long) tsk;
269         lc->lpp = LPP_MAGIC;
270         lc->current_pid = tsk->pid;
271         lc->user_timer = tsk->thread.user_timer;
272         lc->system_timer = tsk->thread.system_timer;
273         lc->steal_timer = 0;
274 }
275
276 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
277 {
278         struct lowcore *lc = pcpu->lowcore;
279
280         lc->restart_stack = lc->kernel_stack;
281         lc->restart_fn = (unsigned long) func;
282         lc->restart_data = (unsigned long) data;
283         lc->restart_source = -1UL;
284         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
285 }
286
287 /*
288  * Call function via PSW restart on pcpu and stop the current cpu.
289  */
290 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
291                           void *data, unsigned long stack)
292 {
293         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
294         unsigned long source_cpu = stap();
295
296         __load_psw_mask(PSW_KERNEL_BITS);
297         if (pcpu->address == source_cpu)
298                 func(data);     /* should not return */
299         /* Stop target cpu (if func returns this stops the current cpu). */
300         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
301         /* Restart func on the target cpu and stop the current cpu. */
302         mem_assign_absolute(lc->restart_stack, stack);
303         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
304         mem_assign_absolute(lc->restart_data, (unsigned long) data);
305         mem_assign_absolute(lc->restart_source, source_cpu);
306         asm volatile(
307                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
308                 "       brc     2,0b    # busy, try again\n"
309                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
310                 "       brc     2,1b    # busy, try again\n"
311                 : : "d" (pcpu->address), "d" (source_cpu),
312                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
313                 : "0", "1", "cc");
314         for (;;) ;
315 }
316
317 /*
318  * Enable additional logical cpus for multi-threading.
319  */
320 static int pcpu_set_smt(unsigned int mtid)
321 {
322         int cc;
323
324         if (smp_cpu_mtid == mtid)
325                 return 0;
326         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
327         if (cc == 0) {
328                 smp_cpu_mtid = mtid;
329                 smp_cpu_mt_shift = 0;
330                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
331                         smp_cpu_mt_shift++;
332                 pcpu_devices[0].address = stap();
333         }
334         return cc;
335 }
336
337 /*
338  * Call function on an online CPU.
339  */
340 void smp_call_online_cpu(void (*func)(void *), void *data)
341 {
342         struct pcpu *pcpu;
343
344         /* Use the current cpu if it is online. */
345         pcpu = pcpu_find_address(cpu_online_mask, stap());
346         if (!pcpu)
347                 /* Use the first online cpu. */
348                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
349         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
350 }
351
352 /*
353  * Call function on the ipl CPU.
354  */
355 void smp_call_ipl_cpu(void (*func)(void *), void *data)
356 {
357         pcpu_delegate(&pcpu_devices[0], func, data,
358                       pcpu_devices->lowcore->panic_stack -
359                       PANIC_FRAME_OFFSET + PAGE_SIZE);
360 }
361
362 int smp_find_processor_id(u16 address)
363 {
364         int cpu;
365
366         for_each_present_cpu(cpu)
367                 if (pcpu_devices[cpu].address == address)
368                         return cpu;
369         return -1;
370 }
371
372 bool arch_vcpu_is_preempted(int cpu)
373 {
374         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
375                 return false;
376         if (pcpu_running(pcpu_devices + cpu))
377                 return false;
378         return true;
379 }
380 EXPORT_SYMBOL(arch_vcpu_is_preempted);
381
382 void smp_yield_cpu(int cpu)
383 {
384         if (MACHINE_HAS_DIAG9C) {
385                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
386                 asm volatile("diag %0,0,0x9c"
387                              : : "d" (pcpu_devices[cpu].address));
388         } else if (MACHINE_HAS_DIAG44) {
389                 diag_stat_inc_norecursion(DIAG_STAT_X044);
390                 asm volatile("diag 0,0,0x44");
391         }
392 }
393
394 /*
395  * Send cpus emergency shutdown signal. This gives the cpus the
396  * opportunity to complete outstanding interrupts.
397  */
398 static void smp_emergency_stop(cpumask_t *cpumask)
399 {
400         u64 end;
401         int cpu;
402
403         end = get_tod_clock() + (1000000UL << 12);
404         for_each_cpu(cpu, cpumask) {
405                 struct pcpu *pcpu = pcpu_devices + cpu;
406                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
407                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
408                                    0, NULL) == SIGP_CC_BUSY &&
409                        get_tod_clock() < end)
410                         cpu_relax();
411         }
412         while (get_tod_clock() < end) {
413                 for_each_cpu(cpu, cpumask)
414                         if (pcpu_stopped(pcpu_devices + cpu))
415                                 cpumask_clear_cpu(cpu, cpumask);
416                 if (cpumask_empty(cpumask))
417                         break;
418                 cpu_relax();
419         }
420 }
421
422 /*
423  * Stop all cpus but the current one.
424  */
425 void smp_send_stop(void)
426 {
427         cpumask_t cpumask;
428         int cpu;
429
430         /* Disable all interrupts/machine checks */
431         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
432         trace_hardirqs_off();
433
434         debug_set_critical();
435         cpumask_copy(&cpumask, cpu_online_mask);
436         cpumask_clear_cpu(smp_processor_id(), &cpumask);
437
438         if (oops_in_progress)
439                 smp_emergency_stop(&cpumask);
440
441         /* stop all processors */
442         for_each_cpu(cpu, &cpumask) {
443                 struct pcpu *pcpu = pcpu_devices + cpu;
444                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
445                 while (!pcpu_stopped(pcpu))
446                         cpu_relax();
447         }
448 }
449
450 /*
451  * This is the main routine where commands issued by other
452  * cpus are handled.
453  */
454 static void smp_handle_ext_call(void)
455 {
456         unsigned long bits;
457
458         /* handle bit signal external calls */
459         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
460         if (test_bit(ec_stop_cpu, &bits))
461                 smp_stop_cpu();
462         if (test_bit(ec_schedule, &bits))
463                 scheduler_ipi();
464         if (test_bit(ec_call_function_single, &bits))
465                 generic_smp_call_function_single_interrupt();
466 }
467
468 static void do_ext_call_interrupt(struct ext_code ext_code,
469                                   unsigned int param32, unsigned long param64)
470 {
471         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
472         smp_handle_ext_call();
473 }
474
475 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
476 {
477         int cpu;
478
479         for_each_cpu(cpu, mask)
480                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
481 }
482
483 void arch_send_call_function_single_ipi(int cpu)
484 {
485         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
486 }
487
488 /*
489  * this function sends a 'reschedule' IPI to another CPU.
490  * it goes straight through and wastes no time serializing
491  * anything. Worst case is that we lose a reschedule ...
492  */
493 void smp_send_reschedule(int cpu)
494 {
495         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
496 }
497
498 /*
499  * parameter area for the set/clear control bit callbacks
500  */
501 struct ec_creg_mask_parms {
502         unsigned long orval;
503         unsigned long andval;
504         int cr;
505 };
506
507 /*
508  * callback for setting/clearing control bits
509  */
510 static void smp_ctl_bit_callback(void *info)
511 {
512         struct ec_creg_mask_parms *pp = info;
513         unsigned long cregs[16];
514
515         __ctl_store(cregs, 0, 15);
516         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
517         __ctl_load(cregs, 0, 15);
518 }
519
520 /*
521  * Set a bit in a control register of all cpus
522  */
523 void smp_ctl_set_bit(int cr, int bit)
524 {
525         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
526
527         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
528 }
529 EXPORT_SYMBOL(smp_ctl_set_bit);
530
531 /*
532  * Clear a bit in a control register of all cpus
533  */
534 void smp_ctl_clear_bit(int cr, int bit)
535 {
536         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
537
538         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
539 }
540 EXPORT_SYMBOL(smp_ctl_clear_bit);
541
542 #ifdef CONFIG_CRASH_DUMP
543
544 int smp_store_status(int cpu)
545 {
546         struct pcpu *pcpu = pcpu_devices + cpu;
547         unsigned long pa;
548
549         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
550         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
551                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
552                 return -EIO;
553         if (!MACHINE_HAS_VX)
554                 return 0;
555         pa = __pa(pcpu->lowcore->vector_save_area_addr);
556         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
557                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
558                 return -EIO;
559         return 0;
560 }
561
562 /*
563  * Collect CPU state of the previous, crashed system.
564  * There are four cases:
565  * 1) standard zfcp dump
566  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
567  *    The state for all CPUs except the boot CPU needs to be collected
568  *    with sigp stop-and-store-status. The boot CPU state is located in
569  *    the absolute lowcore of the memory stored in the HSA. The zcore code
570  *    will copy the boot CPU state from the HSA.
571  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
572  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
573  *    The state for all CPUs except the boot CPU needs to be collected
574  *    with sigp stop-and-store-status. The firmware or the boot-loader
575  *    stored the registers of the boot CPU in the absolute lowcore in the
576  *    memory of the old system.
577  * 3) kdump and the old kernel did not store the CPU state,
578  *    or stand-alone kdump for DASD
579  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
580  *    The state for all CPUs except the boot CPU needs to be collected
581  *    with sigp stop-and-store-status. The kexec code or the boot-loader
582  *    stored the registers of the boot CPU in the memory of the old system.
583  * 4) kdump and the old kernel stored the CPU state
584  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
585  *    This case does not exist for s390 anymore, setup_arch explicitly
586  *    deactivates the elfcorehdr= kernel parameter
587  */
588 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
589                                      bool is_boot_cpu, unsigned long page)
590 {
591         __vector128 *vxrs = (__vector128 *) page;
592
593         if (is_boot_cpu)
594                 vxrs = boot_cpu_vector_save_area;
595         else
596                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
597         save_area_add_vxrs(sa, vxrs);
598 }
599
600 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
601                                      bool is_boot_cpu, unsigned long page)
602 {
603         void *regs = (void *) page;
604
605         if (is_boot_cpu)
606                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
607         else
608                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
609         save_area_add_regs(sa, regs);
610 }
611
612 void __init smp_save_dump_cpus(void)
613 {
614         int addr, boot_cpu_addr, max_cpu_addr;
615         struct save_area *sa;
616         unsigned long page;
617         bool is_boot_cpu;
618
619         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
620                 /* No previous system present, normal boot. */
621                 return;
622         /* Allocate a page as dumping area for the store status sigps */
623         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
624         /* Set multi-threading state to the previous system. */
625         pcpu_set_smt(sclp.mtid_prev);
626         boot_cpu_addr = stap();
627         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
628         for (addr = 0; addr <= max_cpu_addr; addr++) {
629                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
630                     SIGP_CC_NOT_OPERATIONAL)
631                         continue;
632                 is_boot_cpu = (addr == boot_cpu_addr);
633                 /* Allocate save area */
634                 sa = save_area_alloc(is_boot_cpu);
635                 if (!sa)
636                         panic("could not allocate memory for save area\n");
637                 if (MACHINE_HAS_VX)
638                         /* Get the vector registers */
639                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
640                 /*
641                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
642                  * of the boot CPU are stored in the HSA. To retrieve
643                  * these registers an SCLP request is required which is
644                  * done by drivers/s390/char/zcore.c:init_cpu_info()
645                  */
646                 if (!is_boot_cpu || OLDMEM_BASE)
647                         /* Get the CPU registers */
648                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
649         }
650         memblock_free(page, PAGE_SIZE);
651         diag308_reset();
652         pcpu_set_smt(0);
653 }
654 #endif /* CONFIG_CRASH_DUMP */
655
656 void smp_cpu_set_polarization(int cpu, int val)
657 {
658         pcpu_devices[cpu].polarization = val;
659 }
660
661 int smp_cpu_get_polarization(int cpu)
662 {
663         return pcpu_devices[cpu].polarization;
664 }
665
666 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
667 {
668         static int use_sigp_detection;
669         int address;
670
671         if (use_sigp_detection || sclp_get_core_info(info, early)) {
672                 use_sigp_detection = 1;
673                 for (address = 0;
674                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
675                      address += (1U << smp_cpu_mt_shift)) {
676                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
677                             SIGP_CC_NOT_OPERATIONAL)
678                                 continue;
679                         info->core[info->configured].core_id =
680                                 address >> smp_cpu_mt_shift;
681                         info->configured++;
682                 }
683                 info->combined = info->configured;
684         }
685 }
686
687 static int smp_add_present_cpu(int cpu);
688
689 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
690 {
691         struct pcpu *pcpu;
692         cpumask_t avail;
693         int cpu, nr, i, j;
694         u16 address;
695
696         nr = 0;
697         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
698         cpu = cpumask_first(&avail);
699         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
700                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
701                         continue;
702                 address = info->core[i].core_id << smp_cpu_mt_shift;
703                 for (j = 0; j <= smp_cpu_mtid; j++) {
704                         if (pcpu_find_address(cpu_present_mask, address + j))
705                                 continue;
706                         pcpu = pcpu_devices + cpu;
707                         pcpu->address = address + j;
708                         pcpu->state =
709                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
710                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
711                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
712                         set_cpu_present(cpu, true);
713                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
714                                 set_cpu_present(cpu, false);
715                         else
716                                 nr++;
717                         cpu = cpumask_next(cpu, &avail);
718                         if (cpu >= nr_cpu_ids)
719                                 break;
720                 }
721         }
722         return nr;
723 }
724
725 void __init smp_detect_cpus(void)
726 {
727         unsigned int cpu, mtid, c_cpus, s_cpus;
728         struct sclp_core_info *info;
729         u16 address;
730
731         /* Get CPU information */
732         info = memblock_virt_alloc(sizeof(*info), 8);
733         smp_get_core_info(info, 1);
734         /* Find boot CPU type */
735         if (sclp.has_core_type) {
736                 address = stap();
737                 for (cpu = 0; cpu < info->combined; cpu++)
738                         if (info->core[cpu].core_id == address) {
739                                 /* The boot cpu dictates the cpu type. */
740                                 boot_core_type = info->core[cpu].type;
741                                 break;
742                         }
743                 if (cpu >= info->combined)
744                         panic("Could not find boot CPU type");
745         }
746
747         /* Set multi-threading state for the current system */
748         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
749         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
750         pcpu_set_smt(mtid);
751
752         /* Print number of CPUs */
753         c_cpus = s_cpus = 0;
754         for (cpu = 0; cpu < info->combined; cpu++) {
755                 if (sclp.has_core_type &&
756                     info->core[cpu].type != boot_core_type)
757                         continue;
758                 if (cpu < info->configured)
759                         c_cpus += smp_cpu_mtid + 1;
760                 else
761                         s_cpus += smp_cpu_mtid + 1;
762         }
763         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
764
765         /* Add CPUs present at boot */
766         get_online_cpus();
767         __smp_rescan_cpus(info, 0);
768         put_online_cpus();
769         memblock_free_early((unsigned long)info, sizeof(*info));
770 }
771
772 /*
773  *      Activate a secondary processor.
774  */
775 static void smp_start_secondary(void *cpuvoid)
776 {
777         S390_lowcore.last_update_clock = get_tod_clock();
778         S390_lowcore.restart_stack = (unsigned long) restart_stack;
779         S390_lowcore.restart_fn = (unsigned long) do_restart;
780         S390_lowcore.restart_data = 0;
781         S390_lowcore.restart_source = -1UL;
782         restore_access_regs(S390_lowcore.access_regs_save_area);
783         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
784         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
785         cpu_init();
786         preempt_disable();
787         init_cpu_timer();
788         vtime_init();
789         pfault_init();
790         notify_cpu_starting(smp_processor_id());
791         set_cpu_online(smp_processor_id(), true);
792         inc_irq_stat(CPU_RST);
793         local_irq_enable();
794         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
795 }
796
797 /* Upping and downing of CPUs */
798 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
799 {
800         struct pcpu *pcpu;
801         int base, i, rc;
802
803         pcpu = pcpu_devices + cpu;
804         if (pcpu->state != CPU_STATE_CONFIGURED)
805                 return -EIO;
806         base = smp_get_base_cpu(cpu);
807         for (i = 0; i <= smp_cpu_mtid; i++) {
808                 if (base + i < nr_cpu_ids)
809                         if (cpu_online(base + i))
810                                 break;
811         }
812         /*
813          * If this is the first CPU of the core to get online
814          * do an initial CPU reset.
815          */
816         if (i > smp_cpu_mtid &&
817             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
818             SIGP_CC_ORDER_CODE_ACCEPTED)
819                 return -EIO;
820
821         rc = pcpu_alloc_lowcore(pcpu, cpu);
822         if (rc)
823                 return rc;
824         pcpu_prepare_secondary(pcpu, cpu);
825         pcpu_attach_task(pcpu, tidle);
826         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
827         /* Wait until cpu puts itself in the online & active maps */
828         while (!cpu_online(cpu))
829                 cpu_relax();
830         return 0;
831 }
832
833 static unsigned int setup_possible_cpus __initdata;
834
835 static int __init _setup_possible_cpus(char *s)
836 {
837         get_option(&s, &setup_possible_cpus);
838         return 0;
839 }
840 early_param("possible_cpus", _setup_possible_cpus);
841
842 #ifdef CONFIG_HOTPLUG_CPU
843
844 int __cpu_disable(void)
845 {
846         unsigned long cregs[16];
847
848         /* Handle possible pending IPIs */
849         smp_handle_ext_call();
850         set_cpu_online(smp_processor_id(), false);
851         /* Disable pseudo page faults on this cpu. */
852         pfault_fini();
853         /* Disable interrupt sources via control register. */
854         __ctl_store(cregs, 0, 15);
855         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
856         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
857         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
858         __ctl_load(cregs, 0, 15);
859         clear_cpu_flag(CIF_NOHZ_DELAY);
860         return 0;
861 }
862
863 void __cpu_die(unsigned int cpu)
864 {
865         struct pcpu *pcpu;
866
867         /* Wait until target cpu is down */
868         pcpu = pcpu_devices + cpu;
869         while (!pcpu_stopped(pcpu))
870                 cpu_relax();
871         pcpu_free_lowcore(pcpu);
872         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
873         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
874 }
875
876 void __noreturn cpu_die(void)
877 {
878         idle_task_exit();
879         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
880         for (;;) ;
881 }
882
883 #endif /* CONFIG_HOTPLUG_CPU */
884
885 void __init smp_fill_possible_mask(void)
886 {
887         unsigned int possible, sclp_max, cpu;
888
889         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
890         sclp_max = min(smp_max_threads, sclp_max);
891         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
892         possible = setup_possible_cpus ?: nr_cpu_ids;
893         possible = min(possible, sclp_max);
894         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
895                 set_cpu_possible(cpu, true);
896 }
897
898 void __init smp_prepare_cpus(unsigned int max_cpus)
899 {
900         /* request the 0x1201 emergency signal external interrupt */
901         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
902                 panic("Couldn't request external interrupt 0x1201");
903         /* request the 0x1202 external call external interrupt */
904         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
905                 panic("Couldn't request external interrupt 0x1202");
906 }
907
908 void __init smp_prepare_boot_cpu(void)
909 {
910         struct pcpu *pcpu = pcpu_devices;
911
912         WARN_ON(!cpu_present(0) || !cpu_online(0));
913         pcpu->state = CPU_STATE_CONFIGURED;
914         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
915         S390_lowcore.percpu_offset = __per_cpu_offset[0];
916         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
917 }
918
919 void __init smp_cpus_done(unsigned int max_cpus)
920 {
921 }
922
923 void __init smp_setup_processor_id(void)
924 {
925         pcpu_devices[0].address = stap();
926         S390_lowcore.cpu_nr = 0;
927         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
928 }
929
930 /*
931  * the frequency of the profiling timer can be changed
932  * by writing a multiplier value into /proc/profile.
933  *
934  * usually you want to run this on all CPUs ;)
935  */
936 int setup_profiling_timer(unsigned int multiplier)
937 {
938         return 0;
939 }
940
941 #ifdef CONFIG_HOTPLUG_CPU
942 static ssize_t cpu_configure_show(struct device *dev,
943                                   struct device_attribute *attr, char *buf)
944 {
945         ssize_t count;
946
947         mutex_lock(&smp_cpu_state_mutex);
948         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
949         mutex_unlock(&smp_cpu_state_mutex);
950         return count;
951 }
952
953 static ssize_t cpu_configure_store(struct device *dev,
954                                    struct device_attribute *attr,
955                                    const char *buf, size_t count)
956 {
957         struct pcpu *pcpu;
958         int cpu, val, rc, i;
959         char delim;
960
961         if (sscanf(buf, "%d %c", &val, &delim) != 1)
962                 return -EINVAL;
963         if (val != 0 && val != 1)
964                 return -EINVAL;
965         get_online_cpus();
966         mutex_lock(&smp_cpu_state_mutex);
967         rc = -EBUSY;
968         /* disallow configuration changes of online cpus and cpu 0 */
969         cpu = dev->id;
970         cpu = smp_get_base_cpu(cpu);
971         if (cpu == 0)
972                 goto out;
973         for (i = 0; i <= smp_cpu_mtid; i++)
974                 if (cpu_online(cpu + i))
975                         goto out;
976         pcpu = pcpu_devices + cpu;
977         rc = 0;
978         switch (val) {
979         case 0:
980                 if (pcpu->state != CPU_STATE_CONFIGURED)
981                         break;
982                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
983                 if (rc)
984                         break;
985                 for (i = 0; i <= smp_cpu_mtid; i++) {
986                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
987                                 continue;
988                         pcpu[i].state = CPU_STATE_STANDBY;
989                         smp_cpu_set_polarization(cpu + i,
990                                                  POLARIZATION_UNKNOWN);
991                 }
992                 topology_expect_change();
993                 break;
994         case 1:
995                 if (pcpu->state != CPU_STATE_STANDBY)
996                         break;
997                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
998                 if (rc)
999                         break;
1000                 for (i = 0; i <= smp_cpu_mtid; i++) {
1001                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1002                                 continue;
1003                         pcpu[i].state = CPU_STATE_CONFIGURED;
1004                         smp_cpu_set_polarization(cpu + i,
1005                                                  POLARIZATION_UNKNOWN);
1006                 }
1007                 topology_expect_change();
1008                 break;
1009         default:
1010                 break;
1011         }
1012 out:
1013         mutex_unlock(&smp_cpu_state_mutex);
1014         put_online_cpus();
1015         return rc ? rc : count;
1016 }
1017 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1018 #endif /* CONFIG_HOTPLUG_CPU */
1019
1020 static ssize_t show_cpu_address(struct device *dev,
1021                                 struct device_attribute *attr, char *buf)
1022 {
1023         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1024 }
1025 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1026
1027 static struct attribute *cpu_common_attrs[] = {
1028 #ifdef CONFIG_HOTPLUG_CPU
1029         &dev_attr_configure.attr,
1030 #endif
1031         &dev_attr_address.attr,
1032         NULL,
1033 };
1034
1035 static struct attribute_group cpu_common_attr_group = {
1036         .attrs = cpu_common_attrs,
1037 };
1038
1039 static struct attribute *cpu_online_attrs[] = {
1040         &dev_attr_idle_count.attr,
1041         &dev_attr_idle_time_us.attr,
1042         NULL,
1043 };
1044
1045 static struct attribute_group cpu_online_attr_group = {
1046         .attrs = cpu_online_attrs,
1047 };
1048
1049 static int smp_cpu_online(unsigned int cpu)
1050 {
1051         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1052
1053         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1054 }
1055 static int smp_cpu_pre_down(unsigned int cpu)
1056 {
1057         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1058
1059         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1060         return 0;
1061 }
1062
1063 static int smp_add_present_cpu(int cpu)
1064 {
1065         struct device *s;
1066         struct cpu *c;
1067         int rc;
1068
1069         c = kzalloc(sizeof(*c), GFP_KERNEL);
1070         if (!c)
1071                 return -ENOMEM;
1072         per_cpu(cpu_device, cpu) = c;
1073         s = &c->dev;
1074         c->hotpluggable = 1;
1075         rc = register_cpu(c, cpu);
1076         if (rc)
1077                 goto out;
1078         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1079         if (rc)
1080                 goto out_cpu;
1081         rc = topology_cpu_init(c);
1082         if (rc)
1083                 goto out_topology;
1084         return 0;
1085
1086 out_topology:
1087         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1088 out_cpu:
1089 #ifdef CONFIG_HOTPLUG_CPU
1090         unregister_cpu(c);
1091 #endif
1092 out:
1093         return rc;
1094 }
1095
1096 #ifdef CONFIG_HOTPLUG_CPU
1097
1098 int __ref smp_rescan_cpus(void)
1099 {
1100         struct sclp_core_info *info;
1101         int nr;
1102
1103         info = kzalloc(sizeof(*info), GFP_KERNEL);
1104         if (!info)
1105                 return -ENOMEM;
1106         smp_get_core_info(info, 0);
1107         get_online_cpus();
1108         mutex_lock(&smp_cpu_state_mutex);
1109         nr = __smp_rescan_cpus(info, 1);
1110         mutex_unlock(&smp_cpu_state_mutex);
1111         put_online_cpus();
1112         kfree(info);
1113         if (nr)
1114                 topology_schedule_update();
1115         return 0;
1116 }
1117
1118 static ssize_t __ref rescan_store(struct device *dev,
1119                                   struct device_attribute *attr,
1120                                   const char *buf,
1121                                   size_t count)
1122 {
1123         int rc;
1124
1125         rc = smp_rescan_cpus();
1126         return rc ? rc : count;
1127 }
1128 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1129 #endif /* CONFIG_HOTPLUG_CPU */
1130
1131 static int __init s390_smp_init(void)
1132 {
1133         int cpu, rc = 0;
1134
1135 #ifdef CONFIG_HOTPLUG_CPU
1136         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1137         if (rc)
1138                 return rc;
1139 #endif
1140         for_each_present_cpu(cpu) {
1141                 rc = smp_add_present_cpu(cpu);
1142                 if (rc)
1143                         goto out;
1144         }
1145
1146         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1147                                smp_cpu_online, smp_cpu_pre_down);
1148 out:
1149         return rc;
1150 }
1151 subsys_initcall(s390_smp_init);