Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43         struct pt_regs *regs = task_pt_regs(task);
44         struct thread_struct *thread = &task->thread;
45         struct per_regs old, new;
46
47 #ifdef CONFIG_64BIT
48         /* Take care of the enable/disable of transactional execution. */
49         if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
50                 unsigned long cr, cr_new;
51
52                 __ctl_store(cr, 0, 0);
53                 cr_new = cr;
54                 if (MACHINE_HAS_TE) {
55                         /* Set or clear transaction execution TXC bit 8. */
56                         cr_new |= (1UL << 55);
57                         if (task->thread.per_flags & PER_FLAG_NO_TE)
58                                 cr_new &= ~(1UL << 55);
59                 }
60                 if (MACHINE_HAS_VX) {
61                         /* Enable/disable of vector extension */
62                         cr_new &= ~(1UL << 17);
63                         if (task->thread.vxrs)
64                                 cr_new |= (1UL << 17);
65                 }
66                 if (cr_new != cr)
67                         __ctl_load(cr_new, 0, 0);
68                 if (MACHINE_HAS_TE) {
69                         /* Set/clear transaction execution TDC bits 62/63. */
70                         __ctl_store(cr, 2, 2);
71                         cr_new = cr & ~3UL;
72                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
73                                 if (task->thread.per_flags &
74                                     PER_FLAG_TE_ABORT_RAND_TEND)
75                                         cr_new |= 1UL;
76                                 else
77                                         cr_new |= 2UL;
78                         }
79                         if (cr_new != cr)
80                                 __ctl_load(cr_new, 2, 2);
81                 }
82         }
83 #endif
84         /* Copy user specified PER registers */
85         new.control = thread->per_user.control;
86         new.start = thread->per_user.start;
87         new.end = thread->per_user.end;
88
89         /* merge TIF_SINGLE_STEP into user specified PER registers. */
90         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93                         new.control |= PER_EVENT_BRANCH;
94                 else
95                         new.control |= PER_EVENT_IFETCH;
96 #ifdef CONFIG_64BIT
97                 new.control |= PER_CONTROL_SUSPENSION;
98                 new.control |= PER_EVENT_TRANSACTION_END;
99 #endif
100                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101                         new.control |= PER_EVENT_IFETCH;
102                 new.start = 0;
103                 new.end = PSW_ADDR_INSN;
104         }
105
106         /* Take care of the PER enablement bit in the PSW. */
107         if (!(new.control & PER_EVENT_MASK)) {
108                 regs->psw.mask &= ~PSW_MASK_PER;
109                 return;
110         }
111         regs->psw.mask |= PSW_MASK_PER;
112         __ctl_store(old, 9, 11);
113         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114                 __ctl_load(new, 9, 11);
115 }
116
117 void user_enable_single_step(struct task_struct *task)
118 {
119         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_disable_single_step(struct task_struct *task)
124 {
125         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 }
128
129 void user_enable_block_step(struct task_struct *task)
130 {
131         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133 }
134
135 /*
136  * Called by kernel/ptrace.c when detaching..
137  *
138  * Clear all debugging related fields.
139  */
140 void ptrace_disable(struct task_struct *task)
141 {
142         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146         task->thread.per_flags = 0;
147 }
148
149 #ifndef CONFIG_64BIT
150 # define __ADDR_MASK 3
151 #else
152 # define __ADDR_MASK 7
153 #endif
154
155 static inline unsigned long __peek_user_per(struct task_struct *child,
156                                             addr_t addr)
157 {
158         struct per_struct_kernel *dummy = NULL;
159
160         if (addr == (addr_t) &dummy->cr9)
161                 /* Control bits of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         PER_EVENT_IFETCH : child->thread.per_user.control;
164         else if (addr == (addr_t) &dummy->cr10)
165                 /* Start address of the active per set. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         0 : child->thread.per_user.start;
168         else if (addr == (addr_t) &dummy->cr11)
169                 /* End address of the active per set. */
170                 return test_thread_flag(TIF_SINGLE_STEP) ?
171                         PSW_ADDR_INSN : child->thread.per_user.end;
172         else if (addr == (addr_t) &dummy->bits)
173                 /* Single-step bit. */
174                 return test_thread_flag(TIF_SINGLE_STEP) ?
175                         (1UL << (BITS_PER_LONG - 1)) : 0;
176         else if (addr == (addr_t) &dummy->starting_addr)
177                 /* Start address of the user specified per set. */
178                 return child->thread.per_user.start;
179         else if (addr == (addr_t) &dummy->ending_addr)
180                 /* End address of the user specified per set. */
181                 return child->thread.per_user.end;
182         else if (addr == (addr_t) &dummy->perc_atmid)
183                 /* PER code, ATMID and AI of the last PER trap */
184                 return (unsigned long)
185                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
186         else if (addr == (addr_t) &dummy->address)
187                 /* Address of the last PER trap */
188                 return child->thread.per_event.address;
189         else if (addr == (addr_t) &dummy->access_id)
190                 /* Access id of the last PER trap */
191                 return (unsigned long)
192                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
193         return 0;
194 }
195
196 /*
197  * Read the word at offset addr from the user area of a process. The
198  * trouble here is that the information is littered over different
199  * locations. The process registers are found on the kernel stack,
200  * the floating point stuff and the trace settings are stored in
201  * the task structure. In addition the different structures in
202  * struct user contain pad bytes that should be read as zeroes.
203  * Lovely...
204  */
205 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
206 {
207         struct user *dummy = NULL;
208         addr_t offset, tmp;
209
210         if (addr < (addr_t) &dummy->regs.acrs) {
211                 /*
212                  * psw and gprs are stored on the stack
213                  */
214                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
215                 if (addr == (addr_t) &dummy->regs.psw.mask) {
216                         /* Return a clean psw mask. */
217                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
218                         tmp |= PSW_USER_BITS;
219                 }
220
221         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
222                 /*
223                  * access registers are stored in the thread structure
224                  */
225                 offset = addr - (addr_t) &dummy->regs.acrs;
226 #ifdef CONFIG_64BIT
227                 /*
228                  * Very special case: old & broken 64 bit gdb reading
229                  * from acrs[15]. Result is a 64 bit value. Read the
230                  * 32 bit acrs[15] value and shift it by 32. Sick...
231                  */
232                 if (addr == (addr_t) &dummy->regs.acrs[15])
233                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
234                 else
235 #endif
236                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
237
238         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
239                 /*
240                  * orig_gpr2 is stored on the kernel stack
241                  */
242                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
243
244         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
245                 /*
246                  * prevent reads of padding hole between
247                  * orig_gpr2 and fp_regs on s390.
248                  */
249                 tmp = 0;
250
251         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
252                 /* 
253                  * floating point regs. are stored in the thread structure
254                  */
255                 offset = addr - (addr_t) &dummy->regs.fp_regs;
256                 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
257                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
258                         tmp <<= BITS_PER_LONG - 32;
259
260         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
261                 /*
262                  * Handle access to the per_info structure.
263                  */
264                 addr -= (addr_t) &dummy->regs.per_info;
265                 tmp = __peek_user_per(child, addr);
266
267         } else
268                 tmp = 0;
269
270         return tmp;
271 }
272
273 static int
274 peek_user(struct task_struct *child, addr_t addr, addr_t data)
275 {
276         addr_t tmp, mask;
277
278         /*
279          * Stupid gdb peeks/pokes the access registers in 64 bit with
280          * an alignment of 4. Programmers from hell...
281          */
282         mask = __ADDR_MASK;
283 #ifdef CONFIG_64BIT
284         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286                 mask = 3;
287 #endif
288         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
289                 return -EIO;
290
291         tmp = __peek_user(child, addr);
292         return put_user(tmp, (addr_t __user *) data);
293 }
294
295 static inline void __poke_user_per(struct task_struct *child,
296                                    addr_t addr, addr_t data)
297 {
298         struct per_struct_kernel *dummy = NULL;
299
300         /*
301          * There are only three fields in the per_info struct that the
302          * debugger user can write to.
303          * 1) cr9: the debugger wants to set a new PER event mask
304          * 2) starting_addr: the debugger wants to set a new starting
305          *    address to use with the PER event mask.
306          * 3) ending_addr: the debugger wants to set a new ending
307          *    address to use with the PER event mask.
308          * The user specified PER event mask and the start and end
309          * addresses are used only if single stepping is not in effect.
310          * Writes to any other field in per_info are ignored.
311          */
312         if (addr == (addr_t) &dummy->cr9)
313                 /* PER event mask of the user specified per set. */
314                 child->thread.per_user.control =
315                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
316         else if (addr == (addr_t) &dummy->starting_addr)
317                 /* Starting address of the user specified per set. */
318                 child->thread.per_user.start = data;
319         else if (addr == (addr_t) &dummy->ending_addr)
320                 /* Ending address of the user specified per set. */
321                 child->thread.per_user.end = data;
322 }
323
324 /*
325  * Write a word to the user area of a process at location addr. This
326  * operation does have an additional problem compared to peek_user.
327  * Stores to the program status word and on the floating point
328  * control register needs to get checked for validity.
329  */
330 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
331 {
332         struct user *dummy = NULL;
333         addr_t offset;
334
335         if (addr < (addr_t) &dummy->regs.acrs) {
336                 /*
337                  * psw and gprs are stored on the stack
338                  */
339                 if (addr == (addr_t) &dummy->regs.psw.mask) {
340                         unsigned long mask = PSW_MASK_USER;
341
342                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
343                         if ((data ^ PSW_USER_BITS) & ~mask)
344                                 /* Invalid psw mask. */
345                                 return -EINVAL;
346                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
347                                 /* Invalid address-space-control bits */
348                                 return -EINVAL;
349                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
350                                 /* Invalid addressing mode bits */
351                                 return -EINVAL;
352                 }
353                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
354
355         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
356                 /*
357                  * access registers are stored in the thread structure
358                  */
359                 offset = addr - (addr_t) &dummy->regs.acrs;
360 #ifdef CONFIG_64BIT
361                 /*
362                  * Very special case: old & broken 64 bit gdb writing
363                  * to acrs[15] with a 64 bit value. Ignore the lower
364                  * half of the value and write the upper 32 bit to
365                  * acrs[15]. Sick...
366                  */
367                 if (addr == (addr_t) &dummy->regs.acrs[15])
368                         child->thread.acrs[15] = (unsigned int) (data >> 32);
369                 else
370 #endif
371                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
372
373         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
374                 /*
375                  * orig_gpr2 is stored on the kernel stack
376                  */
377                 task_pt_regs(child)->orig_gpr2 = data;
378
379         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
380                 /*
381                  * prevent writes of padding hole between
382                  * orig_gpr2 and fp_regs on s390.
383                  */
384                 return 0;
385
386         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
387                 /*
388                  * floating point regs. are stored in the thread structure
389                  */
390                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
391                         if ((unsigned int) data != 0 ||
392                             test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393                                 return -EINVAL;
394                 offset = addr - (addr_t) &dummy->regs.fp_regs;
395                 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
396
397         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
398                 /*
399                  * Handle access to the per_info structure.
400                  */
401                 addr -= (addr_t) &dummy->regs.per_info;
402                 __poke_user_per(child, addr, data);
403
404         }
405
406         return 0;
407 }
408
409 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
410 {
411         addr_t mask;
412
413         /*
414          * Stupid gdb peeks/pokes the access registers in 64 bit with
415          * an alignment of 4. Programmers from hell indeed...
416          */
417         mask = __ADDR_MASK;
418 #ifdef CONFIG_64BIT
419         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
420             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
421                 mask = 3;
422 #endif
423         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
424                 return -EIO;
425
426         return __poke_user(child, addr, data);
427 }
428
429 long arch_ptrace(struct task_struct *child, long request,
430                  unsigned long addr, unsigned long data)
431 {
432         ptrace_area parea; 
433         int copied, ret;
434
435         switch (request) {
436         case PTRACE_PEEKUSR:
437                 /* read the word at location addr in the USER area. */
438                 return peek_user(child, addr, data);
439
440         case PTRACE_POKEUSR:
441                 /* write the word at location addr in the USER area */
442                 return poke_user(child, addr, data);
443
444         case PTRACE_PEEKUSR_AREA:
445         case PTRACE_POKEUSR_AREA:
446                 if (copy_from_user(&parea, (void __force __user *) addr,
447                                                         sizeof(parea)))
448                         return -EFAULT;
449                 addr = parea.kernel_addr;
450                 data = parea.process_addr;
451                 copied = 0;
452                 while (copied < parea.len) {
453                         if (request == PTRACE_PEEKUSR_AREA)
454                                 ret = peek_user(child, addr, data);
455                         else {
456                                 addr_t utmp;
457                                 if (get_user(utmp,
458                                              (addr_t __force __user *) data))
459                                         return -EFAULT;
460                                 ret = poke_user(child, addr, utmp);
461                         }
462                         if (ret)
463                                 return ret;
464                         addr += sizeof(unsigned long);
465                         data += sizeof(unsigned long);
466                         copied += sizeof(unsigned long);
467                 }
468                 return 0;
469         case PTRACE_GET_LAST_BREAK:
470                 put_user(task_thread_info(child)->last_break,
471                          (unsigned long __user *) data);
472                 return 0;
473         case PTRACE_ENABLE_TE:
474                 if (!MACHINE_HAS_TE)
475                         return -EIO;
476                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
477                 return 0;
478         case PTRACE_DISABLE_TE:
479                 if (!MACHINE_HAS_TE)
480                         return -EIO;
481                 child->thread.per_flags |= PER_FLAG_NO_TE;
482                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
483                 return 0;
484         case PTRACE_TE_ABORT_RAND:
485                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
486                         return -EIO;
487                 switch (data) {
488                 case 0UL:
489                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490                         break;
491                 case 1UL:
492                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
493                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
494                         break;
495                 case 2UL:
496                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
497                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
498                         break;
499                 default:
500                         return -EINVAL;
501                 }
502                 return 0;
503         default:
504                 /* Removing high order bit from addr (only for 31 bit). */
505                 addr &= PSW_ADDR_INSN;
506                 return ptrace_request(child, request, addr, data);
507         }
508 }
509
510 #ifdef CONFIG_COMPAT
511 /*
512  * Now the fun part starts... a 31 bit program running in the
513  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
514  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
515  * to handle, the difference to the 64 bit versions of the requests
516  * is that the access is done in multiples of 4 byte instead of
517  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
518  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
519  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
520  * is a 31 bit program too, the content of struct user can be
521  * emulated. A 31 bit program peeking into the struct user of
522  * a 64 bit program is a no-no.
523  */
524
525 /*
526  * Same as peek_user_per but for a 31 bit program.
527  */
528 static inline __u32 __peek_user_per_compat(struct task_struct *child,
529                                            addr_t addr)
530 {
531         struct compat_per_struct_kernel *dummy32 = NULL;
532
533         if (addr == (addr_t) &dummy32->cr9)
534                 /* Control bits of the active per set. */
535                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
536                         PER_EVENT_IFETCH : child->thread.per_user.control;
537         else if (addr == (addr_t) &dummy32->cr10)
538                 /* Start address of the active per set. */
539                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540                         0 : child->thread.per_user.start;
541         else if (addr == (addr_t) &dummy32->cr11)
542                 /* End address of the active per set. */
543                 return test_thread_flag(TIF_SINGLE_STEP) ?
544                         PSW32_ADDR_INSN : child->thread.per_user.end;
545         else if (addr == (addr_t) &dummy32->bits)
546                 /* Single-step bit. */
547                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548                         0x80000000 : 0;
549         else if (addr == (addr_t) &dummy32->starting_addr)
550                 /* Start address of the user specified per set. */
551                 return (__u32) child->thread.per_user.start;
552         else if (addr == (addr_t) &dummy32->ending_addr)
553                 /* End address of the user specified per set. */
554                 return (__u32) child->thread.per_user.end;
555         else if (addr == (addr_t) &dummy32->perc_atmid)
556                 /* PER code, ATMID and AI of the last PER trap */
557                 return (__u32) child->thread.per_event.cause << 16;
558         else if (addr == (addr_t) &dummy32->address)
559                 /* Address of the last PER trap */
560                 return (__u32) child->thread.per_event.address;
561         else if (addr == (addr_t) &dummy32->access_id)
562                 /* Access id of the last PER trap */
563                 return (__u32) child->thread.per_event.paid << 24;
564         return 0;
565 }
566
567 /*
568  * Same as peek_user but for a 31 bit program.
569  */
570 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
571 {
572         struct compat_user *dummy32 = NULL;
573         addr_t offset;
574         __u32 tmp;
575
576         if (addr < (addr_t) &dummy32->regs.acrs) {
577                 struct pt_regs *regs = task_pt_regs(child);
578                 /*
579                  * psw and gprs are stored on the stack
580                  */
581                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
582                         /* Fake a 31 bit psw mask. */
583                         tmp = (__u32)(regs->psw.mask >> 32);
584                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
585                         tmp |= PSW32_USER_BITS;
586                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
587                         /* Fake a 31 bit psw address. */
588                         tmp = (__u32) regs->psw.addr |
589                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
590                 } else {
591                         /* gpr 0-15 */
592                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
593                 }
594         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
595                 /*
596                  * access registers are stored in the thread structure
597                  */
598                 offset = addr - (addr_t) &dummy32->regs.acrs;
599                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
600
601         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
602                 /*
603                  * orig_gpr2 is stored on the kernel stack
604                  */
605                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
606
607         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
608                 /*
609                  * prevent reads of padding hole between
610                  * orig_gpr2 and fp_regs on s390.
611                  */
612                 tmp = 0;
613
614         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615                 /*
616                  * floating point regs. are stored in the thread structure 
617                  */
618                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
619                 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
620
621         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
622                 /*
623                  * Handle access to the per_info structure.
624                  */
625                 addr -= (addr_t) &dummy32->regs.per_info;
626                 tmp = __peek_user_per_compat(child, addr);
627
628         } else
629                 tmp = 0;
630
631         return tmp;
632 }
633
634 static int peek_user_compat(struct task_struct *child,
635                             addr_t addr, addr_t data)
636 {
637         __u32 tmp;
638
639         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
640                 return -EIO;
641
642         tmp = __peek_user_compat(child, addr);
643         return put_user(tmp, (__u32 __user *) data);
644 }
645
646 /*
647  * Same as poke_user_per but for a 31 bit program.
648  */
649 static inline void __poke_user_per_compat(struct task_struct *child,
650                                           addr_t addr, __u32 data)
651 {
652         struct compat_per_struct_kernel *dummy32 = NULL;
653
654         if (addr == (addr_t) &dummy32->cr9)
655                 /* PER event mask of the user specified per set. */
656                 child->thread.per_user.control =
657                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
658         else if (addr == (addr_t) &dummy32->starting_addr)
659                 /* Starting address of the user specified per set. */
660                 child->thread.per_user.start = data;
661         else if (addr == (addr_t) &dummy32->ending_addr)
662                 /* Ending address of the user specified per set. */
663                 child->thread.per_user.end = data;
664 }
665
666 /*
667  * Same as poke_user but for a 31 bit program.
668  */
669 static int __poke_user_compat(struct task_struct *child,
670                               addr_t addr, addr_t data)
671 {
672         struct compat_user *dummy32 = NULL;
673         __u32 tmp = (__u32) data;
674         addr_t offset;
675
676         if (addr < (addr_t) &dummy32->regs.acrs) {
677                 struct pt_regs *regs = task_pt_regs(child);
678                 /*
679                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
680                  */
681                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
682                         __u32 mask = PSW32_MASK_USER;
683
684                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
685                         /* Build a 64 bit psw mask from 31 bit mask. */
686                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
687                                 /* Invalid psw mask. */
688                                 return -EINVAL;
689                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
690                                 /* Invalid address-space-control bits */
691                                 return -EINVAL;
692                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
693                                 (regs->psw.mask & PSW_MASK_BA) |
694                                 (__u64)(tmp & mask) << 32;
695                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
696                         /* Build a 64 bit psw address from 31 bit address. */
697                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
698                         /* Transfer 31 bit amode bit to psw mask. */
699                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
700                                 (__u64)(tmp & PSW32_ADDR_AMODE);
701                 } else {
702                         /* gpr 0-15 */
703                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
704                 }
705         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
706                 /*
707                  * access registers are stored in the thread structure
708                  */
709                 offset = addr - (addr_t) &dummy32->regs.acrs;
710                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
711
712         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
713                 /*
714                  * orig_gpr2 is stored on the kernel stack
715                  */
716                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
717
718         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
719                 /*
720                  * prevent writess of padding hole between
721                  * orig_gpr2 and fp_regs on s390.
722                  */
723                 return 0;
724
725         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
726                 /*
727                  * floating point regs. are stored in the thread structure 
728                  */
729                 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
730                     test_fp_ctl(tmp))
731                         return -EINVAL;
732                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
733                 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
734
735         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
736                 /*
737                  * Handle access to the per_info structure.
738                  */
739                 addr -= (addr_t) &dummy32->regs.per_info;
740                 __poke_user_per_compat(child, addr, data);
741         }
742
743         return 0;
744 }
745
746 static int poke_user_compat(struct task_struct *child,
747                             addr_t addr, addr_t data)
748 {
749         if (!is_compat_task() || (addr & 3) ||
750             addr > sizeof(struct compat_user) - 3)
751                 return -EIO;
752
753         return __poke_user_compat(child, addr, data);
754 }
755
756 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
757                         compat_ulong_t caddr, compat_ulong_t cdata)
758 {
759         unsigned long addr = caddr;
760         unsigned long data = cdata;
761         compat_ptrace_area parea;
762         int copied, ret;
763
764         switch (request) {
765         case PTRACE_PEEKUSR:
766                 /* read the word at location addr in the USER area. */
767                 return peek_user_compat(child, addr, data);
768
769         case PTRACE_POKEUSR:
770                 /* write the word at location addr in the USER area */
771                 return poke_user_compat(child, addr, data);
772
773         case PTRACE_PEEKUSR_AREA:
774         case PTRACE_POKEUSR_AREA:
775                 if (copy_from_user(&parea, (void __force __user *) addr,
776                                                         sizeof(parea)))
777                         return -EFAULT;
778                 addr = parea.kernel_addr;
779                 data = parea.process_addr;
780                 copied = 0;
781                 while (copied < parea.len) {
782                         if (request == PTRACE_PEEKUSR_AREA)
783                                 ret = peek_user_compat(child, addr, data);
784                         else {
785                                 __u32 utmp;
786                                 if (get_user(utmp,
787                                              (__u32 __force __user *) data))
788                                         return -EFAULT;
789                                 ret = poke_user_compat(child, addr, utmp);
790                         }
791                         if (ret)
792                                 return ret;
793                         addr += sizeof(unsigned int);
794                         data += sizeof(unsigned int);
795                         copied += sizeof(unsigned int);
796                 }
797                 return 0;
798         case PTRACE_GET_LAST_BREAK:
799                 put_user(task_thread_info(child)->last_break,
800                          (unsigned int __user *) data);
801                 return 0;
802         }
803         return compat_ptrace_request(child, request, addr, data);
804 }
805 #endif
806
807 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
808 {
809         long ret = 0;
810
811         /* Do the secure computing check first. */
812         if (secure_computing()) {
813                 /* seccomp failures shouldn't expose any additional code. */
814                 ret = -1;
815                 goto out;
816         }
817
818         /*
819          * The sysc_tracesys code in entry.S stored the system
820          * call number to gprs[2].
821          */
822         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
823             (tracehook_report_syscall_entry(regs) ||
824              regs->gprs[2] >= NR_syscalls)) {
825                 /*
826                  * Tracing decided this syscall should not happen or the
827                  * debugger stored an invalid system call number. Skip
828                  * the system call and the system call restart handling.
829                  */
830                 clear_pt_regs_flag(regs, PIF_SYSCALL);
831                 ret = -1;
832         }
833
834         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
835                 trace_sys_enter(regs, regs->gprs[2]);
836
837         audit_syscall_entry(is_compat_task() ?
838                                 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
839                             regs->gprs[2], regs->orig_gpr2,
840                             regs->gprs[3], regs->gprs[4],
841                             regs->gprs[5]);
842 out:
843         return ret ?: regs->gprs[2];
844 }
845
846 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
847 {
848         audit_syscall_exit(regs);
849
850         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
851                 trace_sys_exit(regs, regs->gprs[2]);
852
853         if (test_thread_flag(TIF_SYSCALL_TRACE))
854                 tracehook_report_syscall_exit(regs, 0);
855 }
856
857 /*
858  * user_regset definitions.
859  */
860
861 static int s390_regs_get(struct task_struct *target,
862                          const struct user_regset *regset,
863                          unsigned int pos, unsigned int count,
864                          void *kbuf, void __user *ubuf)
865 {
866         if (target == current)
867                 save_access_regs(target->thread.acrs);
868
869         if (kbuf) {
870                 unsigned long *k = kbuf;
871                 while (count > 0) {
872                         *k++ = __peek_user(target, pos);
873                         count -= sizeof(*k);
874                         pos += sizeof(*k);
875                 }
876         } else {
877                 unsigned long __user *u = ubuf;
878                 while (count > 0) {
879                         if (__put_user(__peek_user(target, pos), u++))
880                                 return -EFAULT;
881                         count -= sizeof(*u);
882                         pos += sizeof(*u);
883                 }
884         }
885         return 0;
886 }
887
888 static int s390_regs_set(struct task_struct *target,
889                          const struct user_regset *regset,
890                          unsigned int pos, unsigned int count,
891                          const void *kbuf, const void __user *ubuf)
892 {
893         int rc = 0;
894
895         if (target == current)
896                 save_access_regs(target->thread.acrs);
897
898         if (kbuf) {
899                 const unsigned long *k = kbuf;
900                 while (count > 0 && !rc) {
901                         rc = __poke_user(target, pos, *k++);
902                         count -= sizeof(*k);
903                         pos += sizeof(*k);
904                 }
905         } else {
906                 const unsigned long  __user *u = ubuf;
907                 while (count > 0 && !rc) {
908                         unsigned long word;
909                         rc = __get_user(word, u++);
910                         if (rc)
911                                 break;
912                         rc = __poke_user(target, pos, word);
913                         count -= sizeof(*u);
914                         pos += sizeof(*u);
915                 }
916         }
917
918         if (rc == 0 && target == current)
919                 restore_access_regs(target->thread.acrs);
920
921         return rc;
922 }
923
924 static int s390_fpregs_get(struct task_struct *target,
925                            const struct user_regset *regset, unsigned int pos,
926                            unsigned int count, void *kbuf, void __user *ubuf)
927 {
928         if (target == current) {
929                 save_fp_ctl(&target->thread.fp_regs.fpc);
930                 save_fp_regs(target->thread.fp_regs.fprs);
931         }
932 #ifdef CONFIG_64BIT
933         else if (target->thread.vxrs) {
934                 int i;
935
936                 for (i = 0; i < __NUM_VXRS_LOW; i++)
937                         target->thread.fp_regs.fprs[i] =
938                                 *(freg_t *)(target->thread.vxrs + i);
939         }
940 #endif
941         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
942                                    &target->thread.fp_regs, 0, -1);
943 }
944
945 static int s390_fpregs_set(struct task_struct *target,
946                            const struct user_regset *regset, unsigned int pos,
947                            unsigned int count, const void *kbuf,
948                            const void __user *ubuf)
949 {
950         int rc = 0;
951
952         if (target == current) {
953                 save_fp_ctl(&target->thread.fp_regs.fpc);
954                 save_fp_regs(target->thread.fp_regs.fprs);
955         }
956
957         /* If setting FPC, must validate it first. */
958         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
959                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
960                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
961                                         0, offsetof(s390_fp_regs, fprs));
962                 if (rc)
963                         return rc;
964                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
965                         return -EINVAL;
966                 target->thread.fp_regs.fpc = ufpc[0];
967         }
968
969         if (rc == 0 && count > 0)
970                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
971                                         target->thread.fp_regs.fprs,
972                                         offsetof(s390_fp_regs, fprs), -1);
973
974         if (rc == 0) {
975                 if (target == current) {
976                         restore_fp_ctl(&target->thread.fp_regs.fpc);
977                         restore_fp_regs(target->thread.fp_regs.fprs);
978                 }
979 #ifdef CONFIG_64BIT
980                 else if (target->thread.vxrs) {
981                         int i;
982
983                         for (i = 0; i < __NUM_VXRS_LOW; i++)
984                                 *(freg_t *)(target->thread.vxrs + i) =
985                                         target->thread.fp_regs.fprs[i];
986                 }
987 #endif
988         }
989
990         return rc;
991 }
992
993 #ifdef CONFIG_64BIT
994
995 static int s390_last_break_get(struct task_struct *target,
996                                const struct user_regset *regset,
997                                unsigned int pos, unsigned int count,
998                                void *kbuf, void __user *ubuf)
999 {
1000         if (count > 0) {
1001                 if (kbuf) {
1002                         unsigned long *k = kbuf;
1003                         *k = task_thread_info(target)->last_break;
1004                 } else {
1005                         unsigned long  __user *u = ubuf;
1006                         if (__put_user(task_thread_info(target)->last_break, u))
1007                                 return -EFAULT;
1008                 }
1009         }
1010         return 0;
1011 }
1012
1013 static int s390_last_break_set(struct task_struct *target,
1014                                const struct user_regset *regset,
1015                                unsigned int pos, unsigned int count,
1016                                const void *kbuf, const void __user *ubuf)
1017 {
1018         return 0;
1019 }
1020
1021 static int s390_tdb_get(struct task_struct *target,
1022                         const struct user_regset *regset,
1023                         unsigned int pos, unsigned int count,
1024                         void *kbuf, void __user *ubuf)
1025 {
1026         struct pt_regs *regs = task_pt_regs(target);
1027         unsigned char *data;
1028
1029         if (!(regs->int_code & 0x200))
1030                 return -ENODATA;
1031         data = target->thread.trap_tdb;
1032         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1033 }
1034
1035 static int s390_tdb_set(struct task_struct *target,
1036                         const struct user_regset *regset,
1037                         unsigned int pos, unsigned int count,
1038                         const void *kbuf, const void __user *ubuf)
1039 {
1040         return 0;
1041 }
1042
1043 static int s390_vxrs_active(struct task_struct *target,
1044                               const struct user_regset *regset)
1045 {
1046         return !!target->thread.vxrs;
1047 }
1048
1049 static int s390_vxrs_low_get(struct task_struct *target,
1050                              const struct user_regset *regset,
1051                              unsigned int pos, unsigned int count,
1052                              void *kbuf, void __user *ubuf)
1053 {
1054         __u64 vxrs[__NUM_VXRS_LOW];
1055         int i;
1056
1057         if (target->thread.vxrs) {
1058                 if (target == current)
1059                         save_vx_regs(target->thread.vxrs);
1060                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1061                         vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1062         } else
1063                 memset(vxrs, 0, sizeof(vxrs));
1064         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1065 }
1066
1067 static int s390_vxrs_low_set(struct task_struct *target,
1068                              const struct user_regset *regset,
1069                              unsigned int pos, unsigned int count,
1070                              const void *kbuf, const void __user *ubuf)
1071 {
1072         __u64 vxrs[__NUM_VXRS_LOW];
1073         int i, rc;
1074
1075         if (!target->thread.vxrs) {
1076                 rc = alloc_vector_registers(target);
1077                 if (rc)
1078                         return rc;
1079         } else if (target == current)
1080                 save_vx_regs(target->thread.vxrs);
1081
1082         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1083         if (rc == 0) {
1084                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1085                         *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1086                 if (target == current)
1087                         restore_vx_regs(target->thread.vxrs);
1088         }
1089
1090         return rc;
1091 }
1092
1093 static int s390_vxrs_high_get(struct task_struct *target,
1094                               const struct user_regset *regset,
1095                               unsigned int pos, unsigned int count,
1096                               void *kbuf, void __user *ubuf)
1097 {
1098         __vector128 vxrs[__NUM_VXRS_HIGH];
1099
1100         if (target->thread.vxrs) {
1101                 if (target == current)
1102                         save_vx_regs(target->thread.vxrs);
1103                 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1104                        sizeof(vxrs));
1105         } else
1106                 memset(vxrs, 0, sizeof(vxrs));
1107         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1108 }
1109
1110 static int s390_vxrs_high_set(struct task_struct *target,
1111                               const struct user_regset *regset,
1112                               unsigned int pos, unsigned int count,
1113                               const void *kbuf, const void __user *ubuf)
1114 {
1115         int rc;
1116
1117         if (!target->thread.vxrs) {
1118                 rc = alloc_vector_registers(target);
1119                 if (rc)
1120                         return rc;
1121         } else if (target == current)
1122                 save_vx_regs(target->thread.vxrs);
1123
1124         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1125                                 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1126         if (rc == 0 && target == current)
1127                 restore_vx_regs(target->thread.vxrs);
1128
1129         return rc;
1130 }
1131
1132 #endif
1133
1134 static int s390_system_call_get(struct task_struct *target,
1135                                 const struct user_regset *regset,
1136                                 unsigned int pos, unsigned int count,
1137                                 void *kbuf, void __user *ubuf)
1138 {
1139         unsigned int *data = &task_thread_info(target)->system_call;
1140         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1141                                    data, 0, sizeof(unsigned int));
1142 }
1143
1144 static int s390_system_call_set(struct task_struct *target,
1145                                 const struct user_regset *regset,
1146                                 unsigned int pos, unsigned int count,
1147                                 const void *kbuf, const void __user *ubuf)
1148 {
1149         unsigned int *data = &task_thread_info(target)->system_call;
1150         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1151                                   data, 0, sizeof(unsigned int));
1152 }
1153
1154 static const struct user_regset s390_regsets[] = {
1155         {
1156                 .core_note_type = NT_PRSTATUS,
1157                 .n = sizeof(s390_regs) / sizeof(long),
1158                 .size = sizeof(long),
1159                 .align = sizeof(long),
1160                 .get = s390_regs_get,
1161                 .set = s390_regs_set,
1162         },
1163         {
1164                 .core_note_type = NT_PRFPREG,
1165                 .n = sizeof(s390_fp_regs) / sizeof(long),
1166                 .size = sizeof(long),
1167                 .align = sizeof(long),
1168                 .get = s390_fpregs_get,
1169                 .set = s390_fpregs_set,
1170         },
1171         {
1172                 .core_note_type = NT_S390_SYSTEM_CALL,
1173                 .n = 1,
1174                 .size = sizeof(unsigned int),
1175                 .align = sizeof(unsigned int),
1176                 .get = s390_system_call_get,
1177                 .set = s390_system_call_set,
1178         },
1179 #ifdef CONFIG_64BIT
1180         {
1181                 .core_note_type = NT_S390_LAST_BREAK,
1182                 .n = 1,
1183                 .size = sizeof(long),
1184                 .align = sizeof(long),
1185                 .get = s390_last_break_get,
1186                 .set = s390_last_break_set,
1187         },
1188         {
1189                 .core_note_type = NT_S390_TDB,
1190                 .n = 1,
1191                 .size = 256,
1192                 .align = 1,
1193                 .get = s390_tdb_get,
1194                 .set = s390_tdb_set,
1195         },
1196         {
1197                 .core_note_type = NT_S390_VXRS_LOW,
1198                 .n = __NUM_VXRS_LOW,
1199                 .size = sizeof(__u64),
1200                 .align = sizeof(__u64),
1201                 .active = s390_vxrs_active,
1202                 .get = s390_vxrs_low_get,
1203                 .set = s390_vxrs_low_set,
1204         },
1205         {
1206                 .core_note_type = NT_S390_VXRS_HIGH,
1207                 .n = __NUM_VXRS_HIGH,
1208                 .size = sizeof(__vector128),
1209                 .align = sizeof(__vector128),
1210                 .active = s390_vxrs_active,
1211                 .get = s390_vxrs_high_get,
1212                 .set = s390_vxrs_high_set,
1213         },
1214 #endif
1215 };
1216
1217 static const struct user_regset_view user_s390_view = {
1218         .name = UTS_MACHINE,
1219         .e_machine = EM_S390,
1220         .regsets = s390_regsets,
1221         .n = ARRAY_SIZE(s390_regsets)
1222 };
1223
1224 #ifdef CONFIG_COMPAT
1225 static int s390_compat_regs_get(struct task_struct *target,
1226                                 const struct user_regset *regset,
1227                                 unsigned int pos, unsigned int count,
1228                                 void *kbuf, void __user *ubuf)
1229 {
1230         if (target == current)
1231                 save_access_regs(target->thread.acrs);
1232
1233         if (kbuf) {
1234                 compat_ulong_t *k = kbuf;
1235                 while (count > 0) {
1236                         *k++ = __peek_user_compat(target, pos);
1237                         count -= sizeof(*k);
1238                         pos += sizeof(*k);
1239                 }
1240         } else {
1241                 compat_ulong_t __user *u = ubuf;
1242                 while (count > 0) {
1243                         if (__put_user(__peek_user_compat(target, pos), u++))
1244                                 return -EFAULT;
1245                         count -= sizeof(*u);
1246                         pos += sizeof(*u);
1247                 }
1248         }
1249         return 0;
1250 }
1251
1252 static int s390_compat_regs_set(struct task_struct *target,
1253                                 const struct user_regset *regset,
1254                                 unsigned int pos, unsigned int count,
1255                                 const void *kbuf, const void __user *ubuf)
1256 {
1257         int rc = 0;
1258
1259         if (target == current)
1260                 save_access_regs(target->thread.acrs);
1261
1262         if (kbuf) {
1263                 const compat_ulong_t *k = kbuf;
1264                 while (count > 0 && !rc) {
1265                         rc = __poke_user_compat(target, pos, *k++);
1266                         count -= sizeof(*k);
1267                         pos += sizeof(*k);
1268                 }
1269         } else {
1270                 const compat_ulong_t  __user *u = ubuf;
1271                 while (count > 0 && !rc) {
1272                         compat_ulong_t word;
1273                         rc = __get_user(word, u++);
1274                         if (rc)
1275                                 break;
1276                         rc = __poke_user_compat(target, pos, word);
1277                         count -= sizeof(*u);
1278                         pos += sizeof(*u);
1279                 }
1280         }
1281
1282         if (rc == 0 && target == current)
1283                 restore_access_regs(target->thread.acrs);
1284
1285         return rc;
1286 }
1287
1288 static int s390_compat_regs_high_get(struct task_struct *target,
1289                                      const struct user_regset *regset,
1290                                      unsigned int pos, unsigned int count,
1291                                      void *kbuf, void __user *ubuf)
1292 {
1293         compat_ulong_t *gprs_high;
1294
1295         gprs_high = (compat_ulong_t *)
1296                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1297         if (kbuf) {
1298                 compat_ulong_t *k = kbuf;
1299                 while (count > 0) {
1300                         *k++ = *gprs_high;
1301                         gprs_high += 2;
1302                         count -= sizeof(*k);
1303                 }
1304         } else {
1305                 compat_ulong_t __user *u = ubuf;
1306                 while (count > 0) {
1307                         if (__put_user(*gprs_high, u++))
1308                                 return -EFAULT;
1309                         gprs_high += 2;
1310                         count -= sizeof(*u);
1311                 }
1312         }
1313         return 0;
1314 }
1315
1316 static int s390_compat_regs_high_set(struct task_struct *target,
1317                                      const struct user_regset *regset,
1318                                      unsigned int pos, unsigned int count,
1319                                      const void *kbuf, const void __user *ubuf)
1320 {
1321         compat_ulong_t *gprs_high;
1322         int rc = 0;
1323
1324         gprs_high = (compat_ulong_t *)
1325                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1326         if (kbuf) {
1327                 const compat_ulong_t *k = kbuf;
1328                 while (count > 0) {
1329                         *gprs_high = *k++;
1330                         *gprs_high += 2;
1331                         count -= sizeof(*k);
1332                 }
1333         } else {
1334                 const compat_ulong_t  __user *u = ubuf;
1335                 while (count > 0 && !rc) {
1336                         unsigned long word;
1337                         rc = __get_user(word, u++);
1338                         if (rc)
1339                                 break;
1340                         *gprs_high = word;
1341                         *gprs_high += 2;
1342                         count -= sizeof(*u);
1343                 }
1344         }
1345
1346         return rc;
1347 }
1348
1349 static int s390_compat_last_break_get(struct task_struct *target,
1350                                       const struct user_regset *regset,
1351                                       unsigned int pos, unsigned int count,
1352                                       void *kbuf, void __user *ubuf)
1353 {
1354         compat_ulong_t last_break;
1355
1356         if (count > 0) {
1357                 last_break = task_thread_info(target)->last_break;
1358                 if (kbuf) {
1359                         unsigned long *k = kbuf;
1360                         *k = last_break;
1361                 } else {
1362                         unsigned long  __user *u = ubuf;
1363                         if (__put_user(last_break, u))
1364                                 return -EFAULT;
1365                 }
1366         }
1367         return 0;
1368 }
1369
1370 static int s390_compat_last_break_set(struct task_struct *target,
1371                                       const struct user_regset *regset,
1372                                       unsigned int pos, unsigned int count,
1373                                       const void *kbuf, const void __user *ubuf)
1374 {
1375         return 0;
1376 }
1377
1378 static const struct user_regset s390_compat_regsets[] = {
1379         {
1380                 .core_note_type = NT_PRSTATUS,
1381                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1382                 .size = sizeof(compat_long_t),
1383                 .align = sizeof(compat_long_t),
1384                 .get = s390_compat_regs_get,
1385                 .set = s390_compat_regs_set,
1386         },
1387         {
1388                 .core_note_type = NT_PRFPREG,
1389                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1390                 .size = sizeof(compat_long_t),
1391                 .align = sizeof(compat_long_t),
1392                 .get = s390_fpregs_get,
1393                 .set = s390_fpregs_set,
1394         },
1395         {
1396                 .core_note_type = NT_S390_SYSTEM_CALL,
1397                 .n = 1,
1398                 .size = sizeof(compat_uint_t),
1399                 .align = sizeof(compat_uint_t),
1400                 .get = s390_system_call_get,
1401                 .set = s390_system_call_set,
1402         },
1403         {
1404                 .core_note_type = NT_S390_LAST_BREAK,
1405                 .n = 1,
1406                 .size = sizeof(long),
1407                 .align = sizeof(long),
1408                 .get = s390_compat_last_break_get,
1409                 .set = s390_compat_last_break_set,
1410         },
1411         {
1412                 .core_note_type = NT_S390_TDB,
1413                 .n = 1,
1414                 .size = 256,
1415                 .align = 1,
1416                 .get = s390_tdb_get,
1417                 .set = s390_tdb_set,
1418         },
1419         {
1420                 .core_note_type = NT_S390_VXRS_LOW,
1421                 .n = __NUM_VXRS_LOW,
1422                 .size = sizeof(__u64),
1423                 .align = sizeof(__u64),
1424                 .active = s390_vxrs_active,
1425                 .get = s390_vxrs_low_get,
1426                 .set = s390_vxrs_low_set,
1427         },
1428         {
1429                 .core_note_type = NT_S390_VXRS_HIGH,
1430                 .n = __NUM_VXRS_HIGH,
1431                 .size = sizeof(__vector128),
1432                 .align = sizeof(__vector128),
1433                 .active = s390_vxrs_active,
1434                 .get = s390_vxrs_high_get,
1435                 .set = s390_vxrs_high_set,
1436         },
1437         {
1438                 .core_note_type = NT_S390_HIGH_GPRS,
1439                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1440                 .size = sizeof(compat_long_t),
1441                 .align = sizeof(compat_long_t),
1442                 .get = s390_compat_regs_high_get,
1443                 .set = s390_compat_regs_high_set,
1444         },
1445 };
1446
1447 static const struct user_regset_view user_s390_compat_view = {
1448         .name = "s390",
1449         .e_machine = EM_S390,
1450         .regsets = s390_compat_regsets,
1451         .n = ARRAY_SIZE(s390_compat_regsets)
1452 };
1453 #endif
1454
1455 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1456 {
1457 #ifdef CONFIG_COMPAT
1458         if (test_tsk_thread_flag(task, TIF_31BIT))
1459                 return &user_s390_compat_view;
1460 #endif
1461         return &user_s390_view;
1462 }
1463
1464 static const char *gpr_names[NUM_GPRS] = {
1465         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1466         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1467 };
1468
1469 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1470 {
1471         if (offset >= NUM_GPRS)
1472                 return 0;
1473         return regs->gprs[offset];
1474 }
1475
1476 int regs_query_register_offset(const char *name)
1477 {
1478         unsigned long offset;
1479
1480         if (!name || *name != 'r')
1481                 return -EINVAL;
1482         if (kstrtoul(name + 1, 10, &offset))
1483                 return -EINVAL;
1484         if (offset >= NUM_GPRS)
1485                 return -EINVAL;
1486         return offset;
1487 }
1488
1489 const char *regs_query_register_name(unsigned int offset)
1490 {
1491         if (offset >= NUM_GPRS)
1492                 return NULL;
1493         return gpr_names[offset];
1494 }
1495
1496 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1497 {
1498         unsigned long ksp = kernel_stack_pointer(regs);
1499
1500         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1501 }
1502
1503 /**
1504  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1505  * @regs:pt_regs which contains kernel stack pointer.
1506  * @n:stack entry number.
1507  *
1508  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1509  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1510  * this returns 0.
1511  */
1512 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1513 {
1514         unsigned long addr;
1515
1516         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1517         if (!regs_within_kernel_stack(regs, addr))
1518                 return 0;
1519         return *(unsigned long *)addr;
1520 }