Merge branch 'davinci-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / powermac / nvram.c
1 /*
2  *  Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
3  *
4  *  This program is free software; you can redistribute it and/or
5  *  modify it under the terms of the GNU General Public License
6  *  as published by the Free Software Foundation; either version
7  *  2 of the License, or (at your option) any later version.
8  *
9  *  Todo: - add support for the OF persistent properties
10  */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/string.h>
15 #include <linux/nvram.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/adb.h>
20 #include <linux/pmu.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <linux/spinlock.h>
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/system.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29 #include <asm/nvram.h>
30
31 #include "pmac.h"
32
33 #define DEBUG
34
35 #ifdef DEBUG
36 #define DBG(x...) printk(x)
37 #else
38 #define DBG(x...)
39 #endif
40
41 #define NVRAM_SIZE              0x2000  /* 8kB of non-volatile RAM */
42
43 #define CORE99_SIGNATURE        0x5a
44 #define CORE99_ADLER_START      0x14
45
46 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
47 #define SM_FLASH_STATUS_DONE    0x80
48 #define SM_FLASH_STATUS_ERR     0x38
49
50 #define SM_FLASH_CMD_ERASE_CONFIRM      0xd0
51 #define SM_FLASH_CMD_ERASE_SETUP        0x20
52 #define SM_FLASH_CMD_RESET              0xff
53 #define SM_FLASH_CMD_WRITE_SETUP        0x40
54 #define SM_FLASH_CMD_CLEAR_STATUS       0x50
55 #define SM_FLASH_CMD_READ_STATUS        0x70
56
57 /* CHRP NVRAM header */
58 struct chrp_header {
59   u8            signature;
60   u8            cksum;
61   u16           len;
62   char          name[12];
63   u8            data[0];
64 };
65
66 struct core99_header {
67   struct chrp_header    hdr;
68   u32                   adler;
69   u32                   generation;
70   u32                   reserved[2];
71 };
72
73 /*
74  * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
75  */
76 static int nvram_naddrs;
77 static volatile unsigned char __iomem *nvram_data;
78 static int is_core_99;
79 static int core99_bank = 0;
80 static int nvram_partitions[3];
81 // XXX Turn that into a sem
82 static DEFINE_RAW_SPINLOCK(nv_lock);
83
84 static int (*core99_write_bank)(int bank, u8* datas);
85 static int (*core99_erase_bank)(int bank);
86
87 static char *nvram_image;
88
89
90 static unsigned char core99_nvram_read_byte(int addr)
91 {
92         if (nvram_image == NULL)
93                 return 0xff;
94         return nvram_image[addr];
95 }
96
97 static void core99_nvram_write_byte(int addr, unsigned char val)
98 {
99         if (nvram_image == NULL)
100                 return;
101         nvram_image[addr] = val;
102 }
103
104 static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index)
105 {
106         int i;
107
108         if (nvram_image == NULL)
109                 return -ENODEV;
110         if (*index > NVRAM_SIZE)
111                 return 0;
112
113         i = *index;
114         if (i + count > NVRAM_SIZE)
115                 count = NVRAM_SIZE - i;
116
117         memcpy(buf, &nvram_image[i], count);
118         *index = i + count;
119         return count;
120 }
121
122 static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index)
123 {
124         int i;
125
126         if (nvram_image == NULL)
127                 return -ENODEV;
128         if (*index > NVRAM_SIZE)
129                 return 0;
130
131         i = *index;
132         if (i + count > NVRAM_SIZE)
133                 count = NVRAM_SIZE - i;
134
135         memcpy(&nvram_image[i], buf, count);
136         *index = i + count;
137         return count;
138 }
139
140 static ssize_t core99_nvram_size(void)
141 {
142         if (nvram_image == NULL)
143                 return -ENODEV;
144         return NVRAM_SIZE;
145 }
146
147 #ifdef CONFIG_PPC32
148 static volatile unsigned char __iomem *nvram_addr;
149 static int nvram_mult;
150
151 static unsigned char direct_nvram_read_byte(int addr)
152 {
153         return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
154 }
155
156 static void direct_nvram_write_byte(int addr, unsigned char val)
157 {
158         out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
159 }
160
161
162 static unsigned char indirect_nvram_read_byte(int addr)
163 {
164         unsigned char val;
165         unsigned long flags;
166
167         raw_spin_lock_irqsave(&nv_lock, flags);
168         out_8(nvram_addr, addr >> 5);
169         val = in_8(&nvram_data[(addr & 0x1f) << 4]);
170         raw_spin_unlock_irqrestore(&nv_lock, flags);
171
172         return val;
173 }
174
175 static void indirect_nvram_write_byte(int addr, unsigned char val)
176 {
177         unsigned long flags;
178
179         raw_spin_lock_irqsave(&nv_lock, flags);
180         out_8(nvram_addr, addr >> 5);
181         out_8(&nvram_data[(addr & 0x1f) << 4], val);
182         raw_spin_unlock_irqrestore(&nv_lock, flags);
183 }
184
185
186 #ifdef CONFIG_ADB_PMU
187
188 static void pmu_nvram_complete(struct adb_request *req)
189 {
190         if (req->arg)
191                 complete((struct completion *)req->arg);
192 }
193
194 static unsigned char pmu_nvram_read_byte(int addr)
195 {
196         struct adb_request req;
197         DECLARE_COMPLETION_ONSTACK(req_complete);
198         
199         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
200         if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
201                         (addr >> 8) & 0xff, addr & 0xff))
202                 return 0xff;
203         if (system_state == SYSTEM_RUNNING)
204                 wait_for_completion(&req_complete);
205         while (!req.complete)
206                 pmu_poll();
207         return req.reply[0];
208 }
209
210 static void pmu_nvram_write_byte(int addr, unsigned char val)
211 {
212         struct adb_request req;
213         DECLARE_COMPLETION_ONSTACK(req_complete);
214         
215         req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
216         if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
217                         (addr >> 8) & 0xff, addr & 0xff, val))
218                 return;
219         if (system_state == SYSTEM_RUNNING)
220                 wait_for_completion(&req_complete);
221         while (!req.complete)
222                 pmu_poll();
223 }
224
225 #endif /* CONFIG_ADB_PMU */
226 #endif /* CONFIG_PPC32 */
227
228 static u8 chrp_checksum(struct chrp_header* hdr)
229 {
230         u8 *ptr;
231         u16 sum = hdr->signature;
232         for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
233                 sum += *ptr;
234         while (sum > 0xFF)
235                 sum = (sum & 0xFF) + (sum>>8);
236         return sum;
237 }
238
239 static u32 core99_calc_adler(u8 *buffer)
240 {
241         int cnt;
242         u32 low, high;
243
244         buffer += CORE99_ADLER_START;
245         low = 1;
246         high = 0;
247         for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
248                 if ((cnt % 5000) == 0) {
249                         high  %= 65521UL;
250                         high %= 65521UL;
251                 }
252                 low += buffer[cnt];
253                 high += low;
254         }
255         low  %= 65521UL;
256         high %= 65521UL;
257
258         return (high << 16) | low;
259 }
260
261 static u32 core99_check(u8* datas)
262 {
263         struct core99_header* hdr99 = (struct core99_header*)datas;
264
265         if (hdr99->hdr.signature != CORE99_SIGNATURE) {
266                 DBG("Invalid signature\n");
267                 return 0;
268         }
269         if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
270                 DBG("Invalid checksum\n");
271                 return 0;
272         }
273         if (hdr99->adler != core99_calc_adler(datas)) {
274                 DBG("Invalid adler\n");
275                 return 0;
276         }
277         return hdr99->generation;
278 }
279
280 static int sm_erase_bank(int bank)
281 {
282         int stat, i;
283         unsigned long timeout;
284
285         u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
286
287         DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
288
289         out_8(base, SM_FLASH_CMD_ERASE_SETUP);
290         out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
291         timeout = 0;
292         do {
293                 if (++timeout > 1000000) {
294                         printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n");
295                         break;
296                 }
297                 out_8(base, SM_FLASH_CMD_READ_STATUS);
298                 stat = in_8(base);
299         } while (!(stat & SM_FLASH_STATUS_DONE));
300
301         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
302         out_8(base, SM_FLASH_CMD_RESET);
303
304         for (i=0; i<NVRAM_SIZE; i++)
305                 if (base[i] != 0xff) {
306                         printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
307                         return -ENXIO;
308                 }
309         return 0;
310 }
311
312 static int sm_write_bank(int bank, u8* datas)
313 {
314         int i, stat = 0;
315         unsigned long timeout;
316
317         u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
318
319         DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
320
321         for (i=0; i<NVRAM_SIZE; i++) {
322                 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
323                 udelay(1);
324                 out_8(base+i, datas[i]);
325                 timeout = 0;
326                 do {
327                         if (++timeout > 1000000) {
328                                 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
329                                 break;
330                         }
331                         out_8(base, SM_FLASH_CMD_READ_STATUS);
332                         stat = in_8(base);
333                 } while (!(stat & SM_FLASH_STATUS_DONE));
334                 if (!(stat & SM_FLASH_STATUS_DONE))
335                         break;
336         }
337         out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
338         out_8(base, SM_FLASH_CMD_RESET);
339         for (i=0; i<NVRAM_SIZE; i++)
340                 if (base[i] != datas[i]) {
341                         printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
342                         return -ENXIO;
343                 }
344         return 0;
345 }
346
347 static int amd_erase_bank(int bank)
348 {
349         int i, stat = 0;
350         unsigned long timeout;
351
352         u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
353
354         DBG("nvram: AMD Erasing bank %d...\n", bank);
355
356         /* Unlock 1 */
357         out_8(base+0x555, 0xaa);
358         udelay(1);
359         /* Unlock 2 */
360         out_8(base+0x2aa, 0x55);
361         udelay(1);
362
363         /* Sector-Erase */
364         out_8(base+0x555, 0x80);
365         udelay(1);
366         out_8(base+0x555, 0xaa);
367         udelay(1);
368         out_8(base+0x2aa, 0x55);
369         udelay(1);
370         out_8(base, 0x30);
371         udelay(1);
372
373         timeout = 0;
374         do {
375                 if (++timeout > 1000000) {
376                         printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
377                         break;
378                 }
379                 stat = in_8(base) ^ in_8(base);
380         } while (stat != 0);
381         
382         /* Reset */
383         out_8(base, 0xf0);
384         udelay(1);
385         
386         for (i=0; i<NVRAM_SIZE; i++)
387                 if (base[i] != 0xff) {
388                         printk(KERN_ERR "nvram: AMD flash erase failed !\n");
389                         return -ENXIO;
390                 }
391         return 0;
392 }
393
394 static int amd_write_bank(int bank, u8* datas)
395 {
396         int i, stat = 0;
397         unsigned long timeout;
398
399         u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
400
401         DBG("nvram: AMD Writing bank %d...\n", bank);
402
403         for (i=0; i<NVRAM_SIZE; i++) {
404                 /* Unlock 1 */
405                 out_8(base+0x555, 0xaa);
406                 udelay(1);
407                 /* Unlock 2 */
408                 out_8(base+0x2aa, 0x55);
409                 udelay(1);
410
411                 /* Write single word */
412                 out_8(base+0x555, 0xa0);
413                 udelay(1);
414                 out_8(base+i, datas[i]);
415                 
416                 timeout = 0;
417                 do {
418                         if (++timeout > 1000000) {
419                                 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
420                                 break;
421                         }
422                         stat = in_8(base) ^ in_8(base);
423                 } while (stat != 0);
424                 if (stat != 0)
425                         break;
426         }
427
428         /* Reset */
429         out_8(base, 0xf0);
430         udelay(1);
431
432         for (i=0; i<NVRAM_SIZE; i++)
433                 if (base[i] != datas[i]) {
434                         printk(KERN_ERR "nvram: AMD flash write failed !\n");
435                         return -ENXIO;
436                 }
437         return 0;
438 }
439
440 static void __init lookup_partitions(void)
441 {
442         u8 buffer[17];
443         int i, offset;
444         struct chrp_header* hdr;
445
446         if (pmac_newworld) {
447                 nvram_partitions[pmac_nvram_OF] = -1;
448                 nvram_partitions[pmac_nvram_XPRAM] = -1;
449                 nvram_partitions[pmac_nvram_NR] = -1;
450                 hdr = (struct chrp_header *)buffer;
451
452                 offset = 0;
453                 buffer[16] = 0;
454                 do {
455                         for (i=0;i<16;i++)
456                                 buffer[i] = ppc_md.nvram_read_val(offset+i);
457                         if (!strcmp(hdr->name, "common"))
458                                 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
459                         if (!strcmp(hdr->name, "APL,MacOS75")) {
460                                 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
461                                 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
462                         }
463                         offset += (hdr->len * 0x10);
464                 } while(offset < NVRAM_SIZE);
465         } else {
466                 nvram_partitions[pmac_nvram_OF] = 0x1800;
467                 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
468                 nvram_partitions[pmac_nvram_NR] = 0x1400;
469         }
470         DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
471         DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
472         DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
473 }
474
475 static void core99_nvram_sync(void)
476 {
477         struct core99_header* hdr99;
478         unsigned long flags;
479
480         if (!is_core_99 || !nvram_data || !nvram_image)
481                 return;
482
483         raw_spin_lock_irqsave(&nv_lock, flags);
484         if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
485                 NVRAM_SIZE))
486                 goto bail;
487
488         DBG("Updating nvram...\n");
489
490         hdr99 = (struct core99_header*)nvram_image;
491         hdr99->generation++;
492         hdr99->hdr.signature = CORE99_SIGNATURE;
493         hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
494         hdr99->adler = core99_calc_adler(nvram_image);
495         core99_bank = core99_bank ? 0 : 1;
496         if (core99_erase_bank)
497                 if (core99_erase_bank(core99_bank)) {
498                         printk("nvram: Error erasing bank %d\n", core99_bank);
499                         goto bail;
500                 }
501         if (core99_write_bank)
502                 if (core99_write_bank(core99_bank, nvram_image))
503                         printk("nvram: Error writing bank %d\n", core99_bank);
504  bail:
505         raw_spin_unlock_irqrestore(&nv_lock, flags);
506
507 #ifdef DEBUG
508         mdelay(2000);
509 #endif
510 }
511
512 static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr)
513 {
514         int i;
515         u32 gen_bank0, gen_bank1;
516
517         if (nvram_naddrs < 1) {
518                 printk(KERN_ERR "nvram: no address\n");
519                 return -EINVAL;
520         }
521         nvram_image = alloc_bootmem(NVRAM_SIZE);
522         if (nvram_image == NULL) {
523                 printk(KERN_ERR "nvram: can't allocate ram image\n");
524                 return -ENOMEM;
525         }
526         nvram_data = ioremap(addr, NVRAM_SIZE*2);
527         nvram_naddrs = 1; /* Make sure we get the correct case */
528
529         DBG("nvram: Checking bank 0...\n");
530
531         gen_bank0 = core99_check((u8 *)nvram_data);
532         gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
533         core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
534
535         DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
536         DBG("nvram: Active bank is: %d\n", core99_bank);
537
538         for (i=0; i<NVRAM_SIZE; i++)
539                 nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
540
541         ppc_md.nvram_read_val   = core99_nvram_read_byte;
542         ppc_md.nvram_write_val  = core99_nvram_write_byte;
543         ppc_md.nvram_read       = core99_nvram_read;
544         ppc_md.nvram_write      = core99_nvram_write;
545         ppc_md.nvram_size       = core99_nvram_size;
546         ppc_md.nvram_sync       = core99_nvram_sync;
547         ppc_md.machine_shutdown = core99_nvram_sync;
548         /* 
549          * Maybe we could be smarter here though making an exclusive list
550          * of known flash chips is a bit nasty as older OF didn't provide us
551          * with a useful "compatible" entry. A solution would be to really
552          * identify the chip using flash id commands and base ourselves on
553          * a list of known chips IDs
554          */
555         if (of_device_is_compatible(dp, "amd-0137")) {
556                 core99_erase_bank = amd_erase_bank;
557                 core99_write_bank = amd_write_bank;
558         } else {
559                 core99_erase_bank = sm_erase_bank;
560                 core99_write_bank = sm_write_bank;
561         }
562         return 0;
563 }
564
565 int __init pmac_nvram_init(void)
566 {
567         struct device_node *dp;
568         struct resource r1, r2;
569         unsigned int s1 = 0, s2 = 0;
570         int err = 0;
571
572         nvram_naddrs = 0;
573
574         dp = of_find_node_by_name(NULL, "nvram");
575         if (dp == NULL) {
576                 printk(KERN_ERR "Can't find NVRAM device\n");
577                 return -ENODEV;
578         }
579
580         /* Try to obtain an address */
581         if (of_address_to_resource(dp, 0, &r1) == 0) {
582                 nvram_naddrs = 1;
583                 s1 = (r1.end - r1.start) + 1;
584                 if (of_address_to_resource(dp, 1, &r2) == 0) {
585                         nvram_naddrs = 2;
586                         s2 = (r2.end - r2.start) + 1;
587                 }
588         }
589
590         is_core_99 = of_device_is_compatible(dp, "nvram,flash");
591         if (is_core_99) {
592                 err = core99_nvram_setup(dp, r1.start);
593                 goto bail;
594         }
595
596 #ifdef CONFIG_PPC32
597         if (machine_is(chrp) && nvram_naddrs == 1) {
598                 nvram_data = ioremap(r1.start, s1);
599                 nvram_mult = 1;
600                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
601                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
602         } else if (nvram_naddrs == 1) {
603                 nvram_data = ioremap(r1.start, s1);
604                 nvram_mult = (s1 + NVRAM_SIZE - 1) / NVRAM_SIZE;
605                 ppc_md.nvram_read_val   = direct_nvram_read_byte;
606                 ppc_md.nvram_write_val  = direct_nvram_write_byte;
607         } else if (nvram_naddrs == 2) {
608                 nvram_addr = ioremap(r1.start, s1);
609                 nvram_data = ioremap(r2.start, s2);
610                 ppc_md.nvram_read_val   = indirect_nvram_read_byte;
611                 ppc_md.nvram_write_val  = indirect_nvram_write_byte;
612         } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
613 #ifdef CONFIG_ADB_PMU
614                 nvram_naddrs = -1;
615                 ppc_md.nvram_read_val   = pmu_nvram_read_byte;
616                 ppc_md.nvram_write_val  = pmu_nvram_write_byte;
617 #endif /* CONFIG_ADB_PMU */
618         } else {
619                 printk(KERN_ERR "Incompatible type of NVRAM\n");
620                 err = -ENXIO;
621         }
622 #endif /* CONFIG_PPC32 */
623 bail:
624         of_node_put(dp);
625         if (err == 0)
626                 lookup_partitions();
627         return err;
628 }
629
630 int pmac_get_partition(int partition)
631 {
632         return nvram_partitions[partition];
633 }
634
635 u8 pmac_xpram_read(int xpaddr)
636 {
637         int offset = pmac_get_partition(pmac_nvram_XPRAM);
638
639         if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
640                 return 0xff;
641
642         return ppc_md.nvram_read_val(xpaddr + offset);
643 }
644
645 void pmac_xpram_write(int xpaddr, u8 data)
646 {
647         int offset = pmac_get_partition(pmac_nvram_XPRAM);
648
649         if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
650                 return;
651
652         ppc_md.nvram_write_val(xpaddr + offset, data);
653 }
654
655 EXPORT_SYMBOL(pmac_get_partition);
656 EXPORT_SYMBOL(pmac_xpram_read);
657 EXPORT_SYMBOL(pmac_xpram_write);