Merge tag 'mfd-next-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[sfrench/cifs-2.6.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/kmemleak.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/memblock.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/vdso.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include "entry.h"
57
58 enum {
59         ec_schedule = 0,
60         ec_call_function_single,
61         ec_stop_cpu,
62 };
63
64 enum {
65         CPU_STATE_STANDBY,
66         CPU_STATE_CONFIGURED,
67 };
68
69 static DEFINE_PER_CPU(struct cpu *, cpu_device);
70
71 struct pcpu {
72         struct lowcore *lowcore;        /* lowcore page(s) for the cpu */
73         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
74         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
75         signed char state;              /* physical cpu state */
76         signed char polarization;       /* physical polarization */
77         u16 address;                    /* physical cpu address */
78 };
79
80 static u8 boot_core_type;
81 static struct pcpu pcpu_devices[NR_CPUS];
82
83 static struct kmem_cache *pcpu_mcesa_cache;
84
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
87
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
90
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
94
95 static unsigned int smp_max_threads __initdata = -1U;
96
97 static int __init early_nosmt(char *s)
98 {
99         smp_max_threads = 1;
100         return 0;
101 }
102 early_param("nosmt", early_nosmt);
103
104 static int __init early_smt(char *s)
105 {
106         get_option(&s, &smp_max_threads);
107         return 0;
108 }
109 early_param("smt", early_smt);
110
111 /*
112  * The smp_cpu_state_mutex must be held when changing the state or polarization
113  * member of a pcpu data structure within the pcpu_devices arreay.
114  */
115 DEFINE_MUTEX(smp_cpu_state_mutex);
116
117 /*
118  * Signal processor helper functions.
119  */
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
121 {
122         int cc;
123
124         while (1) {
125                 cc = __pcpu_sigp(addr, order, parm, NULL);
126                 if (cc != SIGP_CC_BUSY)
127                         return cc;
128                 cpu_relax();
129         }
130 }
131
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
133 {
134         int cc, retry;
135
136         for (retry = 0; ; retry++) {
137                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138                 if (cc != SIGP_CC_BUSY)
139                         break;
140                 if (retry >= 3)
141                         udelay(10);
142         }
143         return cc;
144 }
145
146 static inline int pcpu_stopped(struct pcpu *pcpu)
147 {
148         u32 uninitialized_var(status);
149
150         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151                         0, &status) != SIGP_CC_STATUS_STORED)
152                 return 0;
153         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159                         0, NULL) != SIGP_CC_STATUS_STORED)
160                 return 1;
161         /* Status stored condition code is equivalent to cpu not running. */
162         return 0;
163 }
164
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
169 {
170         int cpu;
171
172         for_each_cpu(cpu, mask)
173                 if (pcpu_devices[cpu].address == address)
174                         return pcpu_devices + cpu;
175         return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180         int order;
181
182         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183                 return;
184         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185         pcpu->ec_clk = get_tod_clock_fast();
186         pcpu_sigp_retry(pcpu, order, 0);
187 }
188
189 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
190 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, panic_stack;
195         unsigned long mcesa_origin, mcesa_bits;
196         struct lowcore *lc;
197
198         mcesa_origin = mcesa_bits = 0;
199         if (pcpu != &pcpu_devices[0]) {
200                 pcpu->lowcore = (struct lowcore *)
201                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
202                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
203                 panic_stack = __get_free_page(GFP_KERNEL);
204                 if (!pcpu->lowcore || !panic_stack || !async_stack)
205                         goto out;
206                 if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
207                         mcesa_origin = (unsigned long)
208                                 kmem_cache_alloc(pcpu_mcesa_cache, GFP_KERNEL);
209                         if (!mcesa_origin)
210                                 goto out;
211                         /* The pointer is stored with mcesa_bits ORed in */
212                         kmemleak_not_leak((void *) mcesa_origin);
213                         mcesa_bits = MACHINE_HAS_GS ? 11 : 0;
214                 }
215         } else {
216                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
217                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
218                 mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
219                 mcesa_bits = pcpu->lowcore->mcesad & MCESA_LC_MASK;
220         }
221         lc = pcpu->lowcore;
222         memcpy(lc, &S390_lowcore, 512);
223         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
224         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
225         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
226         lc->mcesad = mcesa_origin | mcesa_bits;
227         lc->cpu_nr = cpu;
228         lc->spinlock_lockval = arch_spin_lockval(cpu);
229         if (vdso_alloc_per_cpu(lc))
230                 goto out;
231         lowcore_ptr[cpu] = lc;
232         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
233         return 0;
234 out:
235         if (pcpu != &pcpu_devices[0]) {
236                 if (mcesa_origin)
237                         kmem_cache_free(pcpu_mcesa_cache,
238                                         (void *) mcesa_origin);
239                 free_page(panic_stack);
240                 free_pages(async_stack, ASYNC_ORDER);
241                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
242         }
243         return -ENOMEM;
244 }
245
246 #ifdef CONFIG_HOTPLUG_CPU
247
248 static void pcpu_free_lowcore(struct pcpu *pcpu)
249 {
250         unsigned long mcesa_origin;
251
252         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
253         lowcore_ptr[pcpu - pcpu_devices] = NULL;
254         vdso_free_per_cpu(pcpu->lowcore);
255         if (pcpu == &pcpu_devices[0])
256                 return;
257         if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
258                 mcesa_origin = pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK;
259                 kmem_cache_free(pcpu_mcesa_cache, (void *) mcesa_origin);
260         }
261         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
262         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
263         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
264 }
265
266 #endif /* CONFIG_HOTPLUG_CPU */
267
268 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
269 {
270         struct lowcore *lc = pcpu->lowcore;
271
272         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
273         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
274         lc->cpu_nr = cpu;
275         lc->spinlock_lockval = arch_spin_lockval(cpu);
276         lc->percpu_offset = __per_cpu_offset[cpu];
277         lc->kernel_asce = S390_lowcore.kernel_asce;
278         lc->machine_flags = S390_lowcore.machine_flags;
279         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
280         __ctl_store(lc->cregs_save_area, 0, 15);
281         save_access_regs((unsigned int *) lc->access_regs_save_area);
282         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
283                MAX_FACILITY_BIT/8);
284 }
285
286 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
287 {
288         struct lowcore *lc = pcpu->lowcore;
289
290         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
291                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
292         lc->current_task = (unsigned long) tsk;
293         lc->lpp = LPP_MAGIC;
294         lc->current_pid = tsk->pid;
295         lc->user_timer = tsk->thread.user_timer;
296         lc->system_timer = tsk->thread.system_timer;
297         lc->steal_timer = 0;
298 }
299
300 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
301 {
302         struct lowcore *lc = pcpu->lowcore;
303
304         lc->restart_stack = lc->kernel_stack;
305         lc->restart_fn = (unsigned long) func;
306         lc->restart_data = (unsigned long) data;
307         lc->restart_source = -1UL;
308         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
309 }
310
311 /*
312  * Call function via PSW restart on pcpu and stop the current cpu.
313  */
314 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
315                           void *data, unsigned long stack)
316 {
317         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
318         unsigned long source_cpu = stap();
319
320         __load_psw_mask(PSW_KERNEL_BITS);
321         if (pcpu->address == source_cpu)
322                 func(data);     /* should not return */
323         /* Stop target cpu (if func returns this stops the current cpu). */
324         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
325         /* Restart func on the target cpu and stop the current cpu. */
326         mem_assign_absolute(lc->restart_stack, stack);
327         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
328         mem_assign_absolute(lc->restart_data, (unsigned long) data);
329         mem_assign_absolute(lc->restart_source, source_cpu);
330         asm volatile(
331                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
332                 "       brc     2,0b    # busy, try again\n"
333                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
334                 "       brc     2,1b    # busy, try again\n"
335                 : : "d" (pcpu->address), "d" (source_cpu),
336                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
337                 : "0", "1", "cc");
338         for (;;) ;
339 }
340
341 /*
342  * Enable additional logical cpus for multi-threading.
343  */
344 static int pcpu_set_smt(unsigned int mtid)
345 {
346         int cc;
347
348         if (smp_cpu_mtid == mtid)
349                 return 0;
350         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
351         if (cc == 0) {
352                 smp_cpu_mtid = mtid;
353                 smp_cpu_mt_shift = 0;
354                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
355                         smp_cpu_mt_shift++;
356                 pcpu_devices[0].address = stap();
357         }
358         return cc;
359 }
360
361 /*
362  * Call function on an online CPU.
363  */
364 void smp_call_online_cpu(void (*func)(void *), void *data)
365 {
366         struct pcpu *pcpu;
367
368         /* Use the current cpu if it is online. */
369         pcpu = pcpu_find_address(cpu_online_mask, stap());
370         if (!pcpu)
371                 /* Use the first online cpu. */
372                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
373         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
374 }
375
376 /*
377  * Call function on the ipl CPU.
378  */
379 void smp_call_ipl_cpu(void (*func)(void *), void *data)
380 {
381         pcpu_delegate(&pcpu_devices[0], func, data,
382                       pcpu_devices->lowcore->panic_stack -
383                       PANIC_FRAME_OFFSET + PAGE_SIZE);
384 }
385
386 int smp_find_processor_id(u16 address)
387 {
388         int cpu;
389
390         for_each_present_cpu(cpu)
391                 if (pcpu_devices[cpu].address == address)
392                         return cpu;
393         return -1;
394 }
395
396 bool arch_vcpu_is_preempted(int cpu)
397 {
398         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
399                 return false;
400         if (pcpu_running(pcpu_devices + cpu))
401                 return false;
402         return true;
403 }
404 EXPORT_SYMBOL(arch_vcpu_is_preempted);
405
406 void smp_yield_cpu(int cpu)
407 {
408         if (MACHINE_HAS_DIAG9C) {
409                 diag_stat_inc_norecursion(DIAG_STAT_X09C);
410                 asm volatile("diag %0,0,0x9c"
411                              : : "d" (pcpu_devices[cpu].address));
412         } else if (MACHINE_HAS_DIAG44) {
413                 diag_stat_inc_norecursion(DIAG_STAT_X044);
414                 asm volatile("diag 0,0,0x44");
415         }
416 }
417
418 /*
419  * Send cpus emergency shutdown signal. This gives the cpus the
420  * opportunity to complete outstanding interrupts.
421  */
422 static void smp_emergency_stop(cpumask_t *cpumask)
423 {
424         u64 end;
425         int cpu;
426
427         end = get_tod_clock() + (1000000UL << 12);
428         for_each_cpu(cpu, cpumask) {
429                 struct pcpu *pcpu = pcpu_devices + cpu;
430                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
431                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
432                                    0, NULL) == SIGP_CC_BUSY &&
433                        get_tod_clock() < end)
434                         cpu_relax();
435         }
436         while (get_tod_clock() < end) {
437                 for_each_cpu(cpu, cpumask)
438                         if (pcpu_stopped(pcpu_devices + cpu))
439                                 cpumask_clear_cpu(cpu, cpumask);
440                 if (cpumask_empty(cpumask))
441                         break;
442                 cpu_relax();
443         }
444 }
445
446 /*
447  * Stop all cpus but the current one.
448  */
449 void smp_send_stop(void)
450 {
451         cpumask_t cpumask;
452         int cpu;
453
454         /* Disable all interrupts/machine checks */
455         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
456         trace_hardirqs_off();
457
458         debug_set_critical();
459         cpumask_copy(&cpumask, cpu_online_mask);
460         cpumask_clear_cpu(smp_processor_id(), &cpumask);
461
462         if (oops_in_progress)
463                 smp_emergency_stop(&cpumask);
464
465         /* stop all processors */
466         for_each_cpu(cpu, &cpumask) {
467                 struct pcpu *pcpu = pcpu_devices + cpu;
468                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
469                 while (!pcpu_stopped(pcpu))
470                         cpu_relax();
471         }
472 }
473
474 /*
475  * This is the main routine where commands issued by other
476  * cpus are handled.
477  */
478 static void smp_handle_ext_call(void)
479 {
480         unsigned long bits;
481
482         /* handle bit signal external calls */
483         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
484         if (test_bit(ec_stop_cpu, &bits))
485                 smp_stop_cpu();
486         if (test_bit(ec_schedule, &bits))
487                 scheduler_ipi();
488         if (test_bit(ec_call_function_single, &bits))
489                 generic_smp_call_function_single_interrupt();
490 }
491
492 static void do_ext_call_interrupt(struct ext_code ext_code,
493                                   unsigned int param32, unsigned long param64)
494 {
495         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
496         smp_handle_ext_call();
497 }
498
499 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
500 {
501         int cpu;
502
503         for_each_cpu(cpu, mask)
504                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
505 }
506
507 void arch_send_call_function_single_ipi(int cpu)
508 {
509         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
510 }
511
512 /*
513  * this function sends a 'reschedule' IPI to another CPU.
514  * it goes straight through and wastes no time serializing
515  * anything. Worst case is that we lose a reschedule ...
516  */
517 void smp_send_reschedule(int cpu)
518 {
519         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
520 }
521
522 /*
523  * parameter area for the set/clear control bit callbacks
524  */
525 struct ec_creg_mask_parms {
526         unsigned long orval;
527         unsigned long andval;
528         int cr;
529 };
530
531 /*
532  * callback for setting/clearing control bits
533  */
534 static void smp_ctl_bit_callback(void *info)
535 {
536         struct ec_creg_mask_parms *pp = info;
537         unsigned long cregs[16];
538
539         __ctl_store(cregs, 0, 15);
540         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
541         __ctl_load(cregs, 0, 15);
542 }
543
544 /*
545  * Set a bit in a control register of all cpus
546  */
547 void smp_ctl_set_bit(int cr, int bit)
548 {
549         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
550
551         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
552 }
553 EXPORT_SYMBOL(smp_ctl_set_bit);
554
555 /*
556  * Clear a bit in a control register of all cpus
557  */
558 void smp_ctl_clear_bit(int cr, int bit)
559 {
560         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
561
562         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
563 }
564 EXPORT_SYMBOL(smp_ctl_clear_bit);
565
566 #ifdef CONFIG_CRASH_DUMP
567
568 int smp_store_status(int cpu)
569 {
570         struct pcpu *pcpu = pcpu_devices + cpu;
571         unsigned long pa;
572
573         pa = __pa(&pcpu->lowcore->floating_pt_save_area);
574         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
575                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
576                 return -EIO;
577         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
578                 return 0;
579         pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
580         if (MACHINE_HAS_GS)
581                 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
582         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
583                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
584                 return -EIO;
585         return 0;
586 }
587
588 /*
589  * Collect CPU state of the previous, crashed system.
590  * There are four cases:
591  * 1) standard zfcp dump
592  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
593  *    The state for all CPUs except the boot CPU needs to be collected
594  *    with sigp stop-and-store-status. The boot CPU state is located in
595  *    the absolute lowcore of the memory stored in the HSA. The zcore code
596  *    will copy the boot CPU state from the HSA.
597  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
598  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
599  *    The state for all CPUs except the boot CPU needs to be collected
600  *    with sigp stop-and-store-status. The firmware or the boot-loader
601  *    stored the registers of the boot CPU in the absolute lowcore in the
602  *    memory of the old system.
603  * 3) kdump and the old kernel did not store the CPU state,
604  *    or stand-alone kdump for DASD
605  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
606  *    The state for all CPUs except the boot CPU needs to be collected
607  *    with sigp stop-and-store-status. The kexec code or the boot-loader
608  *    stored the registers of the boot CPU in the memory of the old system.
609  * 4) kdump and the old kernel stored the CPU state
610  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
611  *    This case does not exist for s390 anymore, setup_arch explicitly
612  *    deactivates the elfcorehdr= kernel parameter
613  */
614 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
615                                      bool is_boot_cpu, unsigned long page)
616 {
617         __vector128 *vxrs = (__vector128 *) page;
618
619         if (is_boot_cpu)
620                 vxrs = boot_cpu_vector_save_area;
621         else
622                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
623         save_area_add_vxrs(sa, vxrs);
624 }
625
626 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
627                                      bool is_boot_cpu, unsigned long page)
628 {
629         void *regs = (void *) page;
630
631         if (is_boot_cpu)
632                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
633         else
634                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
635         save_area_add_regs(sa, regs);
636 }
637
638 void __init smp_save_dump_cpus(void)
639 {
640         int addr, boot_cpu_addr, max_cpu_addr;
641         struct save_area *sa;
642         unsigned long page;
643         bool is_boot_cpu;
644
645         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
646                 /* No previous system present, normal boot. */
647                 return;
648         /* Allocate a page as dumping area for the store status sigps */
649         page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
650         /* Set multi-threading state to the previous system. */
651         pcpu_set_smt(sclp.mtid_prev);
652         boot_cpu_addr = stap();
653         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
654         for (addr = 0; addr <= max_cpu_addr; addr++) {
655                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
656                     SIGP_CC_NOT_OPERATIONAL)
657                         continue;
658                 is_boot_cpu = (addr == boot_cpu_addr);
659                 /* Allocate save area */
660                 sa = save_area_alloc(is_boot_cpu);
661                 if (!sa)
662                         panic("could not allocate memory for save area\n");
663                 if (MACHINE_HAS_VX)
664                         /* Get the vector registers */
665                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
666                 /*
667                  * For a zfcp dump OLDMEM_BASE == NULL and the registers
668                  * of the boot CPU are stored in the HSA. To retrieve
669                  * these registers an SCLP request is required which is
670                  * done by drivers/s390/char/zcore.c:init_cpu_info()
671                  */
672                 if (!is_boot_cpu || OLDMEM_BASE)
673                         /* Get the CPU registers */
674                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
675         }
676         memblock_free(page, PAGE_SIZE);
677         diag308_reset();
678         pcpu_set_smt(0);
679 }
680 #endif /* CONFIG_CRASH_DUMP */
681
682 void smp_cpu_set_polarization(int cpu, int val)
683 {
684         pcpu_devices[cpu].polarization = val;
685 }
686
687 int smp_cpu_get_polarization(int cpu)
688 {
689         return pcpu_devices[cpu].polarization;
690 }
691
692 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
693 {
694         static int use_sigp_detection;
695         int address;
696
697         if (use_sigp_detection || sclp_get_core_info(info, early)) {
698                 use_sigp_detection = 1;
699                 for (address = 0;
700                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
701                      address += (1U << smp_cpu_mt_shift)) {
702                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
703                             SIGP_CC_NOT_OPERATIONAL)
704                                 continue;
705                         info->core[info->configured].core_id =
706                                 address >> smp_cpu_mt_shift;
707                         info->configured++;
708                 }
709                 info->combined = info->configured;
710         }
711 }
712
713 static int smp_add_present_cpu(int cpu);
714
715 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
716 {
717         struct pcpu *pcpu;
718         cpumask_t avail;
719         int cpu, nr, i, j;
720         u16 address;
721
722         nr = 0;
723         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
724         cpu = cpumask_first(&avail);
725         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
726                 if (sclp.has_core_type && info->core[i].type != boot_core_type)
727                         continue;
728                 address = info->core[i].core_id << smp_cpu_mt_shift;
729                 for (j = 0; j <= smp_cpu_mtid; j++) {
730                         if (pcpu_find_address(cpu_present_mask, address + j))
731                                 continue;
732                         pcpu = pcpu_devices + cpu;
733                         pcpu->address = address + j;
734                         pcpu->state =
735                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
736                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
737                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
738                         set_cpu_present(cpu, true);
739                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
740                                 set_cpu_present(cpu, false);
741                         else
742                                 nr++;
743                         cpu = cpumask_next(cpu, &avail);
744                         if (cpu >= nr_cpu_ids)
745                                 break;
746                 }
747         }
748         return nr;
749 }
750
751 void __init smp_detect_cpus(void)
752 {
753         unsigned int cpu, mtid, c_cpus, s_cpus;
754         struct sclp_core_info *info;
755         u16 address;
756
757         /* Get CPU information */
758         info = memblock_virt_alloc(sizeof(*info), 8);
759         smp_get_core_info(info, 1);
760         /* Find boot CPU type */
761         if (sclp.has_core_type) {
762                 address = stap();
763                 for (cpu = 0; cpu < info->combined; cpu++)
764                         if (info->core[cpu].core_id == address) {
765                                 /* The boot cpu dictates the cpu type. */
766                                 boot_core_type = info->core[cpu].type;
767                                 break;
768                         }
769                 if (cpu >= info->combined)
770                         panic("Could not find boot CPU type");
771         }
772
773         /* Set multi-threading state for the current system */
774         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
775         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
776         pcpu_set_smt(mtid);
777
778         /* Print number of CPUs */
779         c_cpus = s_cpus = 0;
780         for (cpu = 0; cpu < info->combined; cpu++) {
781                 if (sclp.has_core_type &&
782                     info->core[cpu].type != boot_core_type)
783                         continue;
784                 if (cpu < info->configured)
785                         c_cpus += smp_cpu_mtid + 1;
786                 else
787                         s_cpus += smp_cpu_mtid + 1;
788         }
789         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
790
791         /* Add CPUs present at boot */
792         get_online_cpus();
793         __smp_rescan_cpus(info, 0);
794         put_online_cpus();
795         memblock_free_early((unsigned long)info, sizeof(*info));
796 }
797
798 /*
799  *      Activate a secondary processor.
800  */
801 static void smp_start_secondary(void *cpuvoid)
802 {
803         S390_lowcore.last_update_clock = get_tod_clock();
804         S390_lowcore.restart_stack = (unsigned long) restart_stack;
805         S390_lowcore.restart_fn = (unsigned long) do_restart;
806         S390_lowcore.restart_data = 0;
807         S390_lowcore.restart_source = -1UL;
808         restore_access_regs(S390_lowcore.access_regs_save_area);
809         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
810         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
811         cpu_init();
812         preempt_disable();
813         init_cpu_timer();
814         vtime_init();
815         pfault_init();
816         notify_cpu_starting(smp_processor_id());
817         set_cpu_online(smp_processor_id(), true);
818         inc_irq_stat(CPU_RST);
819         local_irq_enable();
820         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
821 }
822
823 /* Upping and downing of CPUs */
824 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
825 {
826         struct pcpu *pcpu;
827         int base, i, rc;
828
829         pcpu = pcpu_devices + cpu;
830         if (pcpu->state != CPU_STATE_CONFIGURED)
831                 return -EIO;
832         base = smp_get_base_cpu(cpu);
833         for (i = 0; i <= smp_cpu_mtid; i++) {
834                 if (base + i < nr_cpu_ids)
835                         if (cpu_online(base + i))
836                                 break;
837         }
838         /*
839          * If this is the first CPU of the core to get online
840          * do an initial CPU reset.
841          */
842         if (i > smp_cpu_mtid &&
843             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
844             SIGP_CC_ORDER_CODE_ACCEPTED)
845                 return -EIO;
846
847         rc = pcpu_alloc_lowcore(pcpu, cpu);
848         if (rc)
849                 return rc;
850         pcpu_prepare_secondary(pcpu, cpu);
851         pcpu_attach_task(pcpu, tidle);
852         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
853         /* Wait until cpu puts itself in the online & active maps */
854         while (!cpu_online(cpu))
855                 cpu_relax();
856         return 0;
857 }
858
859 static unsigned int setup_possible_cpus __initdata;
860
861 static int __init _setup_possible_cpus(char *s)
862 {
863         get_option(&s, &setup_possible_cpus);
864         return 0;
865 }
866 early_param("possible_cpus", _setup_possible_cpus);
867
868 #ifdef CONFIG_HOTPLUG_CPU
869
870 int __cpu_disable(void)
871 {
872         unsigned long cregs[16];
873
874         /* Handle possible pending IPIs */
875         smp_handle_ext_call();
876         set_cpu_online(smp_processor_id(), false);
877         /* Disable pseudo page faults on this cpu. */
878         pfault_fini();
879         /* Disable interrupt sources via control register. */
880         __ctl_store(cregs, 0, 15);
881         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
882         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
883         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
884         __ctl_load(cregs, 0, 15);
885         clear_cpu_flag(CIF_NOHZ_DELAY);
886         return 0;
887 }
888
889 void __cpu_die(unsigned int cpu)
890 {
891         struct pcpu *pcpu;
892
893         /* Wait until target cpu is down */
894         pcpu = pcpu_devices + cpu;
895         while (!pcpu_stopped(pcpu))
896                 cpu_relax();
897         pcpu_free_lowcore(pcpu);
898         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
899         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
900 }
901
902 void __noreturn cpu_die(void)
903 {
904         idle_task_exit();
905         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
906         for (;;) ;
907 }
908
909 #endif /* CONFIG_HOTPLUG_CPU */
910
911 void __init smp_fill_possible_mask(void)
912 {
913         unsigned int possible, sclp_max, cpu;
914
915         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
916         sclp_max = min(smp_max_threads, sclp_max);
917         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
918         possible = setup_possible_cpus ?: nr_cpu_ids;
919         possible = min(possible, sclp_max);
920         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
921                 set_cpu_possible(cpu, true);
922 }
923
924 void __init smp_prepare_cpus(unsigned int max_cpus)
925 {
926         unsigned long size;
927
928         /* request the 0x1201 emergency signal external interrupt */
929         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
930                 panic("Couldn't request external interrupt 0x1201");
931         /* request the 0x1202 external call external interrupt */
932         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
933                 panic("Couldn't request external interrupt 0x1202");
934         /* create slab cache for the machine-check-extended-save-areas */
935         if (MACHINE_HAS_VX || MACHINE_HAS_GS) {
936                 size = 1UL << (MACHINE_HAS_GS ? 11 : 10);
937                 pcpu_mcesa_cache = kmem_cache_create("nmi_save_areas",
938                                                      size, size, 0, NULL);
939                 if (!pcpu_mcesa_cache)
940                         panic("Couldn't create nmi save area cache");
941         }
942 }
943
944 void __init smp_prepare_boot_cpu(void)
945 {
946         struct pcpu *pcpu = pcpu_devices;
947
948         WARN_ON(!cpu_present(0) || !cpu_online(0));
949         pcpu->state = CPU_STATE_CONFIGURED;
950         pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
951         S390_lowcore.percpu_offset = __per_cpu_offset[0];
952         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
953 }
954
955 void __init smp_cpus_done(unsigned int max_cpus)
956 {
957 }
958
959 void __init smp_setup_processor_id(void)
960 {
961         pcpu_devices[0].address = stap();
962         S390_lowcore.cpu_nr = 0;
963         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
964 }
965
966 /*
967  * the frequency of the profiling timer can be changed
968  * by writing a multiplier value into /proc/profile.
969  *
970  * usually you want to run this on all CPUs ;)
971  */
972 int setup_profiling_timer(unsigned int multiplier)
973 {
974         return 0;
975 }
976
977 #ifdef CONFIG_HOTPLUG_CPU
978 static ssize_t cpu_configure_show(struct device *dev,
979                                   struct device_attribute *attr, char *buf)
980 {
981         ssize_t count;
982
983         mutex_lock(&smp_cpu_state_mutex);
984         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
985         mutex_unlock(&smp_cpu_state_mutex);
986         return count;
987 }
988
989 static ssize_t cpu_configure_store(struct device *dev,
990                                    struct device_attribute *attr,
991                                    const char *buf, size_t count)
992 {
993         struct pcpu *pcpu;
994         int cpu, val, rc, i;
995         char delim;
996
997         if (sscanf(buf, "%d %c", &val, &delim) != 1)
998                 return -EINVAL;
999         if (val != 0 && val != 1)
1000                 return -EINVAL;
1001         get_online_cpus();
1002         mutex_lock(&smp_cpu_state_mutex);
1003         rc = -EBUSY;
1004         /* disallow configuration changes of online cpus and cpu 0 */
1005         cpu = dev->id;
1006         cpu = smp_get_base_cpu(cpu);
1007         if (cpu == 0)
1008                 goto out;
1009         for (i = 0; i <= smp_cpu_mtid; i++)
1010                 if (cpu_online(cpu + i))
1011                         goto out;
1012         pcpu = pcpu_devices + cpu;
1013         rc = 0;
1014         switch (val) {
1015         case 0:
1016                 if (pcpu->state != CPU_STATE_CONFIGURED)
1017                         break;
1018                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1019                 if (rc)
1020                         break;
1021                 for (i = 0; i <= smp_cpu_mtid; i++) {
1022                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1023                                 continue;
1024                         pcpu[i].state = CPU_STATE_STANDBY;
1025                         smp_cpu_set_polarization(cpu + i,
1026                                                  POLARIZATION_UNKNOWN);
1027                 }
1028                 topology_expect_change();
1029                 break;
1030         case 1:
1031                 if (pcpu->state != CPU_STATE_STANDBY)
1032                         break;
1033                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1034                 if (rc)
1035                         break;
1036                 for (i = 0; i <= smp_cpu_mtid; i++) {
1037                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1038                                 continue;
1039                         pcpu[i].state = CPU_STATE_CONFIGURED;
1040                         smp_cpu_set_polarization(cpu + i,
1041                                                  POLARIZATION_UNKNOWN);
1042                 }
1043                 topology_expect_change();
1044                 break;
1045         default:
1046                 break;
1047         }
1048 out:
1049         mutex_unlock(&smp_cpu_state_mutex);
1050         put_online_cpus();
1051         return rc ? rc : count;
1052 }
1053 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1054 #endif /* CONFIG_HOTPLUG_CPU */
1055
1056 static ssize_t show_cpu_address(struct device *dev,
1057                                 struct device_attribute *attr, char *buf)
1058 {
1059         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1060 }
1061 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1062
1063 static struct attribute *cpu_common_attrs[] = {
1064 #ifdef CONFIG_HOTPLUG_CPU
1065         &dev_attr_configure.attr,
1066 #endif
1067         &dev_attr_address.attr,
1068         NULL,
1069 };
1070
1071 static struct attribute_group cpu_common_attr_group = {
1072         .attrs = cpu_common_attrs,
1073 };
1074
1075 static struct attribute *cpu_online_attrs[] = {
1076         &dev_attr_idle_count.attr,
1077         &dev_attr_idle_time_us.attr,
1078         NULL,
1079 };
1080
1081 static struct attribute_group cpu_online_attr_group = {
1082         .attrs = cpu_online_attrs,
1083 };
1084
1085 static int smp_cpu_online(unsigned int cpu)
1086 {
1087         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1088
1089         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1090 }
1091 static int smp_cpu_pre_down(unsigned int cpu)
1092 {
1093         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1094
1095         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1096         return 0;
1097 }
1098
1099 static int smp_add_present_cpu(int cpu)
1100 {
1101         struct device *s;
1102         struct cpu *c;
1103         int rc;
1104
1105         c = kzalloc(sizeof(*c), GFP_KERNEL);
1106         if (!c)
1107                 return -ENOMEM;
1108         per_cpu(cpu_device, cpu) = c;
1109         s = &c->dev;
1110         c->hotpluggable = 1;
1111         rc = register_cpu(c, cpu);
1112         if (rc)
1113                 goto out;
1114         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1115         if (rc)
1116                 goto out_cpu;
1117         rc = topology_cpu_init(c);
1118         if (rc)
1119                 goto out_topology;
1120         return 0;
1121
1122 out_topology:
1123         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1124 out_cpu:
1125 #ifdef CONFIG_HOTPLUG_CPU
1126         unregister_cpu(c);
1127 #endif
1128 out:
1129         return rc;
1130 }
1131
1132 #ifdef CONFIG_HOTPLUG_CPU
1133
1134 int __ref smp_rescan_cpus(void)
1135 {
1136         struct sclp_core_info *info;
1137         int nr;
1138
1139         info = kzalloc(sizeof(*info), GFP_KERNEL);
1140         if (!info)
1141                 return -ENOMEM;
1142         smp_get_core_info(info, 0);
1143         get_online_cpus();
1144         mutex_lock(&smp_cpu_state_mutex);
1145         nr = __smp_rescan_cpus(info, 1);
1146         mutex_unlock(&smp_cpu_state_mutex);
1147         put_online_cpus();
1148         kfree(info);
1149         if (nr)
1150                 topology_schedule_update();
1151         return 0;
1152 }
1153
1154 static ssize_t __ref rescan_store(struct device *dev,
1155                                   struct device_attribute *attr,
1156                                   const char *buf,
1157                                   size_t count)
1158 {
1159         int rc;
1160
1161         rc = smp_rescan_cpus();
1162         return rc ? rc : count;
1163 }
1164 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1165 #endif /* CONFIG_HOTPLUG_CPU */
1166
1167 static int __init s390_smp_init(void)
1168 {
1169         int cpu, rc = 0;
1170
1171 #ifdef CONFIG_HOTPLUG_CPU
1172         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1173         if (rc)
1174                 return rc;
1175 #endif
1176         for_each_present_cpu(cpu) {
1177                 rc = smp_add_present_cpu(cpu);
1178                 if (rc)
1179                         goto out;
1180         }
1181
1182         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1183                                smp_cpu_online, smp_cpu_pre_down);
1184         rc = rc <= 0 ? rc : 0;
1185 out:
1186         return rc;
1187 }
1188 subsys_initcall(s390_smp_init);