Merge branch 'core/urgent' into x86/urgent, to pick up objtool fix
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / powernv / opal.c
1 /*
2  * PowerNV OPAL high level interfaces
3  *
4  * Copyright 2011 IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #define pr_fmt(fmt)     "opal: " fmt
13
14 #include <linux/printk.h>
15 #include <linux/types.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_platform.h>
19 #include <linux/of_address.h>
20 #include <linux/interrupt.h>
21 #include <linux/notifier.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/kobject.h>
25 #include <linux/delay.h>
26 #include <linux/memblock.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/printk.h>
30 #include <linux/kmsg_dump.h>
31 #include <linux/console.h>
32 #include <linux/sched/debug.h>
33
34 #include <asm/machdep.h>
35 #include <asm/opal.h>
36 #include <asm/firmware.h>
37 #include <asm/mce.h>
38 #include <asm/imc-pmu.h>
39 #include <asm/bug.h>
40
41 #include "powernv.h"
42
43 /* /sys/firmware/opal */
44 struct kobject *opal_kobj;
45
46 struct opal {
47         u64 base;
48         u64 entry;
49         u64 size;
50 } opal;
51
52 struct mcheck_recoverable_range {
53         u64 start_addr;
54         u64 end_addr;
55         u64 recover_addr;
56 };
57
58 static struct mcheck_recoverable_range *mc_recoverable_range;
59 static int mc_recoverable_range_len;
60
61 struct device_node *opal_node;
62 static DEFINE_SPINLOCK(opal_write_lock);
63 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
64 static uint32_t opal_heartbeat;
65 static struct task_struct *kopald_tsk;
66
67 void opal_configure_cores(void)
68 {
69         u64 reinit_flags = 0;
70
71         /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
72          *
73          * It will preserve non volatile GPRs and HSPRG0/1. It will
74          * also restore HIDs and other SPRs to their original value
75          * but it might clobber a bunch.
76          */
77 #ifdef __BIG_ENDIAN__
78         reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
79 #else
80         reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
81 #endif
82
83         /*
84          * POWER9 always support running hash:
85          *  ie. Host hash  supports  hash guests
86          *      Host radix supports  hash/radix guests
87          */
88         if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
89                 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
90                 if (early_radix_enabled())
91                         reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
92         }
93
94         opal_reinit_cpus(reinit_flags);
95
96         /* Restore some bits */
97         if (cur_cpu_spec->cpu_restore)
98                 cur_cpu_spec->cpu_restore();
99 }
100
101 int __init early_init_dt_scan_opal(unsigned long node,
102                                    const char *uname, int depth, void *data)
103 {
104         const void *basep, *entryp, *sizep;
105         int basesz, entrysz, runtimesz;
106
107         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
108                 return 0;
109
110         basep  = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
111         entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
112         sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
113
114         if (!basep || !entryp || !sizep)
115                 return 1;
116
117         opal.base = of_read_number(basep, basesz/4);
118         opal.entry = of_read_number(entryp, entrysz/4);
119         opal.size = of_read_number(sizep, runtimesz/4);
120
121         pr_debug("OPAL Base  = 0x%llx (basep=%p basesz=%d)\n",
122                  opal.base, basep, basesz);
123         pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
124                  opal.entry, entryp, entrysz);
125         pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
126                  opal.size, sizep, runtimesz);
127
128         if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
129                 powerpc_firmware_features |= FW_FEATURE_OPAL;
130                 pr_debug("OPAL detected !\n");
131         } else {
132                 panic("OPAL != V3 detected, no longer supported.\n");
133         }
134
135         return 1;
136 }
137
138 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
139                                    const char *uname, int depth, void *data)
140 {
141         int i, psize, size;
142         const __be32 *prop;
143
144         if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
145                 return 0;
146
147         prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
148
149         if (!prop)
150                 return 1;
151
152         pr_debug("Found machine check recoverable ranges.\n");
153
154         /*
155          * Calculate number of available entries.
156          *
157          * Each recoverable address range entry is (start address, len,
158          * recovery address), 2 cells each for start and recovery address,
159          * 1 cell for len, totalling 5 cells per entry.
160          */
161         mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
162
163         /* Sanity check */
164         if (!mc_recoverable_range_len)
165                 return 1;
166
167         /* Size required to hold all the entries. */
168         size = mc_recoverable_range_len *
169                         sizeof(struct mcheck_recoverable_range);
170
171         /*
172          * Allocate a buffer to hold the MC recoverable ranges.
173          */
174         mc_recoverable_range =__va(memblock_phys_alloc(size, __alignof__(u64)));
175         memset(mc_recoverable_range, 0, size);
176
177         for (i = 0; i < mc_recoverable_range_len; i++) {
178                 mc_recoverable_range[i].start_addr =
179                                         of_read_number(prop + (i * 5) + 0, 2);
180                 mc_recoverable_range[i].end_addr =
181                                         mc_recoverable_range[i].start_addr +
182                                         of_read_number(prop + (i * 5) + 2, 1);
183                 mc_recoverable_range[i].recover_addr =
184                                         of_read_number(prop + (i * 5) + 3, 2);
185
186                 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
187                                 mc_recoverable_range[i].start_addr,
188                                 mc_recoverable_range[i].end_addr,
189                                 mc_recoverable_range[i].recover_addr);
190         }
191         return 1;
192 }
193
194 static int __init opal_register_exception_handlers(void)
195 {
196 #ifdef __BIG_ENDIAN__
197         u64 glue;
198
199         if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
200                 return -ENODEV;
201
202         /* Hookup some exception handlers except machine check. We use the
203          * fwnmi area at 0x7000 to provide the glue space to OPAL
204          */
205         glue = 0x7000;
206
207         /*
208          * Check if we are running on newer firmware that exports
209          * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch
210          * the HMI interrupt and we catch it directly in Linux.
211          *
212          * For older firmware (i.e currently released POWER8 System Firmware
213          * as of today <= SV810_087), we fallback to old behavior and let OPAL
214          * patch the HMI vector and handle it inside OPAL firmware.
215          *
216          * For newer firmware (in development/yet to be released) we will
217          * start catching/handling HMI directly in Linux.
218          */
219         if (!opal_check_token(OPAL_HANDLE_HMI)) {
220                 pr_info("Old firmware detected, OPAL handles HMIs.\n");
221                 opal_register_exception_handler(
222                                 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
223                                 0, glue);
224                 glue += 128;
225         }
226
227         opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
228 #endif
229
230         return 0;
231 }
232 machine_early_initcall(powernv, opal_register_exception_handlers);
233
234 /*
235  * Opal message notifier based on message type. Allow subscribers to get
236  * notified for specific messgae type.
237  */
238 int opal_message_notifier_register(enum opal_msg_type msg_type,
239                                         struct notifier_block *nb)
240 {
241         if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
242                 pr_warn("%s: Invalid arguments, msg_type:%d\n",
243                         __func__, msg_type);
244                 return -EINVAL;
245         }
246
247         return atomic_notifier_chain_register(
248                                 &opal_msg_notifier_head[msg_type], nb);
249 }
250 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
251
252 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
253                                      struct notifier_block *nb)
254 {
255         return atomic_notifier_chain_unregister(
256                         &opal_msg_notifier_head[msg_type], nb);
257 }
258 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
259
260 static void opal_message_do_notify(uint32_t msg_type, void *msg)
261 {
262         /* notify subscribers */
263         atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
264                                         msg_type, msg);
265 }
266
267 static void opal_handle_message(void)
268 {
269         s64 ret;
270         /*
271          * TODO: pre-allocate a message buffer depending on opal-msg-size
272          * value in /proc/device-tree.
273          */
274         static struct opal_msg msg;
275         u32 type;
276
277         ret = opal_get_msg(__pa(&msg), sizeof(msg));
278         /* No opal message pending. */
279         if (ret == OPAL_RESOURCE)
280                 return;
281
282         /* check for errors. */
283         if (ret) {
284                 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
285                         __func__, ret);
286                 return;
287         }
288
289         type = be32_to_cpu(msg.msg_type);
290
291         /* Sanity check */
292         if (type >= OPAL_MSG_TYPE_MAX) {
293                 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
294                 return;
295         }
296         opal_message_do_notify(type, (void *)&msg);
297 }
298
299 static irqreturn_t opal_message_notify(int irq, void *data)
300 {
301         opal_handle_message();
302         return IRQ_HANDLED;
303 }
304
305 static int __init opal_message_init(void)
306 {
307         int ret, i, irq;
308
309         for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
310                 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
311
312         irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
313         if (!irq) {
314                 pr_err("%s: Can't register OPAL event irq (%d)\n",
315                        __func__, irq);
316                 return irq;
317         }
318
319         ret = request_irq(irq, opal_message_notify,
320                         IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
321         if (ret) {
322                 pr_err("%s: Can't request OPAL event irq (%d)\n",
323                        __func__, ret);
324                 return ret;
325         }
326
327         return 0;
328 }
329
330 int opal_get_chars(uint32_t vtermno, char *buf, int count)
331 {
332         s64 rc;
333         __be64 evt, len;
334
335         if (!opal.entry)
336                 return -ENODEV;
337         opal_poll_events(&evt);
338         if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
339                 return 0;
340         len = cpu_to_be64(count);
341         rc = opal_console_read(vtermno, &len, buf);
342         if (rc == OPAL_SUCCESS)
343                 return be64_to_cpu(len);
344         return 0;
345 }
346
347 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
348 {
349         unsigned long flags = 0 /* shut up gcc */;
350         int written;
351         __be64 olen;
352         s64 rc;
353
354         if (!opal.entry)
355                 return -ENODEV;
356
357         if (atomic)
358                 spin_lock_irqsave(&opal_write_lock, flags);
359         rc = opal_console_write_buffer_space(vtermno, &olen);
360         if (rc || be64_to_cpu(olen) < total_len) {
361                 /* Closed -> drop characters */
362                 if (rc)
363                         written = total_len;
364                 else
365                         written = -EAGAIN;
366                 goto out;
367         }
368
369         /* Should not get a partial write here because space is available. */
370         olen = cpu_to_be64(total_len);
371         rc = opal_console_write(vtermno, &olen, data);
372         if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
373                 if (rc == OPAL_BUSY_EVENT)
374                         opal_poll_events(NULL);
375                 written = -EAGAIN;
376                 goto out;
377         }
378
379         /* Closed or other error drop */
380         if (rc != OPAL_SUCCESS) {
381                 written = opal_error_code(rc);
382                 goto out;
383         }
384
385         written = be64_to_cpu(olen);
386         if (written < total_len) {
387                 if (atomic) {
388                         /* Should not happen */
389                         pr_warn("atomic console write returned partial "
390                                 "len=%d written=%d\n", total_len, written);
391                 }
392                 if (!written)
393                         written = -EAGAIN;
394         }
395
396 out:
397         if (atomic)
398                 spin_unlock_irqrestore(&opal_write_lock, flags);
399
400         return written;
401 }
402
403 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
404 {
405         return __opal_put_chars(vtermno, data, total_len, false);
406 }
407
408 /*
409  * opal_put_chars_atomic will not perform partial-writes. Data will be
410  * atomically written to the terminal or not at all. This is not strictly
411  * true at the moment because console space can race with OPAL's console
412  * writes.
413  */
414 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
415 {
416         return __opal_put_chars(vtermno, data, total_len, true);
417 }
418
419 static s64 __opal_flush_console(uint32_t vtermno)
420 {
421         s64 rc;
422
423         if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
424                 __be64 evt;
425
426                 /*
427                  * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
428                  * the console can still be flushed by calling the polling
429                  * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
430                  */
431                 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
432
433                 opal_poll_events(&evt);
434                 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
435                         return OPAL_SUCCESS;
436                 return OPAL_BUSY;
437
438         } else {
439                 rc = opal_console_flush(vtermno);
440                 if (rc == OPAL_BUSY_EVENT) {
441                         opal_poll_events(NULL);
442                         rc = OPAL_BUSY;
443                 }
444                 return rc;
445         }
446
447 }
448
449 /*
450  * opal_flush_console spins until the console is flushed
451  */
452 int opal_flush_console(uint32_t vtermno)
453 {
454         for (;;) {
455                 s64 rc = __opal_flush_console(vtermno);
456
457                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
458                         mdelay(1);
459                         continue;
460                 }
461
462                 return opal_error_code(rc);
463         }
464 }
465
466 /*
467  * opal_flush_chars is an hvc interface that sleeps until the console is
468  * flushed if wait, otherwise it will return -EBUSY if the console has data,
469  * -EAGAIN if it has data and some of it was flushed.
470  */
471 int opal_flush_chars(uint32_t vtermno, bool wait)
472 {
473         for (;;) {
474                 s64 rc = __opal_flush_console(vtermno);
475
476                 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
477                         if (wait) {
478                                 msleep(OPAL_BUSY_DELAY_MS);
479                                 continue;
480                         }
481                         if (rc == OPAL_PARTIAL)
482                                 return -EAGAIN;
483                 }
484
485                 return opal_error_code(rc);
486         }
487 }
488
489 static int opal_recover_mce(struct pt_regs *regs,
490                                         struct machine_check_event *evt)
491 {
492         int recovered = 0;
493
494         if (!(regs->msr & MSR_RI)) {
495                 /* If MSR_RI isn't set, we cannot recover */
496                 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
497                 recovered = 0;
498         } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
499                 /* Platform corrected itself */
500                 recovered = 1;
501         } else if (evt->severity == MCE_SEV_FATAL) {
502                 /* Fatal machine check */
503                 pr_err("Machine check interrupt is fatal\n");
504                 recovered = 0;
505         }
506
507         if (!recovered && evt->severity == MCE_SEV_ERROR_SYNC) {
508                 /*
509                  * Try to kill processes if we get a synchronous machine check
510                  * (e.g., one caused by execution of this instruction). This
511                  * will devolve into a panic if we try to kill init or are in
512                  * an interrupt etc.
513                  *
514                  * TODO: Queue up this address for hwpoisioning later.
515                  * TODO: This is not quite right for d-side machine
516                  *       checks ->nip is not necessarily the important
517                  *       address.
518                  */
519                 if ((user_mode(regs))) {
520                         _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
521                         recovered = 1;
522                 } else if (die_will_crash()) {
523                         /*
524                          * die() would kill the kernel, so better to go via
525                          * the platform reboot code that will log the
526                          * machine check.
527                          */
528                         recovered = 0;
529                 } else {
530                         die("Machine check", regs, SIGBUS);
531                         recovered = 1;
532                 }
533         }
534
535         return recovered;
536 }
537
538 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
539 {
540         panic_flush_kmsg_start();
541
542         pr_emerg("Hardware platform error: %s\n", msg);
543         if (regs)
544                 show_regs(regs);
545         smp_send_stop();
546
547         panic_flush_kmsg_end();
548
549         /*
550          * Don't bother to shut things down because this will
551          * xstop the system.
552          */
553         if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
554                                                 == OPAL_UNSUPPORTED) {
555                 pr_emerg("Reboot type %d not supported for %s\n",
556                                 OPAL_REBOOT_PLATFORM_ERROR, msg);
557         }
558
559         /*
560          * We reached here. There can be three possibilities:
561          * 1. We are running on a firmware level that do not support
562          *    opal_cec_reboot2()
563          * 2. We are running on a firmware level that do not support
564          *    OPAL_REBOOT_PLATFORM_ERROR reboot type.
565          * 3. We are running on FSP based system that does not need
566          *    opal to trigger checkstop explicitly for error analysis.
567          *    The FSP PRD component would have already got notified
568          *    about this error through other channels.
569          * 4. We are running on a newer skiboot that by default does
570          *    not cause a checkstop, drops us back to the kernel to
571          *    extract context and state at the time of the error.
572          */
573
574         panic(msg);
575 }
576
577 int opal_machine_check(struct pt_regs *regs)
578 {
579         struct machine_check_event evt;
580
581         if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
582                 return 0;
583
584         /* Print things out */
585         if (evt.version != MCE_V1) {
586                 pr_err("Machine Check Exception, Unknown event version %d !\n",
587                        evt.version);
588                 return 0;
589         }
590         machine_check_print_event_info(&evt, user_mode(regs));
591
592         if (opal_recover_mce(regs, &evt))
593                 return 1;
594
595         pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
596 }
597
598 /* Early hmi handler called in real mode. */
599 int opal_hmi_exception_early(struct pt_regs *regs)
600 {
601         s64 rc;
602
603         /*
604          * call opal hmi handler. Pass paca address as token.
605          * The return value OPAL_SUCCESS is an indication that there is
606          * an HMI event generated waiting to pull by Linux.
607          */
608         rc = opal_handle_hmi();
609         if (rc == OPAL_SUCCESS) {
610                 local_paca->hmi_event_available = 1;
611                 return 1;
612         }
613         return 0;
614 }
615
616 /* HMI exception handler called in virtual mode during check_irq_replay. */
617 int opal_handle_hmi_exception(struct pt_regs *regs)
618 {
619         /*
620          * Check if HMI event is available.
621          * if Yes, then wake kopald to process them.
622          */
623         if (!local_paca->hmi_event_available)
624                 return 0;
625
626         local_paca->hmi_event_available = 0;
627         opal_wake_poller();
628
629         return 1;
630 }
631
632 static uint64_t find_recovery_address(uint64_t nip)
633 {
634         int i;
635
636         for (i = 0; i < mc_recoverable_range_len; i++)
637                 if ((nip >= mc_recoverable_range[i].start_addr) &&
638                     (nip < mc_recoverable_range[i].end_addr))
639                     return mc_recoverable_range[i].recover_addr;
640         return 0;
641 }
642
643 bool opal_mce_check_early_recovery(struct pt_regs *regs)
644 {
645         uint64_t recover_addr = 0;
646
647         if (!opal.base || !opal.size)
648                 goto out;
649
650         if ((regs->nip >= opal.base) &&
651                         (regs->nip < (opal.base + opal.size)))
652                 recover_addr = find_recovery_address(regs->nip);
653
654         /*
655          * Setup regs->nip to rfi into fixup address.
656          */
657         if (recover_addr)
658                 regs->nip = recover_addr;
659
660 out:
661         return !!recover_addr;
662 }
663
664 static int opal_sysfs_init(void)
665 {
666         opal_kobj = kobject_create_and_add("opal", firmware_kobj);
667         if (!opal_kobj) {
668                 pr_warn("kobject_create_and_add opal failed\n");
669                 return -ENOMEM;
670         }
671
672         return 0;
673 }
674
675 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
676                                struct bin_attribute *bin_attr,
677                                char *buf, loff_t off, size_t count)
678 {
679         return memory_read_from_buffer(buf, count, &off, bin_attr->private,
680                                        bin_attr->size);
681 }
682
683 static BIN_ATTR_RO(symbol_map, 0);
684
685 static void opal_export_symmap(void)
686 {
687         const __be64 *syms;
688         unsigned int size;
689         struct device_node *fw;
690         int rc;
691
692         fw = of_find_node_by_path("/ibm,opal/firmware");
693         if (!fw)
694                 return;
695         syms = of_get_property(fw, "symbol-map", &size);
696         if (!syms || size != 2 * sizeof(__be64))
697                 return;
698
699         /* Setup attributes */
700         bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0]));
701         bin_attr_symbol_map.size = be64_to_cpu(syms[1]);
702
703         rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map);
704         if (rc)
705                 pr_warn("Error %d creating OPAL symbols file\n", rc);
706 }
707
708 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
709                                 struct bin_attribute *bin_attr, char *buf,
710                                 loff_t off, size_t count)
711 {
712         return memory_read_from_buffer(buf, count, &off, bin_attr->private,
713                                        bin_attr->size);
714 }
715
716 /*
717  * opal_export_attrs: creates a sysfs node for each property listed in
718  * the device-tree under /ibm,opal/firmware/exports/
719  * All new sysfs nodes are created under /opal/exports/.
720  * This allows for reserved memory regions (e.g. HDAT) to be read.
721  * The new sysfs nodes are only readable by root.
722  */
723 static void opal_export_attrs(void)
724 {
725         struct bin_attribute *attr;
726         struct device_node *np;
727         struct property *prop;
728         struct kobject *kobj;
729         u64 vals[2];
730         int rc;
731
732         np = of_find_node_by_path("/ibm,opal/firmware/exports");
733         if (!np)
734                 return;
735
736         /* Create new 'exports' directory - /sys/firmware/opal/exports */
737         kobj = kobject_create_and_add("exports", opal_kobj);
738         if (!kobj) {
739                 pr_warn("kobject_create_and_add() of exports failed\n");
740                 return;
741         }
742
743         for_each_property_of_node(np, prop) {
744                 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle"))
745                         continue;
746
747                 if (of_property_read_u64_array(np, prop->name, &vals[0], 2))
748                         continue;
749
750                 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
751
752                 if (attr == NULL) {
753                         pr_warn("Failed kmalloc for bin_attribute!");
754                         continue;
755                 }
756
757                 sysfs_bin_attr_init(attr);
758                 attr->attr.name = kstrdup(prop->name, GFP_KERNEL);
759                 attr->attr.mode = 0400;
760                 attr->read = export_attr_read;
761                 attr->private = __va(vals[0]);
762                 attr->size = vals[1];
763
764                 if (attr->attr.name == NULL) {
765                         pr_warn("Failed kstrdup for bin_attribute attr.name");
766                         kfree(attr);
767                         continue;
768                 }
769
770                 rc = sysfs_create_bin_file(kobj, attr);
771                 if (rc) {
772                         pr_warn("Error %d creating OPAL sysfs exports/%s file\n",
773                                  rc, prop->name);
774                         kfree(attr->attr.name);
775                         kfree(attr);
776                 }
777         }
778
779         of_node_put(np);
780 }
781
782 static void __init opal_dump_region_init(void)
783 {
784         void *addr;
785         uint64_t size;
786         int rc;
787
788         if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
789                 return;
790
791         /* Register kernel log buffer */
792         addr = log_buf_addr_get();
793         if (addr == NULL)
794                 return;
795
796         size = log_buf_len_get();
797         if (size == 0)
798                 return;
799
800         rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
801                                        __pa(addr), size);
802         /* Don't warn if this is just an older OPAL that doesn't
803          * know about that call
804          */
805         if (rc && rc != OPAL_UNSUPPORTED)
806                 pr_warn("DUMP: Failed to register kernel log buffer. "
807                         "rc = %d\n", rc);
808 }
809
810 static void opal_pdev_init(const char *compatible)
811 {
812         struct device_node *np;
813
814         for_each_compatible_node(np, NULL, compatible)
815                 of_platform_device_create(np, NULL, NULL);
816 }
817
818 static void __init opal_imc_init_dev(void)
819 {
820         struct device_node *np;
821
822         np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
823         if (np)
824                 of_platform_device_create(np, NULL, NULL);
825 }
826
827 static int kopald(void *unused)
828 {
829         unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
830
831         set_freezable();
832         do {
833                 try_to_freeze();
834
835                 opal_handle_events();
836
837                 set_current_state(TASK_INTERRUPTIBLE);
838                 if (opal_have_pending_events())
839                         __set_current_state(TASK_RUNNING);
840                 else
841                         schedule_timeout(timeout);
842
843         } while (!kthread_should_stop());
844
845         return 0;
846 }
847
848 void opal_wake_poller(void)
849 {
850         if (kopald_tsk)
851                 wake_up_process(kopald_tsk);
852 }
853
854 static void opal_init_heartbeat(void)
855 {
856         /* Old firwmware, we assume the HVC heartbeat is sufficient */
857         if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
858                                  &opal_heartbeat) != 0)
859                 opal_heartbeat = 0;
860
861         if (opal_heartbeat)
862                 kopald_tsk = kthread_run(kopald, NULL, "kopald");
863 }
864
865 static int __init opal_init(void)
866 {
867         struct device_node *np, *consoles, *leds;
868         int rc;
869
870         opal_node = of_find_node_by_path("/ibm,opal");
871         if (!opal_node) {
872                 pr_warn("Device node not found\n");
873                 return -ENODEV;
874         }
875
876         /* Register OPAL consoles if any ports */
877         consoles = of_find_node_by_path("/ibm,opal/consoles");
878         if (consoles) {
879                 for_each_child_of_node(consoles, np) {
880                         if (strcmp(np->name, "serial"))
881                                 continue;
882                         of_platform_device_create(np, NULL, NULL);
883                 }
884                 of_node_put(consoles);
885         }
886
887         /* Initialise OPAL messaging system */
888         opal_message_init();
889
890         /* Initialise OPAL asynchronous completion interface */
891         opal_async_comp_init();
892
893         /* Initialise OPAL sensor interface */
894         opal_sensor_init();
895
896         /* Initialise OPAL hypervisor maintainence interrupt handling */
897         opal_hmi_handler_init();
898
899         /* Create i2c platform devices */
900         opal_pdev_init("ibm,opal-i2c");
901
902         /* Handle non-volatile memory devices */
903         opal_pdev_init("pmem-region");
904
905         /* Setup a heatbeat thread if requested by OPAL */
906         opal_init_heartbeat();
907
908         /* Detect In-Memory Collection counters and create devices*/
909         opal_imc_init_dev();
910
911         /* Create leds platform devices */
912         leds = of_find_node_by_path("/ibm,opal/leds");
913         if (leds) {
914                 of_platform_device_create(leds, "opal_leds", NULL);
915                 of_node_put(leds);
916         }
917
918         /* Initialise OPAL message log interface */
919         opal_msglog_init();
920
921         /* Create "opal" kobject under /sys/firmware */
922         rc = opal_sysfs_init();
923         if (rc == 0) {
924                 /* Export symbol map to userspace */
925                 opal_export_symmap();
926                 /* Setup dump region interface */
927                 opal_dump_region_init();
928                 /* Setup error log interface */
929                 rc = opal_elog_init();
930                 /* Setup code update interface */
931                 opal_flash_update_init();
932                 /* Setup platform dump extract interface */
933                 opal_platform_dump_init();
934                 /* Setup system parameters interface */
935                 opal_sys_param_init();
936                 /* Setup message log sysfs interface. */
937                 opal_msglog_sysfs_init();
938         }
939
940         /* Export all properties */
941         opal_export_attrs();
942
943         /* Initialize platform devices: IPMI backend, PRD & flash interface */
944         opal_pdev_init("ibm,opal-ipmi");
945         opal_pdev_init("ibm,opal-flash");
946         opal_pdev_init("ibm,opal-prd");
947
948         /* Initialise platform device: oppanel interface */
949         opal_pdev_init("ibm,opal-oppanel");
950
951         /* Initialise OPAL kmsg dumper for flushing console on panic */
952         opal_kmsg_init();
953
954         /* Initialise OPAL powercap interface */
955         opal_powercap_init();
956
957         /* Initialise OPAL Power-Shifting-Ratio interface */
958         opal_psr_init();
959
960         /* Initialise OPAL sensor groups */
961         opal_sensor_groups_init();
962
963         return 0;
964 }
965 machine_subsys_initcall(powernv, opal_init);
966
967 void opal_shutdown(void)
968 {
969         long rc = OPAL_BUSY;
970
971         opal_event_shutdown();
972
973         /*
974          * Then sync with OPAL which ensure anything that can
975          * potentially write to our memory has completed such
976          * as an ongoing dump retrieval
977          */
978         while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
979                 rc = opal_sync_host_reboot();
980                 if (rc == OPAL_BUSY)
981                         opal_poll_events(NULL);
982                 else
983                         mdelay(10);
984         }
985
986         /* Unregister memory dump region */
987         if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
988                 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
989 }
990
991 /* Export this so that test modules can use it */
992 EXPORT_SYMBOL_GPL(opal_invalid_call);
993 EXPORT_SYMBOL_GPL(opal_xscom_read);
994 EXPORT_SYMBOL_GPL(opal_xscom_write);
995 EXPORT_SYMBOL_GPL(opal_ipmi_send);
996 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
997 EXPORT_SYMBOL_GPL(opal_flash_read);
998 EXPORT_SYMBOL_GPL(opal_flash_write);
999 EXPORT_SYMBOL_GPL(opal_flash_erase);
1000 EXPORT_SYMBOL_GPL(opal_prd_msg);
1001 EXPORT_SYMBOL_GPL(opal_check_token);
1002
1003 /* Convert a region of vmalloc memory to an opal sg list */
1004 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1005                                              unsigned long vmalloc_size)
1006 {
1007         struct opal_sg_list *sg, *first = NULL;
1008         unsigned long i = 0;
1009
1010         sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1011         if (!sg)
1012                 goto nomem;
1013
1014         first = sg;
1015
1016         while (vmalloc_size > 0) {
1017                 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1018                 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1019
1020                 sg->entry[i].data = cpu_to_be64(data);
1021                 sg->entry[i].length = cpu_to_be64(length);
1022                 i++;
1023
1024                 if (i >= SG_ENTRIES_PER_NODE) {
1025                         struct opal_sg_list *next;
1026
1027                         next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1028                         if (!next)
1029                                 goto nomem;
1030
1031                         sg->length = cpu_to_be64(
1032                                         i * sizeof(struct opal_sg_entry) + 16);
1033                         i = 0;
1034                         sg->next = cpu_to_be64(__pa(next));
1035                         sg = next;
1036                 }
1037
1038                 vmalloc_addr += length;
1039                 vmalloc_size -= length;
1040         }
1041
1042         sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1043
1044         return first;
1045
1046 nomem:
1047         pr_err("%s : Failed to allocate memory\n", __func__);
1048         opal_free_sg_list(first);
1049         return NULL;
1050 }
1051
1052 void opal_free_sg_list(struct opal_sg_list *sg)
1053 {
1054         while (sg) {
1055                 uint64_t next = be64_to_cpu(sg->next);
1056
1057                 kfree(sg);
1058
1059                 if (next)
1060                         sg = __va(next);
1061                 else
1062                         sg = NULL;
1063         }
1064 }
1065
1066 int opal_error_code(int rc)
1067 {
1068         switch (rc) {
1069         case OPAL_SUCCESS:              return 0;
1070
1071         case OPAL_PARAMETER:            return -EINVAL;
1072         case OPAL_ASYNC_COMPLETION:     return -EINPROGRESS;
1073         case OPAL_BUSY:
1074         case OPAL_BUSY_EVENT:           return -EBUSY;
1075         case OPAL_NO_MEM:               return -ENOMEM;
1076         case OPAL_PERMISSION:           return -EPERM;
1077
1078         case OPAL_UNSUPPORTED:          return -EIO;
1079         case OPAL_HARDWARE:             return -EIO;
1080         case OPAL_INTERNAL_ERROR:       return -EIO;
1081         case OPAL_TIMEOUT:              return -ETIMEDOUT;
1082         default:
1083                 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1084                 return -EIO;
1085         }
1086 }
1087
1088 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1089 {
1090         int rc;
1091
1092         if (firmware_has_feature(FW_FEATURE_OPAL)) {
1093                 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1094                 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1095                         pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1096         }
1097 }
1098
1099 EXPORT_SYMBOL_GPL(opal_poll_events);
1100 EXPORT_SYMBOL_GPL(opal_rtc_read);
1101 EXPORT_SYMBOL_GPL(opal_rtc_write);
1102 EXPORT_SYMBOL_GPL(opal_tpo_read);
1103 EXPORT_SYMBOL_GPL(opal_tpo_write);
1104 EXPORT_SYMBOL_GPL(opal_i2c_request);
1105 /* Export these symbols for PowerNV LED class driver */
1106 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1107 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1108 /* Export this symbol for PowerNV Operator Panel class driver */
1109 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1110 /* Export this for KVM */
1111 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1112 EXPORT_SYMBOL_GPL(opal_int_eoi);
1113 EXPORT_SYMBOL_GPL(opal_error_code);
1114 /* Export the below symbol for NX compression */
1115 EXPORT_SYMBOL(opal_nx_coproc_init);