Merge master.kernel.org:/pub/scm/linux/kernel/git/dwmw2/audit-2.6
[sfrench/cifs-2.6.git] / arch / ppc64 / kernel / process.c
1 /*
2  *  linux/arch/ppc64/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version 
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  */
18
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/init_task.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/utsname.h>
39 #include <linux/kprobes.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/prom.h>
49 #include <asm/ppcdebug.h>
50 #include <asm/machdep.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/cputable.h>
53 #include <asm/firmware.h>
54 #include <asm/sections.h>
55 #include <asm/tlbflush.h>
56 #include <asm/time.h>
57 #include <asm/plpar_wrappers.h>
58
59 #ifndef CONFIG_SMP
60 struct task_struct *last_task_used_math = NULL;
61 struct task_struct *last_task_used_altivec = NULL;
62 #endif
63
64 /*
65  * Make sure the floating-point register state in the
66  * the thread_struct is up to date for task tsk.
67  */
68 void flush_fp_to_thread(struct task_struct *tsk)
69 {
70         if (tsk->thread.regs) {
71                 /*
72                  * We need to disable preemption here because if we didn't,
73                  * another process could get scheduled after the regs->msr
74                  * test but before we have finished saving the FP registers
75                  * to the thread_struct.  That process could take over the
76                  * FPU, and then when we get scheduled again we would store
77                  * bogus values for the remaining FP registers.
78                  */
79                 preempt_disable();
80                 if (tsk->thread.regs->msr & MSR_FP) {
81 #ifdef CONFIG_SMP
82                         /*
83                          * This should only ever be called for current or
84                          * for a stopped child process.  Since we save away
85                          * the FP register state on context switch on SMP,
86                          * there is something wrong if a stopped child appears
87                          * to still have its FP state in the CPU registers.
88                          */
89                         BUG_ON(tsk != current);
90 #endif
91                         giveup_fpu(current);
92                 }
93                 preempt_enable();
94         }
95 }
96
97 void enable_kernel_fp(void)
98 {
99         WARN_ON(preemptible());
100
101 #ifdef CONFIG_SMP
102         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
103                 giveup_fpu(current);
104         else
105                 giveup_fpu(NULL);       /* just enables FP for kernel */
106 #else
107         giveup_fpu(last_task_used_math);
108 #endif /* CONFIG_SMP */
109 }
110 EXPORT_SYMBOL(enable_kernel_fp);
111
112 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
113 {
114         if (!tsk->thread.regs)
115                 return 0;
116         flush_fp_to_thread(current);
117
118         memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
119
120         return 1;
121 }
122
123 #ifdef CONFIG_ALTIVEC
124
125 void enable_kernel_altivec(void)
126 {
127         WARN_ON(preemptible());
128
129 #ifdef CONFIG_SMP
130         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
131                 giveup_altivec(current);
132         else
133                 giveup_altivec(NULL);   /* just enables FP for kernel */
134 #else
135         giveup_altivec(last_task_used_altivec);
136 #endif /* CONFIG_SMP */
137 }
138 EXPORT_SYMBOL(enable_kernel_altivec);
139
140 /*
141  * Make sure the VMX/Altivec register state in the
142  * the thread_struct is up to date for task tsk.
143  */
144 void flush_altivec_to_thread(struct task_struct *tsk)
145 {
146         if (tsk->thread.regs) {
147                 preempt_disable();
148                 if (tsk->thread.regs->msr & MSR_VEC) {
149 #ifdef CONFIG_SMP
150                         BUG_ON(tsk != current);
151 #endif
152                         giveup_altivec(current);
153                 }
154                 preempt_enable();
155         }
156 }
157
158 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
159 {
160         flush_altivec_to_thread(current);
161         memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
162         return 1;
163 }
164
165 #endif /* CONFIG_ALTIVEC */
166
167 static void set_dabr_spr(unsigned long val)
168 {
169         mtspr(SPRN_DABR, val);
170 }
171
172 int set_dabr(unsigned long dabr)
173 {
174         int ret = 0;
175
176         if (firmware_has_feature(FW_FEATURE_XDABR)) {
177                 /* We want to catch accesses from kernel and userspace */
178                 unsigned long flags = H_DABRX_KERNEL|H_DABRX_USER;
179                 ret = plpar_set_xdabr(dabr, flags);
180         } else if (firmware_has_feature(FW_FEATURE_DABR)) {
181                 ret = plpar_set_dabr(dabr);
182         } else {
183                 set_dabr_spr(dabr);
184         }
185
186         return ret;
187 }
188
189 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
190 static DEFINE_PER_CPU(unsigned long, current_dabr);
191
192 struct task_struct *__switch_to(struct task_struct *prev,
193                                 struct task_struct *new)
194 {
195         struct thread_struct *new_thread, *old_thread;
196         unsigned long flags;
197         struct task_struct *last;
198
199 #ifdef CONFIG_SMP
200         /* avoid complexity of lazy save/restore of fpu
201          * by just saving it every time we switch out if
202          * this task used the fpu during the last quantum.
203          * 
204          * If it tries to use the fpu again, it'll trap and
205          * reload its fp regs.  So we don't have to do a restore
206          * every switch, just a save.
207          *  -- Cort
208          */
209         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
210                 giveup_fpu(prev);
211 #ifdef CONFIG_ALTIVEC
212         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
213                 giveup_altivec(prev);
214 #endif /* CONFIG_ALTIVEC */
215 #endif /* CONFIG_SMP */
216
217 #if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
218         /* Avoid the trap.  On smp this this never happens since
219          * we don't set last_task_used_altivec -- Cort
220          */
221         if (new->thread.regs && last_task_used_altivec == new)
222                 new->thread.regs->msr |= MSR_VEC;
223 #endif /* CONFIG_ALTIVEC */
224
225         if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
226                 set_dabr(new->thread.dabr);
227                 __get_cpu_var(current_dabr) = new->thread.dabr;
228         }
229
230         flush_tlb_pending();
231
232         new_thread = &new->thread;
233         old_thread = &current->thread;
234
235         /* Collect purr utilization data per process and per processor
236          * wise purr is nothing but processor time base
237          */
238         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
239                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
240                 long unsigned start_tb, current_tb;
241                 start_tb = old_thread->start_tb;
242                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
243                 old_thread->accum_tb += (current_tb - start_tb);
244                 new_thread->start_tb = current_tb;
245         }
246
247         local_irq_save(flags);
248         last = _switch(old_thread, new_thread);
249
250         local_irq_restore(flags);
251
252         return last;
253 }
254
255 static int instructions_to_print = 16;
256
257 static void show_instructions(struct pt_regs *regs)
258 {
259         int i;
260         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
261                         sizeof(int));
262
263         printk("Instruction dump:");
264
265         for (i = 0; i < instructions_to_print; i++) {
266                 int instr;
267
268                 if (!(i % 8))
269                         printk("\n");
270
271                 if (((REGION_ID(pc) != KERNEL_REGION_ID) &&
272                      (REGION_ID(pc) != VMALLOC_REGION_ID)) ||
273                      __get_user(instr, (unsigned int *)pc)) {
274                         printk("XXXXXXXX ");
275                 } else {
276                         if (regs->nip == pc)
277                                 printk("<%08x> ", instr);
278                         else
279                                 printk("%08x ", instr);
280                 }
281
282                 pc += sizeof(int);
283         }
284
285         printk("\n");
286 }
287
288 void show_regs(struct pt_regs * regs)
289 {
290         int i;
291         unsigned long trap;
292
293         printk("NIP: %016lX XER: %08X LR: %016lX CTR: %016lX\n",
294                regs->nip, (unsigned int)regs->xer, regs->link, regs->ctr);
295         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
296                regs, regs->trap, print_tainted(), system_utsname.release);
297         printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x "
298                "IR/DR: %01x%01x CR: %08X\n",
299                regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0,
300                regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0,
301                regs->msr&MSR_IR ? 1 : 0,
302                regs->msr&MSR_DR ? 1 : 0,
303                (unsigned int)regs->ccr);
304         trap = TRAP(regs);
305         printk("DAR: %016lx DSISR: %016lx\n", regs->dar, regs->dsisr);
306         printk("TASK: %p[%d] '%s' THREAD: %p",
307                current, current->pid, current->comm, current->thread_info);
308
309 #ifdef CONFIG_SMP
310         printk(" CPU: %d", smp_processor_id());
311 #endif /* CONFIG_SMP */
312
313         for (i = 0; i < 32; i++) {
314                 if ((i % 4) == 0) {
315                         printk("\n" KERN_INFO "GPR%02d: ", i);
316                 }
317
318                 printk("%016lX ", regs->gpr[i]);
319                 if (i == 13 && !FULL_REGS(regs))
320                         break;
321         }
322         printk("\n");
323         /*
324          * Lookup NIP late so we have the best change of getting the
325          * above info out without failing
326          */
327         printk("NIP [%016lx] ", regs->nip);
328         print_symbol("%s\n", regs->nip);
329         printk("LR [%016lx] ", regs->link);
330         print_symbol("%s\n", regs->link);
331         show_stack(current, (unsigned long *)regs->gpr[1]);
332         if (!user_mode(regs))
333                 show_instructions(regs);
334 }
335
336 void exit_thread(void)
337 {
338         kprobe_flush_task(current);
339
340 #ifndef CONFIG_SMP
341         if (last_task_used_math == current)
342                 last_task_used_math = NULL;
343 #ifdef CONFIG_ALTIVEC
344         if (last_task_used_altivec == current)
345                 last_task_used_altivec = NULL;
346 #endif /* CONFIG_ALTIVEC */
347 #endif /* CONFIG_SMP */
348 }
349
350 void flush_thread(void)
351 {
352         struct thread_info *t = current_thread_info();
353
354         kprobe_flush_task(current);
355         if (t->flags & _TIF_ABI_PENDING)
356                 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
357
358 #ifndef CONFIG_SMP
359         if (last_task_used_math == current)
360                 last_task_used_math = NULL;
361 #ifdef CONFIG_ALTIVEC
362         if (last_task_used_altivec == current)
363                 last_task_used_altivec = NULL;
364 #endif /* CONFIG_ALTIVEC */
365 #endif /* CONFIG_SMP */
366
367         if (current->thread.dabr) {
368                 current->thread.dabr = 0;
369                 set_dabr(0);
370         }
371 }
372
373 void
374 release_thread(struct task_struct *t)
375 {
376 }
377
378
379 /*
380  * This gets called before we allocate a new thread and copy
381  * the current task into it.
382  */
383 void prepare_to_copy(struct task_struct *tsk)
384 {
385         flush_fp_to_thread(current);
386         flush_altivec_to_thread(current);
387 }
388
389 /*
390  * Copy a thread..
391  */
392 int
393 copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
394             unsigned long unused, struct task_struct *p, struct pt_regs *regs)
395 {
396         struct pt_regs *childregs, *kregs;
397         extern void ret_from_fork(void);
398         unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
399
400         /* Copy registers */
401         sp -= sizeof(struct pt_regs);
402         childregs = (struct pt_regs *) sp;
403         *childregs = *regs;
404         if ((childregs->msr & MSR_PR) == 0) {
405                 /* for kernel thread, set stackptr in new task */
406                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
407                 p->thread.regs = NULL;  /* no user register state */
408                 clear_ti_thread_flag(p->thread_info, TIF_32BIT);
409         } else {
410                 childregs->gpr[1] = usp;
411                 p->thread.regs = childregs;
412                 if (clone_flags & CLONE_SETTLS) {
413                         if (test_thread_flag(TIF_32BIT))
414                                 childregs->gpr[2] = childregs->gpr[6];
415                         else
416                                 childregs->gpr[13] = childregs->gpr[6];
417                 }
418         }
419         childregs->gpr[3] = 0;  /* Result from fork() */
420         sp -= STACK_FRAME_OVERHEAD;
421
422         /*
423          * The way this works is that at some point in the future
424          * some task will call _switch to switch to the new task.
425          * That will pop off the stack frame created below and start
426          * the new task running at ret_from_fork.  The new task will
427          * do some house keeping and then return from the fork or clone
428          * system call, using the stack frame created above.
429          */
430         sp -= sizeof(struct pt_regs);
431         kregs = (struct pt_regs *) sp;
432         sp -= STACK_FRAME_OVERHEAD;
433         p->thread.ksp = sp;
434         if (cpu_has_feature(CPU_FTR_SLB)) {
435                 unsigned long sp_vsid = get_kernel_vsid(sp);
436
437                 sp_vsid <<= SLB_VSID_SHIFT;
438                 sp_vsid |= SLB_VSID_KERNEL;
439                 if (cpu_has_feature(CPU_FTR_16M_PAGE))
440                         sp_vsid |= SLB_VSID_L;
441
442                 p->thread.ksp_vsid = sp_vsid;
443         }
444
445         /*
446          * The PPC64 ABI makes use of a TOC to contain function 
447          * pointers.  The function (ret_from_except) is actually a pointer
448          * to the TOC entry.  The first entry is a pointer to the actual
449          * function.
450          */
451         kregs->nip = *((unsigned long *)ret_from_fork);
452
453         return 0;
454 }
455
456 /*
457  * Set up a thread for executing a new program
458  */
459 void start_thread(struct pt_regs *regs, unsigned long fdptr, unsigned long sp)
460 {
461         unsigned long entry, toc, load_addr = regs->gpr[2];
462
463         /* fdptr is a relocated pointer to the function descriptor for
464          * the elf _start routine.  The first entry in the function
465          * descriptor is the entry address of _start and the second
466          * entry is the TOC value we need to use.
467          */
468         set_fs(USER_DS);
469         __get_user(entry, (unsigned long __user *)fdptr);
470         __get_user(toc, (unsigned long __user *)fdptr+1);
471
472         /* Check whether the e_entry function descriptor entries
473          * need to be relocated before we can use them.
474          */
475         if (load_addr != 0) {
476                 entry += load_addr;
477                 toc   += load_addr;
478         }
479
480         /*
481          * If we exec out of a kernel thread then thread.regs will not be
482          * set. Do it now.
483          */
484         if (!current->thread.regs) {
485                 unsigned long childregs = (unsigned long)current->thread_info +
486                                                 THREAD_SIZE;
487                 childregs -= sizeof(struct pt_regs);
488                 current->thread.regs = (struct pt_regs *)childregs;
489         }
490
491         regs->nip = entry;
492         regs->gpr[1] = sp;
493         regs->gpr[2] = toc;
494         regs->msr = MSR_USER64;
495 #ifndef CONFIG_SMP
496         if (last_task_used_math == current)
497                 last_task_used_math = 0;
498 #endif /* CONFIG_SMP */
499         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
500         current->thread.fpscr = 0;
501 #ifdef CONFIG_ALTIVEC
502 #ifndef CONFIG_SMP
503         if (last_task_used_altivec == current)
504                 last_task_used_altivec = 0;
505 #endif /* CONFIG_SMP */
506         memset(current->thread.vr, 0, sizeof(current->thread.vr));
507         current->thread.vscr.u[0] = 0;
508         current->thread.vscr.u[1] = 0;
509         current->thread.vscr.u[2] = 0;
510         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
511         current->thread.vrsave = 0;
512         current->thread.used_vr = 0;
513 #endif /* CONFIG_ALTIVEC */
514 }
515 EXPORT_SYMBOL(start_thread);
516
517 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
518 {
519         struct pt_regs *regs = tsk->thread.regs;
520
521         if (val > PR_FP_EXC_PRECISE)
522                 return -EINVAL;
523         tsk->thread.fpexc_mode = __pack_fe01(val);
524         if (regs != NULL && (regs->msr & MSR_FP) != 0)
525                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
526                         | tsk->thread.fpexc_mode;
527         return 0;
528 }
529
530 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
531 {
532         unsigned int val;
533
534         val = __unpack_fe01(tsk->thread.fpexc_mode);
535         return put_user(val, (unsigned int __user *) adr);
536 }
537
538 int sys_clone(unsigned long clone_flags, unsigned long p2, unsigned long p3,
539               unsigned long p4, unsigned long p5, unsigned long p6,
540               struct pt_regs *regs)
541 {
542         unsigned long parent_tidptr = 0;
543         unsigned long child_tidptr = 0;
544
545         if (p2 == 0)
546                 p2 = regs->gpr[1];      /* stack pointer for child */
547
548         if (clone_flags & (CLONE_PARENT_SETTID | CLONE_CHILD_SETTID |
549                            CLONE_CHILD_CLEARTID)) {
550                 parent_tidptr = p3;
551                 child_tidptr = p5;
552                 if (test_thread_flag(TIF_32BIT)) {
553                         parent_tidptr &= 0xffffffff;
554                         child_tidptr &= 0xffffffff;
555                 }
556         }
557
558         return do_fork(clone_flags, p2, regs, 0,
559                     (int __user *)parent_tidptr, (int __user *)child_tidptr);
560 }
561
562 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
563              unsigned long p4, unsigned long p5, unsigned long p6,
564              struct pt_regs *regs)
565 {
566         return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
567 }
568
569 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
570               unsigned long p4, unsigned long p5, unsigned long p6,
571               struct pt_regs *regs)
572 {
573         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs, 0,
574                     NULL, NULL);
575 }
576
577 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
578                unsigned long a3, unsigned long a4, unsigned long a5,
579                struct pt_regs *regs)
580 {
581         int error;
582         char * filename;
583         
584         filename = getname((char __user *) a0);
585         error = PTR_ERR(filename);
586         if (IS_ERR(filename))
587                 goto out;
588         flush_fp_to_thread(current);
589         flush_altivec_to_thread(current);
590         error = do_execve(filename, (char __user * __user *) a1,
591                                     (char __user * __user *) a2, regs);
592   
593         if (error == 0) {
594                 task_lock(current);
595                 current->ptrace &= ~PT_DTRACE;
596                 task_unlock(current);
597         }
598         putname(filename);
599
600 out:
601         return error;
602 }
603
604 static int kstack_depth_to_print = 64;
605
606 static int validate_sp(unsigned long sp, struct task_struct *p,
607                        unsigned long nbytes)
608 {
609         unsigned long stack_page = (unsigned long)p->thread_info;
610
611         if (sp >= stack_page + sizeof(struct thread_struct)
612             && sp <= stack_page + THREAD_SIZE - nbytes)
613                 return 1;
614
615 #ifdef CONFIG_IRQSTACKS
616         stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
617         if (sp >= stack_page + sizeof(struct thread_struct)
618             && sp <= stack_page + THREAD_SIZE - nbytes)
619                 return 1;
620
621         stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
622         if (sp >= stack_page + sizeof(struct thread_struct)
623             && sp <= stack_page + THREAD_SIZE - nbytes)
624                 return 1;
625 #endif
626
627         return 0;
628 }
629
630 unsigned long get_wchan(struct task_struct *p)
631 {
632         unsigned long ip, sp;
633         int count = 0;
634
635         if (!p || p == current || p->state == TASK_RUNNING)
636                 return 0;
637
638         sp = p->thread.ksp;
639         if (!validate_sp(sp, p, 112))
640                 return 0;
641
642         do {
643                 sp = *(unsigned long *)sp;
644                 if (!validate_sp(sp, p, 112))
645                         return 0;
646                 if (count > 0) {
647                         ip = *(unsigned long *)(sp + 16);
648                         if (!in_sched_functions(ip))
649                                 return ip;
650                 }
651         } while (count++ < 16);
652         return 0;
653 }
654 EXPORT_SYMBOL(get_wchan);
655
656 void show_stack(struct task_struct *p, unsigned long *_sp)
657 {
658         unsigned long ip, newsp, lr;
659         int count = 0;
660         unsigned long sp = (unsigned long)_sp;
661         int firstframe = 1;
662
663         if (sp == 0) {
664                 if (p) {
665                         sp = p->thread.ksp;
666                 } else {
667                         sp = __get_SP();
668                         p = current;
669                 }
670         }
671
672         lr = 0;
673         printk("Call Trace:\n");
674         do {
675                 if (!validate_sp(sp, p, 112))
676                         return;
677
678                 _sp = (unsigned long *) sp;
679                 newsp = _sp[0];
680                 ip = _sp[2];
681                 if (!firstframe || ip != lr) {
682                         printk("[%016lx] [%016lx] ", sp, ip);
683                         print_symbol("%s", ip);
684                         if (firstframe)
685                                 printk(" (unreliable)");
686                         printk("\n");
687                 }
688                 firstframe = 0;
689
690                 /*
691                  * See if this is an exception frame.
692                  * We look for the "regshere" marker in the current frame.
693                  */
694                 if (validate_sp(sp, p, sizeof(struct pt_regs) + 400)
695                     && _sp[12] == 0x7265677368657265ul) {
696                         struct pt_regs *regs = (struct pt_regs *)
697                                 (sp + STACK_FRAME_OVERHEAD);
698                         printk("--- Exception: %lx", regs->trap);
699                         print_symbol(" at %s\n", regs->nip);
700                         lr = regs->link;
701                         print_symbol("    LR = %s\n", lr);
702                         firstframe = 1;
703                 }
704
705                 sp = newsp;
706         } while (count++ < kstack_depth_to_print);
707 }
708
709 void dump_stack(void)
710 {
711         show_stack(current, (unsigned long *)__get_SP());
712 }
713 EXPORT_SYMBOL(dump_stack);