Pull bugzilla-5737 into release branch
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_priv1.h>
50 #include <asm/spu_csa.h>
51 #include <asm/mmu_context.h>
52
53 #include "spu_save_dump.h"
54 #include "spu_restore_dump.h"
55
56 #if 0
57 #define POLL_WHILE_TRUE(_c) {                           \
58     do {                                                \
59     } while (_c);                                       \
60   }
61 #else
62 #define RELAX_SPIN_COUNT                                1000
63 #define POLL_WHILE_TRUE(_c) {                           \
64     do {                                                \
65         int _i;                                         \
66         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
67             cpu_relax();                                \
68         }                                               \
69         if (unlikely(_c)) yield();                      \
70         else break;                                     \
71     } while (_c);                                       \
72   }
73 #endif                          /* debug */
74
75 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
76
77 static inline void acquire_spu_lock(struct spu *spu)
78 {
79         /* Save, Step 1:
80          * Restore, Step 1:
81          *    Acquire SPU-specific mutual exclusion lock.
82          *    TBD.
83          */
84 }
85
86 static inline void release_spu_lock(struct spu *spu)
87 {
88         /* Restore, Step 76:
89          *    Release SPU-specific mutual exclusion lock.
90          *    TBD.
91          */
92 }
93
94 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 {
96         struct spu_problem __iomem *prob = spu->problem;
97         u32 isolate_state;
98
99         /* Save, Step 2:
100          * Save, Step 6:
101          *     If SPU_Status[E,L,IS] any field is '1', this
102          *     SPU is in isolate state and cannot be context
103          *     saved at this time.
104          */
105         isolate_state = SPU_STATUS_ISOLATED_STATE |
106             SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
107         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
108 }
109
110 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
111 {
112         /* Save, Step 3:
113          * Restore, Step 2:
114          *     Save INT_Mask_class0 in CSA.
115          *     Write INT_MASK_class0 with value of 0.
116          *     Save INT_Mask_class1 in CSA.
117          *     Write INT_MASK_class1 with value of 0.
118          *     Save INT_Mask_class2 in CSA.
119          *     Write INT_MASK_class2 with value of 0.
120          */
121         spin_lock_irq(&spu->register_lock);
122         if (csa) {
123                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
124                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
125                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126         }
127         spu_int_mask_set(spu, 0, 0ul);
128         spu_int_mask_set(spu, 1, 0ul);
129         spu_int_mask_set(spu, 2, 0ul);
130         eieio();
131         spin_unlock_irq(&spu->register_lock);
132 }
133
134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135 {
136         /* Save, Step 4:
137          * Restore, Step 25.
138          *    Set a software watchdog timer, which specifies the
139          *    maximum allowable time for a context save sequence.
140          *
141          *    For present, this implementation will not set a global
142          *    watchdog timer, as virtualization & variable system load
143          *    may cause unpredictable execution times.
144          */
145 }
146
147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148 {
149         /* Save, Step 5:
150          * Restore, Step 3:
151          *     Inhibit user-space access (if provided) to this
152          *     SPU by unmapping the virtual pages assigned to
153          *     the SPU memory-mapped I/O (MMIO) for problem
154          *     state. TBD.
155          */
156 }
157
158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159 {
160         /* Save, Step 7:
161          * Restore, Step 5:
162          *     Set a software context switch pending flag.
163          */
164         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
165         mb();
166 }
167
168 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 {
170         struct spu_priv2 __iomem *priv2 = spu->priv2;
171
172         /* Save, Step 8:
173          *     Suspend DMA and save MFC_CNTL.
174          */
175         switch (in_be64(&priv2->mfc_control_RW) &
176                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
177         case MFC_CNTL_SUSPEND_IN_PROGRESS:
178                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
179                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
180                                  MFC_CNTL_SUSPEND_COMPLETE);
181                 /* fall through */
182         case MFC_CNTL_SUSPEND_COMPLETE:
183                 if (csa) {
184                         csa->priv2.mfc_control_RW =
185                                 in_be64(&priv2->mfc_control_RW) |
186                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
187                 }
188                 break;
189         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
190                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
191                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193                                  MFC_CNTL_SUSPEND_COMPLETE);
194                 if (csa) {
195                         csa->priv2.mfc_control_RW =
196                                 in_be64(&priv2->mfc_control_RW) &
197                                 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
198                 }
199                 break;
200         }
201 }
202
203 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
204 {
205         struct spu_problem __iomem *prob = spu->problem;
206
207         /* Save, Step 9:
208          *     Save SPU_Runcntl in the CSA.  This value contains
209          *     the "Application Desired State".
210          */
211         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
212 }
213
214 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
215 {
216         /* Save, Step 10:
217          *     Save MFC_SR1 in the CSA.
218          */
219         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
220 }
221
222 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
223 {
224         struct spu_problem __iomem *prob = spu->problem;
225
226         /* Save, Step 11:
227          *     Read SPU_Status[R], and save to CSA.
228          */
229         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
230                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
231         } else {
232                 u32 stopped;
233
234                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
235                 eieio();
236                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
237                                 SPU_STATUS_RUNNING);
238                 stopped =
239                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
240                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
241                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
242                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
243                 else
244                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
245         }
246 }
247
248 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
249 {
250         struct spu_priv2 __iomem *priv2 = spu->priv2;
251
252         /* Save, Step 12:
253          *     Read MFC_CNTL[Ds].  Update saved copy of
254          *     CSA.MFC_CNTL[Ds].
255          */
256         if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
257                 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
258                 csa->suspend_time = get_cycles();
259                 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
260                 eieio();
261                 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
262                 eieio();
263         } else {
264                 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
265         }
266 }
267
268 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
269 {
270         struct spu_priv2 __iomem *priv2 = spu->priv2;
271
272         /* Save, Step 13:
273          *     Write MFC_CNTL[Dh] set to a '1' to halt
274          *     the decrementer.
275          */
276         out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
277         eieio();
278 }
279
280 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
281 {
282         /* Save, Step 14:
283          *    Read PPE Timebase High and Timebase low registers
284          *    and save in CSA.  TBD.
285          */
286         csa->suspend_time = get_cycles();
287 }
288
289 static inline void remove_other_spu_access(struct spu_state *csa,
290                                            struct spu *spu)
291 {
292         /* Save, Step 15:
293          *     Remove other SPU access to this SPU by unmapping
294          *     this SPU's pages from their address space.  TBD.
295          */
296 }
297
298 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
299 {
300         struct spu_problem __iomem *prob = spu->problem;
301
302         /* Save, Step 16:
303          * Restore, Step 11.
304          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
305          *     for a value of 0.
306          */
307         out_be64(&prob->spc_mssync_RW, 1UL);
308         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
309 }
310
311 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
312 {
313         /* Save, Step 17:
314          * Restore, Step 12.
315          * Restore, Step 48.
316          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
317          *     Then issue a PPE sync instruction.
318          */
319         spu_tlb_invalidate(spu);
320         mb();
321 }
322
323 static inline void handle_pending_interrupts(struct spu_state *csa,
324                                              struct spu *spu)
325 {
326         /* Save, Step 18:
327          *     Handle any pending interrupts from this SPU
328          *     here.  This is OS or hypervisor specific.  One
329          *     option is to re-enable interrupts to handle any
330          *     pending interrupts, with the interrupt handlers
331          *     recognizing the software Context Switch Pending
332          *     flag, to ensure the SPU execution or MFC command
333          *     queue is not restarted.  TBD.
334          */
335 }
336
337 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
338 {
339         struct spu_priv2 __iomem *priv2 = spu->priv2;
340         int i;
341
342         /* Save, Step 19:
343          *     If MFC_Cntl[Se]=0 then save
344          *     MFC command queues.
345          */
346         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
347                 for (i = 0; i < 8; i++) {
348                         csa->priv2.puq[i].mfc_cq_data0_RW =
349                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
350                         csa->priv2.puq[i].mfc_cq_data1_RW =
351                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
352                         csa->priv2.puq[i].mfc_cq_data2_RW =
353                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
354                         csa->priv2.puq[i].mfc_cq_data3_RW =
355                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
356                 }
357                 for (i = 0; i < 16; i++) {
358                         csa->priv2.spuq[i].mfc_cq_data0_RW =
359                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
360                         csa->priv2.spuq[i].mfc_cq_data1_RW =
361                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
362                         csa->priv2.spuq[i].mfc_cq_data2_RW =
363                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
364                         csa->priv2.spuq[i].mfc_cq_data3_RW =
365                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
366                 }
367         }
368 }
369
370 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
371 {
372         struct spu_problem __iomem *prob = spu->problem;
373
374         /* Save, Step 20:
375          *     Save the PPU_QueryMask register
376          *     in the CSA.
377          */
378         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
379 }
380
381 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
382 {
383         struct spu_problem __iomem *prob = spu->problem;
384
385         /* Save, Step 21:
386          *     Save the PPU_QueryType register
387          *     in the CSA.
388          */
389         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
390 }
391
392 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
393 {
394         struct spu_priv2 __iomem *priv2 = spu->priv2;
395
396         /* Save, Step 22:
397          *     Save the MFC_CSR_TSQ register
398          *     in the LSCSA.
399          */
400         csa->priv2.spu_tag_status_query_RW =
401             in_be64(&priv2->spu_tag_status_query_RW);
402 }
403
404 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
405 {
406         struct spu_priv2 __iomem *priv2 = spu->priv2;
407
408         /* Save, Step 23:
409          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
410          *     registers in the CSA.
411          */
412         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
413         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
414 }
415
416 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
417 {
418         struct spu_priv2 __iomem *priv2 = spu->priv2;
419
420         /* Save, Step 24:
421          *     Save the MFC_CSR_ATO register in
422          *     the CSA.
423          */
424         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
425 }
426
427 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
428 {
429         /* Save, Step 25:
430          *     Save the MFC_TCLASS_ID register in
431          *     the CSA.
432          */
433         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
434 }
435
436 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437 {
438         /* Save, Step 26:
439          * Restore, Step 23.
440          *     Write the MFC_TCLASS_ID register with
441          *     the value 0x10000000.
442          */
443         spu_mfc_tclass_id_set(spu, 0x10000000);
444         eieio();
445 }
446
447 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
448 {
449         struct spu_priv2 __iomem *priv2 = spu->priv2;
450
451         /* Save, Step 27:
452          * Restore, Step 14.
453          *     Write MFC_CNTL[Pc]=1 (purge queue).
454          */
455         out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
456         eieio();
457 }
458
459 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
460 {
461         struct spu_priv2 __iomem *priv2 = spu->priv2;
462
463         /* Save, Step 28:
464          *     Poll MFC_CNTL[Ps] until value '11' is read
465          *     (purge complete).
466          */
467         POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
468                          MFC_CNTL_PURGE_DMA_COMPLETE);
469 }
470
471 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
472 {
473         struct spu_priv2 __iomem *priv2 = spu->priv2;
474         int i;
475
476         /* Save, Step 29:
477          *     If MFC_SR1[R]='1', save SLBs in CSA.
478          */
479         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
480                 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
481                 for (i = 0; i < 8; i++) {
482                         out_be64(&priv2->slb_index_W, i);
483                         eieio();
484                         csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
485                         csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
486                         eieio();
487                 }
488         }
489 }
490
491 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
492 {
493         /* Save, Step 30:
494          * Restore, Step 18:
495          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
496          *     MFC_SR1[TL,R,Pr,T] set correctly for the
497          *     OS specific environment.
498          *
499          *     Implementation note: The SPU-side code
500          *     for save/restore is privileged, so the
501          *     MFC_SR1[Pr] bit is not set.
502          *
503          */
504         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
505                               MFC_STATE1_RELOCATE_MASK |
506                               MFC_STATE1_BUS_TLBIE_MASK));
507 }
508
509 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
510 {
511         struct spu_problem __iomem *prob = spu->problem;
512
513         /* Save, Step 31:
514          *     Save SPU_NPC in the CSA.
515          */
516         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
517 }
518
519 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
520 {
521         struct spu_priv2 __iomem *priv2 = spu->priv2;
522
523         /* Save, Step 32:
524          *     Save SPU_PrivCntl in the CSA.
525          */
526         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
527 }
528
529 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
530 {
531         struct spu_priv2 __iomem *priv2 = spu->priv2;
532
533         /* Save, Step 33:
534          * Restore, Step 16:
535          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
536          */
537         out_be64(&priv2->spu_privcntl_RW, 0UL);
538         eieio();
539 }
540
541 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
542 {
543         struct spu_priv2 __iomem *priv2 = spu->priv2;
544
545         /* Save, Step 34:
546          *     Save SPU_LSLR in the CSA.
547          */
548         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
549 }
550
551 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
552 {
553         struct spu_priv2 __iomem *priv2 = spu->priv2;
554
555         /* Save, Step 35:
556          * Restore, Step 17.
557          *     Reset SPU_LSLR.
558          */
559         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
560         eieio();
561 }
562
563 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
564 {
565         struct spu_priv2 __iomem *priv2 = spu->priv2;
566
567         /* Save, Step 36:
568          *     Save SPU_Cfg in the CSA.
569          */
570         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
571 }
572
573 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
574 {
575         /* Save, Step 37:
576          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
577          *     Not performed by this implementation.
578          */
579 }
580
581 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
582 {
583         /* Save, Step 38:
584          *     Save RA_GROUP_ID register and the
585          *     RA_ENABLE reigster in the CSA.
586          */
587         csa->priv1.resource_allocation_groupID_RW =
588                 spu_resource_allocation_groupID_get(spu);
589         csa->priv1.resource_allocation_enable_RW =
590                 spu_resource_allocation_enable_get(spu);
591 }
592
593 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
594 {
595         struct spu_problem __iomem *prob = spu->problem;
596
597         /* Save, Step 39:
598          *     Save MB_Stat register in the CSA.
599          */
600         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
601 }
602
603 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
604 {
605         struct spu_problem __iomem *prob = spu->problem;
606
607         /* Save, Step 40:
608          *     Save the PPU_MB register in the CSA.
609          */
610         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
611 }
612
613 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
614 {
615         struct spu_priv2 __iomem *priv2 = spu->priv2;
616
617         /* Save, Step 41:
618          *     Save the PPUINT_MB register in the CSA.
619          */
620         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
621 }
622
623 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
624 {
625         struct spu_priv2 __iomem *priv2 = spu->priv2;
626         u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
627         int i;
628
629         /* Save, Step 42:
630          */
631
632         /* Save CH 1, without channel count */
633         out_be64(&priv2->spu_chnlcntptr_RW, 1);
634         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
635
636         /* Save the following CH: [0,3,4,24,25,27] */
637         for (i = 0; i < 7; i++) {
638                 idx = ch_indices[i];
639                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
640                 eieio();
641                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
642                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
643                 out_be64(&priv2->spu_chnldata_RW, 0UL);
644                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
645                 eieio();
646         }
647 }
648
649 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
650 {
651         struct spu_priv2 __iomem *priv2 = spu->priv2;
652         int i;
653
654         /* Save, Step 43:
655          *     Save SPU Read Mailbox Channel.
656          */
657         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
658         eieio();
659         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
660         for (i = 0; i < 4; i++) {
661                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
662         }
663         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
664         eieio();
665 }
666
667 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
668 {
669         struct spu_priv2 __iomem *priv2 = spu->priv2;
670
671         /* Save, Step 44:
672          *     Save MFC_CMD Channel.
673          */
674         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
675         eieio();
676         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
677         eieio();
678 }
679
680 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
681 {
682         struct spu_priv2 __iomem *priv2 = spu->priv2;
683         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
684         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
685         u64 idx;
686         int i;
687
688         /* Save, Step 45:
689          *     Reset the following CH: [21, 23, 28, 30]
690          */
691         for (i = 0; i < 4; i++) {
692                 idx = ch_indices[i];
693                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
694                 eieio();
695                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
696                 eieio();
697         }
698 }
699
700 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
701 {
702         struct spu_priv2 __iomem *priv2 = spu->priv2;
703
704         /* Save, Step 46:
705          * Restore, Step 25.
706          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
707          */
708         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
709 }
710
711 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
712 {
713         struct spu_priv2 __iomem *priv2 = spu->priv2;
714
715         /* Save, Step 45:
716          * Restore, Step 19:
717          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
718          */
719         if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
720                 out_be64(&priv2->slb_invalidate_all_W, 0UL);
721                 eieio();
722         }
723 }
724
725 static inline void get_kernel_slb(u64 ea, u64 slb[2])
726 {
727         u64 llp;
728
729         if (REGION_ID(ea) == KERNEL_REGION_ID)
730                 llp = mmu_psize_defs[mmu_linear_psize].sllp;
731         else
732                 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
733         slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
734                 SLB_VSID_KERNEL | llp;
735         slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
736 }
737
738 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
739 {
740         struct spu_priv2 __iomem *priv2 = spu->priv2;
741
742         out_be64(&priv2->slb_index_W, slbe);
743         eieio();
744         out_be64(&priv2->slb_vsid_RW, slb[0]);
745         out_be64(&priv2->slb_esid_RW, slb[1]);
746         eieio();
747 }
748
749 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
750 {
751         u64 code_slb[2];
752         u64 lscsa_slb[2];
753
754         /* Save, Step 47:
755          * Restore, Step 30.
756          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
757          *     register, then initialize SLB_VSID and SLB_ESID
758          *     to provide access to SPU context save code and
759          *     LSCSA.
760          *
761          *     This implementation places both the context
762          *     switch code and LSCSA in kernel address space.
763          *
764          *     Further this implementation assumes that the
765          *     MFC_SR1[R]=1 (in other words, assume that
766          *     translation is desired by OS environment).
767          */
768         invalidate_slbs(csa, spu);
769         get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
770         get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
771         load_mfc_slb(spu, code_slb, 0);
772         if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
773                 load_mfc_slb(spu, lscsa_slb, 1);
774 }
775
776 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
777 {
778         /* Save, Step 48:
779          * Restore, Step 23.
780          *     Change the software context switch pending flag
781          *     to context switch active.
782          */
783         set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
784         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
785         mb();
786 }
787
788 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
789 {
790         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
791             CLASS1_ENABLE_STORAGE_FAULT_INTR;
792
793         /* Save, Step 49:
794          * Restore, Step 22:
795          *     Reset and then enable interrupts, as
796          *     needed by OS.
797          *
798          *     This implementation enables only class1
799          *     (translation) interrupts.
800          */
801         spin_lock_irq(&spu->register_lock);
802         spu_int_stat_clear(spu, 0, ~0ul);
803         spu_int_stat_clear(spu, 1, ~0ul);
804         spu_int_stat_clear(spu, 2, ~0ul);
805         spu_int_mask_set(spu, 0, 0ul);
806         spu_int_mask_set(spu, 1, class1_mask);
807         spu_int_mask_set(spu, 2, 0ul);
808         spin_unlock_irq(&spu->register_lock);
809 }
810
811 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
812                                unsigned int ls_offset, unsigned int size,
813                                unsigned int tag, unsigned int rclass,
814                                unsigned int cmd)
815 {
816         struct spu_problem __iomem *prob = spu->problem;
817         union mfc_tag_size_class_cmd command;
818         unsigned int transfer_size;
819         volatile unsigned int status = 0x0;
820
821         while (size > 0) {
822                 transfer_size =
823                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
824                 command.u.mfc_size = transfer_size;
825                 command.u.mfc_tag = tag;
826                 command.u.mfc_rclassid = rclass;
827                 command.u.mfc_cmd = cmd;
828                 do {
829                         out_be32(&prob->mfc_lsa_W, ls_offset);
830                         out_be64(&prob->mfc_ea_W, ea);
831                         out_be64(&prob->mfc_union_W.all64, command.all64);
832                         status =
833                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
834                         if (unlikely(status & 0x2)) {
835                                 cpu_relax();
836                         }
837                 } while (status & 0x3);
838                 size -= transfer_size;
839                 ea += transfer_size;
840                 ls_offset += transfer_size;
841         }
842         return 0;
843 }
844
845 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
846 {
847         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
848         unsigned int ls_offset = 0x0;
849         unsigned int size = 16384;
850         unsigned int tag = 0;
851         unsigned int rclass = 0;
852         unsigned int cmd = MFC_PUT_CMD;
853
854         /* Save, Step 50:
855          *     Issue a DMA command to copy the first 16K bytes
856          *     of local storage to the CSA.
857          */
858         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
859 }
860
861 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
862 {
863         struct spu_problem __iomem *prob = spu->problem;
864
865         /* Save, Step 51:
866          * Restore, Step 31.
867          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
868          *     point address of context save code in local
869          *     storage.
870          *
871          *     This implementation uses SPU-side save/restore
872          *     programs with entry points at LSA of 0.
873          */
874         out_be32(&prob->spu_npc_RW, 0);
875         eieio();
876 }
877
878 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
879 {
880         struct spu_problem __iomem *prob = spu->problem;
881         union {
882                 u64 ull;
883                 u32 ui[2];
884         } addr64;
885
886         /* Save, Step 52:
887          * Restore, Step 32:
888          *    Write SPU_Sig_Notify_1 register with upper 32-bits
889          *    of the CSA.LSCSA effective address.
890          */
891         addr64.ull = (u64) csa->lscsa;
892         out_be32(&prob->signal_notify1, addr64.ui[0]);
893         eieio();
894 }
895
896 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
897 {
898         struct spu_problem __iomem *prob = spu->problem;
899         union {
900                 u64 ull;
901                 u32 ui[2];
902         } addr64;
903
904         /* Save, Step 53:
905          * Restore, Step 33:
906          *    Write SPU_Sig_Notify_2 register with lower 32-bits
907          *    of the CSA.LSCSA effective address.
908          */
909         addr64.ull = (u64) csa->lscsa;
910         out_be32(&prob->signal_notify2, addr64.ui[1]);
911         eieio();
912 }
913
914 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
915 {
916         unsigned long addr = (unsigned long)&spu_save_code[0];
917         unsigned int ls_offset = 0x0;
918         unsigned int size = sizeof(spu_save_code);
919         unsigned int tag = 0;
920         unsigned int rclass = 0;
921         unsigned int cmd = MFC_GETFS_CMD;
922
923         /* Save, Step 54:
924          *     Issue a DMA command to copy context save code
925          *     to local storage and start SPU.
926          */
927         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
928 }
929
930 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
931 {
932         struct spu_problem __iomem *prob = spu->problem;
933
934         /* Save, Step 55:
935          * Restore, Step 38.
936          *     Write PPU_QueryMask=1 (enable Tag Group 0)
937          *     and issue eieio instruction.
938          */
939         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
940         eieio();
941 }
942
943 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
944 {
945         struct spu_problem __iomem *prob = spu->problem;
946         u32 mask = MFC_TAGID_TO_TAGMASK(0);
947         unsigned long flags;
948
949         /* Save, Step 56:
950          * Restore, Step 39.
951          * Restore, Step 39.
952          * Restore, Step 46.
953          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
954          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
955          *     Complete Interrupt.  Write INT_Stat_Class0 or
956          *     INT_Stat_Class2 with value of 'handled'.
957          */
958         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
959
960         local_irq_save(flags);
961         spu_int_stat_clear(spu, 0, ~(0ul));
962         spu_int_stat_clear(spu, 2, ~(0ul));
963         local_irq_restore(flags);
964 }
965
966 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
967 {
968         struct spu_problem __iomem *prob = spu->problem;
969         unsigned long flags;
970
971         /* Save, Step 57:
972          * Restore, Step 40.
973          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
974          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
975          *     or INT_Stat_class2 with value of handled.
976          */
977         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
978
979         local_irq_save(flags);
980         spu_int_stat_clear(spu, 0, ~(0ul));
981         spu_int_stat_clear(spu, 2, ~(0ul));
982         local_irq_restore(flags);
983 }
984
985 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
986 {
987         struct spu_problem __iomem *prob = spu->problem;
988         u32 complete;
989
990         /* Save, Step 54:
991          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
992          *     context save succeeded, otherwise context save
993          *     failed.
994          */
995         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
996                     SPU_STATUS_STOPPED_BY_STOP);
997         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
998 }
999
1000 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
1001 {
1002         /* Restore, Step 4:
1003          *    If required, notify the "using application" that
1004          *    the SPU task has been terminated.  TBD.
1005          */
1006 }
1007
1008 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1009 {
1010         struct spu_priv2 __iomem *priv2 = spu->priv2;
1011
1012         /* Restore, Step 7:
1013          * Restore, Step 47.
1014          *     Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1015          *     the queue and halt the decrementer.
1016          */
1017         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1018                  MFC_CNTL_DECREMENTER_HALTED);
1019         eieio();
1020 }
1021
1022 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1023                                              struct spu *spu)
1024 {
1025         struct spu_priv2 __iomem *priv2 = spu->priv2;
1026
1027         /* Restore, Step 8:
1028          * Restore, Step 47.
1029          *     Poll MFC_CNTL[Ss] until 11 is returned.
1030          */
1031         POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1032                          MFC_CNTL_SUSPEND_COMPLETE);
1033 }
1034
1035 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1036 {
1037         struct spu_problem __iomem *prob = spu->problem;
1038
1039         /* Restore, Step 9:
1040          *    If SPU_Status[R]=1, stop SPU execution
1041          *    and wait for stop to complete.
1042          *
1043          *    Returns       1 if SPU_Status[R]=1 on entry.
1044          *                  0 otherwise
1045          */
1046         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1047                 if (in_be32(&prob->spu_status_R) &
1048                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1049                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1050                                         SPU_STATUS_RUNNING);
1051                 }
1052                 if ((in_be32(&prob->spu_status_R) &
1053                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1054                     || (in_be32(&prob->spu_status_R) &
1055                         SPU_STATUS_ISOLATED_STATE)) {
1056                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1057                         eieio();
1058                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1059                                         SPU_STATUS_RUNNING);
1060                         out_be32(&prob->spu_runcntl_RW, 0x2);
1061                         eieio();
1062                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1063                                         SPU_STATUS_RUNNING);
1064                 }
1065                 if (in_be32(&prob->spu_status_R) &
1066                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1067                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1068                         eieio();
1069                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1070                                         SPU_STATUS_RUNNING);
1071                 }
1072                 return 1;
1073         }
1074         return 0;
1075 }
1076
1077 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1078 {
1079         struct spu_problem __iomem *prob = spu->problem;
1080
1081         /* Restore, Step 10:
1082          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1083          *    release SPU from isolate state.
1084          */
1085         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1086                 if (in_be32(&prob->spu_status_R) &
1087                     SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1088                         spu_mfc_sr1_set(spu,
1089                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1090                         eieio();
1091                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1092                         eieio();
1093                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1094                                         SPU_STATUS_RUNNING);
1095                 }
1096                 if ((in_be32(&prob->spu_status_R) &
1097                      SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1098                     || (in_be32(&prob->spu_status_R) &
1099                         SPU_STATUS_ISOLATED_STATE)) {
1100                         spu_mfc_sr1_set(spu,
1101                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1102                         eieio();
1103                         out_be32(&prob->spu_runcntl_RW, 0x2);
1104                         eieio();
1105                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1106                                         SPU_STATUS_RUNNING);
1107                 }
1108         }
1109 }
1110
1111 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1112 {
1113         struct spu_priv2 __iomem *priv2 = spu->priv2;
1114         u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1115         u64 idx;
1116         int i;
1117
1118         /* Restore, Step 20:
1119          */
1120
1121         /* Reset CH 1 */
1122         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1123         out_be64(&priv2->spu_chnldata_RW, 0UL);
1124
1125         /* Reset the following CH: [0,3,4,24,25,27] */
1126         for (i = 0; i < 7; i++) {
1127                 idx = ch_indices[i];
1128                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1129                 eieio();
1130                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1131                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1132                 eieio();
1133         }
1134 }
1135
1136 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1137 {
1138         struct spu_priv2 __iomem *priv2 = spu->priv2;
1139         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1140         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1141         u64 idx;
1142         int i;
1143
1144         /* Restore, Step 21:
1145          *     Reset the following CH: [21, 23, 28, 29, 30]
1146          */
1147         for (i = 0; i < 5; i++) {
1148                 idx = ch_indices[i];
1149                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1150                 eieio();
1151                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1152                 eieio();
1153         }
1154 }
1155
1156 static inline void setup_spu_status_part1(struct spu_state *csa,
1157                                           struct spu *spu)
1158 {
1159         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1160         u32 status_I = SPU_STATUS_INVALID_INSTR;
1161         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1162         u32 status_S = SPU_STATUS_SINGLE_STEP;
1163         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1164         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1165         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1166         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1167         u32 status_code;
1168
1169         /* Restore, Step 27:
1170          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1171          *     instruction sequence to the end of the SPU based restore
1172          *     code (after the "context restored" stop and signal) to
1173          *     restore the correct SPU status.
1174          *
1175          *     NOTE: Rather than modifying the SPU executable, we
1176          *     instead add a new 'stopped_status' field to the
1177          *     LSCSA.  The SPU-side restore reads this field and
1178          *     takes the appropriate action when exiting.
1179          */
1180
1181         status_code =
1182             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1183         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1184
1185                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1186                  * by Stop and Signal instruction, followed by 'br -4'.
1187                  *
1188                  */
1189                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1190                 csa->lscsa->stopped_status.slot[1] = status_code;
1191
1192         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1193
1194                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1195                  * by Stop and Signal instruction, followed by
1196                  * 'br -4'.
1197                  */
1198                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1199                 csa->lscsa->stopped_status.slot[1] = status_code;
1200
1201         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1202
1203                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1204                  * followed by 'br -4'.
1205                  */
1206                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1207                 csa->lscsa->stopped_status.slot[1] = status_code;
1208
1209         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1210
1211                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1212                  * by 'br -4'.
1213                  */
1214                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1215                 csa->lscsa->stopped_status.slot[1] = status_code;
1216
1217         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1218
1219                 /* SPU_Status[P]=1 - Stop and Signal instruction
1220                  * followed by 'br -4'.
1221                  */
1222                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1223                 csa->lscsa->stopped_status.slot[1] = status_code;
1224
1225         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1226
1227                 /* SPU_Status[H]=1 - Halt Conditional, followed
1228                  * by 'br -4'.
1229                  */
1230                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1231
1232         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1233
1234                 /* SPU_Status[S]=1 - Two nop instructions.
1235                  */
1236                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1237
1238         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1239
1240                 /* SPU_Status[I]=1 - Illegal instruction followed
1241                  * by 'br -4'.
1242                  */
1243                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1244
1245         }
1246 }
1247
1248 static inline void setup_spu_status_part2(struct spu_state *csa,
1249                                           struct spu *spu)
1250 {
1251         u32 mask;
1252
1253         /* Restore, Step 28:
1254          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1255          *     add a 'br *' instruction to the end of
1256          *     the SPU based restore code.
1257          *
1258          *     NOTE: Rather than modifying the SPU executable, we
1259          *     instead add a new 'stopped_status' field to the
1260          *     LSCSA.  The SPU-side restore reads this field and
1261          *     takes the appropriate action when exiting.
1262          */
1263         mask = SPU_STATUS_INVALID_INSTR |
1264             SPU_STATUS_SINGLE_STEP |
1265             SPU_STATUS_STOPPED_BY_HALT |
1266             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1267         if (!(csa->prob.spu_status_R & mask)) {
1268                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1269         }
1270 }
1271
1272 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1273 {
1274         /* Restore, Step 29:
1275          *     Restore RA_GROUP_ID register and the
1276          *     RA_ENABLE reigster from the CSA.
1277          */
1278         spu_resource_allocation_groupID_set(spu,
1279                         csa->priv1.resource_allocation_groupID_RW);
1280         spu_resource_allocation_enable_set(spu,
1281                         csa->priv1.resource_allocation_enable_RW);
1282 }
1283
1284 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1285 {
1286         unsigned long addr = (unsigned long)&spu_restore_code[0];
1287         unsigned int ls_offset = 0x0;
1288         unsigned int size = sizeof(spu_restore_code);
1289         unsigned int tag = 0;
1290         unsigned int rclass = 0;
1291         unsigned int cmd = MFC_GETFS_CMD;
1292
1293         /* Restore, Step 37:
1294          *     Issue MFC DMA command to copy context
1295          *     restore code to local storage.
1296          */
1297         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1298 }
1299
1300 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1301 {
1302         /* Restore, Step 34:
1303          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1304          *     running) then adjust decrementer, set
1305          *     decrementer running status in LSCSA,
1306          *     and set decrementer "wrapped" status
1307          *     in LSCSA.
1308          */
1309         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1310                 cycles_t resume_time = get_cycles();
1311                 cycles_t delta_time = resume_time - csa->suspend_time;
1312
1313                 csa->lscsa->decr.slot[0] -= delta_time;
1314         }
1315 }
1316
1317 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1318 {
1319         /* Restore, Step 35:
1320          *     Copy the CSA.PU_MB data into the LSCSA.
1321          */
1322         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1323 }
1324
1325 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1326 {
1327         /* Restore, Step 36:
1328          *     Copy the CSA.PUINT_MB data into the LSCSA.
1329          */
1330         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1331 }
1332
1333 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1334 {
1335         struct spu_problem __iomem *prob = spu->problem;
1336         u32 complete;
1337
1338         /* Restore, Step 40:
1339          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1340          *     context restore succeeded, otherwise context restore
1341          *     failed.
1342          */
1343         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1344                     SPU_STATUS_STOPPED_BY_STOP);
1345         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1346 }
1347
1348 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1349 {
1350         struct spu_priv2 __iomem *priv2 = spu->priv2;
1351
1352         /* Restore, Step 41:
1353          *     Restore SPU_PrivCntl from the CSA.
1354          */
1355         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1356         eieio();
1357 }
1358
1359 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1360 {
1361         struct spu_problem __iomem *prob = spu->problem;
1362         u32 mask;
1363
1364         /* Restore, Step 42:
1365          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1366          *     restore the error or single step state.
1367          */
1368         mask = SPU_STATUS_INVALID_INSTR |
1369             SPU_STATUS_SINGLE_STEP |
1370             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1371         if (csa->prob.spu_status_R & mask) {
1372                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1373                 eieio();
1374                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1375                                 SPU_STATUS_RUNNING);
1376         }
1377 }
1378
1379 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1380 {
1381         struct spu_problem __iomem *prob = spu->problem;
1382         u32 mask;
1383
1384         /* Restore, Step 43:
1385          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1386          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1387          *     then write '00' to SPU_RunCntl[R0R1] and wait
1388          *     for SPU_Status[R]=0.
1389          */
1390         mask = SPU_STATUS_INVALID_INSTR |
1391             SPU_STATUS_SINGLE_STEP |
1392             SPU_STATUS_STOPPED_BY_HALT |
1393             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1394         if (!(csa->prob.spu_status_R & mask)) {
1395                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1396                 eieio();
1397                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1398                                  SPU_STATUS_RUNNING);
1399                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1400                 eieio();
1401                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1402                                 SPU_STATUS_RUNNING);
1403         }
1404 }
1405
1406 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1407 {
1408         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1409         unsigned int ls_offset = 0x0;
1410         unsigned int size = 16384;
1411         unsigned int tag = 0;
1412         unsigned int rclass = 0;
1413         unsigned int cmd = MFC_GET_CMD;
1414
1415         /* Restore, Step 44:
1416          *     Issue a DMA command to restore the first
1417          *     16kb of local storage from CSA.
1418          */
1419         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1420 }
1421
1422 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1423 {
1424         /* Restore, Step 49:
1425          *     Write INT_MASK_class0 with value of 0.
1426          *     Write INT_MASK_class1 with value of 0.
1427          *     Write INT_MASK_class2 with value of 0.
1428          *     Write INT_STAT_class0 with value of -1.
1429          *     Write INT_STAT_class1 with value of -1.
1430          *     Write INT_STAT_class2 with value of -1.
1431          */
1432         spin_lock_irq(&spu->register_lock);
1433         spu_int_mask_set(spu, 0, 0ul);
1434         spu_int_mask_set(spu, 1, 0ul);
1435         spu_int_mask_set(spu, 2, 0ul);
1436         spu_int_stat_clear(spu, 0, ~0ul);
1437         spu_int_stat_clear(spu, 1, ~0ul);
1438         spu_int_stat_clear(spu, 2, ~0ul);
1439         spin_unlock_irq(&spu->register_lock);
1440 }
1441
1442 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1443 {
1444         struct spu_priv2 __iomem *priv2 = spu->priv2;
1445         int i;
1446
1447         /* Restore, Step 50:
1448          *     If MFC_Cntl[Se]!=0 then restore
1449          *     MFC command queues.
1450          */
1451         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1452                 for (i = 0; i < 8; i++) {
1453                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1454                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1455                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1456                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1457                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1458                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1459                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1460                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1461                 }
1462                 for (i = 0; i < 16; i++) {
1463                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1464                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1465                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1466                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1467                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1468                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1469                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1470                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1471                 }
1472         }
1473         eieio();
1474 }
1475
1476 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1477 {
1478         struct spu_problem __iomem *prob = spu->problem;
1479
1480         /* Restore, Step 51:
1481          *     Restore the PPU_QueryMask register from CSA.
1482          */
1483         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1484         eieio();
1485 }
1486
1487 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1488 {
1489         struct spu_problem __iomem *prob = spu->problem;
1490
1491         /* Restore, Step 52:
1492          *     Restore the PPU_QueryType register from CSA.
1493          */
1494         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1495         eieio();
1496 }
1497
1498 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1499 {
1500         struct spu_priv2 __iomem *priv2 = spu->priv2;
1501
1502         /* Restore, Step 53:
1503          *     Restore the MFC_CSR_TSQ register from CSA.
1504          */
1505         out_be64(&priv2->spu_tag_status_query_RW,
1506                  csa->priv2.spu_tag_status_query_RW);
1507         eieio();
1508 }
1509
1510 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1511 {
1512         struct spu_priv2 __iomem *priv2 = spu->priv2;
1513
1514         /* Restore, Step 54:
1515          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1516          *     registers from CSA.
1517          */
1518         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1519         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1520         eieio();
1521 }
1522
1523 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1524 {
1525         struct spu_priv2 __iomem *priv2 = spu->priv2;
1526
1527         /* Restore, Step 55:
1528          *     Restore the MFC_CSR_ATO register from CSA.
1529          */
1530         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1531 }
1532
1533 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1534 {
1535         /* Restore, Step 56:
1536          *     Restore the MFC_TCLASS_ID register from CSA.
1537          */
1538         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1539         eieio();
1540 }
1541
1542 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1543 {
1544         u64 ch0_cnt, ch0_data;
1545         u64 ch1_data;
1546
1547         /* Restore, Step 57:
1548          *    Set the Lock Line Reservation Lost Event by:
1549          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1550          *      2. If CSA.SPU_Channel_0_Count=0 and
1551          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1552          *         CSA.SPU_Event_Status[Lr]=0 then set
1553          *         CSA.SPU_Event_Status_Count=1.
1554          */
1555         ch0_cnt = csa->spu_chnlcnt_RW[0];
1556         ch0_data = csa->spu_chnldata_RW[0];
1557         ch1_data = csa->spu_chnldata_RW[1];
1558         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1559         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1560             (ch1_data & MFC_LLR_LOST_EVENT)) {
1561                 csa->spu_chnlcnt_RW[0] = 1;
1562         }
1563 }
1564
1565 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1566 {
1567         /* Restore, Step 58:
1568          *     If the status of the CSA software decrementer
1569          *     "wrapped" flag is set, OR in a '1' to
1570          *     CSA.SPU_Event_Status[Tm].
1571          */
1572         if (csa->lscsa->decr_status.slot[0] == 1) {
1573                 csa->spu_chnldata_RW[0] |= 0x20;
1574         }
1575         if ((csa->lscsa->decr_status.slot[0] == 1) &&
1576             (csa->spu_chnlcnt_RW[0] == 0 &&
1577              ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1578              ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1579                 csa->spu_chnlcnt_RW[0] = 1;
1580         }
1581 }
1582
1583 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1584 {
1585         struct spu_priv2 __iomem *priv2 = spu->priv2;
1586         u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1587         int i;
1588
1589         /* Restore, Step 59:
1590          */
1591
1592         /* Restore CH 1 without count */
1593         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1594         out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1595
1596         /* Restore the following CH: [0,3,4,24,25,27] */
1597         for (i = 0; i < 7; i++) {
1598                 idx = ch_indices[i];
1599                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1600                 eieio();
1601                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1602                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1603                 eieio();
1604         }
1605 }
1606
1607 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1608 {
1609         struct spu_priv2 __iomem *priv2 = spu->priv2;
1610         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1611         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1612         u64 idx;
1613         int i;
1614
1615         /* Restore, Step 60:
1616          *     Restore the following CH: [9,21,23].
1617          */
1618         ch_counts[0] = 1UL;
1619         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1620         ch_counts[2] = 1UL;
1621         for (i = 0; i < 3; i++) {
1622                 idx = ch_indices[i];
1623                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1624                 eieio();
1625                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1626                 eieio();
1627         }
1628 }
1629
1630 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1631 {
1632         struct spu_priv2 __iomem *priv2 = spu->priv2;
1633
1634         /* Restore, Step 61:
1635          *     Restore the SPU_LSLR register from CSA.
1636          */
1637         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1638         eieio();
1639 }
1640
1641 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1642 {
1643         struct spu_priv2 __iomem *priv2 = spu->priv2;
1644
1645         /* Restore, Step 62:
1646          *     Restore the SPU_Cfg register from CSA.
1647          */
1648         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1649         eieio();
1650 }
1651
1652 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1653 {
1654         /* Restore, Step 63:
1655          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1656          *     Not performed by this implementation.
1657          */
1658 }
1659
1660 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1661 {
1662         struct spu_problem __iomem *prob = spu->problem;
1663
1664         /* Restore, Step 64:
1665          *     Restore SPU_NPC from CSA.
1666          */
1667         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1668         eieio();
1669 }
1670
1671 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1672 {
1673         struct spu_priv2 __iomem *priv2 = spu->priv2;
1674         int i;
1675
1676         /* Restore, Step 65:
1677          *     Restore MFC_RdSPU_MB from CSA.
1678          */
1679         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1680         eieio();
1681         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1682         for (i = 0; i < 4; i++) {
1683                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1684         }
1685         eieio();
1686 }
1687
1688 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1689 {
1690         struct spu_problem __iomem *prob = spu->problem;
1691         u32 dummy = 0;
1692
1693         /* Restore, Step 66:
1694          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1695          *     read from the PPU_MB register.
1696          */
1697         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1698                 dummy = in_be32(&prob->pu_mb_R);
1699                 eieio();
1700         }
1701 }
1702
1703 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1704 {
1705         struct spu_priv2 __iomem *priv2 = spu->priv2;
1706         u64 dummy = 0UL;
1707
1708         /* Restore, Step 66:
1709          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1710          *     read from the PPUINT_MB register.
1711          */
1712         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1713                 dummy = in_be64(&priv2->puint_mb_R);
1714                 eieio();
1715                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1716                 eieio();
1717         }
1718 }
1719
1720 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1721 {
1722         struct spu_priv2 __iomem *priv2 = spu->priv2;
1723         int i;
1724
1725         /* Restore, Step 68:
1726          *     If MFC_SR1[R]='1', restore SLBs from CSA.
1727          */
1728         if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1729                 for (i = 0; i < 8; i++) {
1730                         out_be64(&priv2->slb_index_W, i);
1731                         eieio();
1732                         out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1733                         out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1734                         eieio();
1735                 }
1736                 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1737                 eieio();
1738         }
1739 }
1740
1741 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1742 {
1743         /* Restore, Step 69:
1744          *     Restore the MFC_SR1 register from CSA.
1745          */
1746         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1747         eieio();
1748 }
1749
1750 static inline void restore_other_spu_access(struct spu_state *csa,
1751                                             struct spu *spu)
1752 {
1753         /* Restore, Step 70:
1754          *     Restore other SPU mappings to this SPU. TBD.
1755          */
1756 }
1757
1758 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1759 {
1760         struct spu_problem __iomem *prob = spu->problem;
1761
1762         /* Restore, Step 71:
1763          *     If CSA.SPU_Status[R]=1 then write
1764          *     SPU_RunCntl[R0R1]='01'.
1765          */
1766         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1767                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1768                 eieio();
1769         }
1770 }
1771
1772 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1773 {
1774         struct spu_priv2 __iomem *priv2 = spu->priv2;
1775
1776         /* Restore, Step 72:
1777          *    Restore the MFC_CNTL register for the CSA.
1778          */
1779         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1780         eieio();
1781 }
1782
1783 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1784 {
1785         /* Restore, Step 73:
1786          *     Enable user-space access (if provided) to this
1787          *     SPU by mapping the virtual pages assigned to
1788          *     the SPU memory-mapped I/O (MMIO) for problem
1789          *     state. TBD.
1790          */
1791 }
1792
1793 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1794 {
1795         /* Restore, Step 74:
1796          *     Reset the "context switch active" flag.
1797          */
1798         clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1799         mb();
1800 }
1801
1802 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1803 {
1804         /* Restore, Step 75:
1805          *     Re-enable SPU interrupts.
1806          */
1807         spin_lock_irq(&spu->register_lock);
1808         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1809         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1810         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1811         spin_unlock_irq(&spu->register_lock);
1812 }
1813
1814 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1815 {
1816         /*
1817          * Combined steps 2-18 of SPU context save sequence, which
1818          * quiesce the SPU state (disable SPU execution, MFC command
1819          * queues, decrementer, SPU interrupts, etc.).
1820          *
1821          * Returns      0 on success.
1822          *              2 if failed step 2.
1823          *              6 if failed step 6.
1824          */
1825
1826         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1827                 return 2;
1828         }
1829         disable_interrupts(prev, spu);          /* Step 3. */
1830         set_watchdog_timer(prev, spu);          /* Step 4. */
1831         inhibit_user_access(prev, spu);         /* Step 5. */
1832         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1833                 return 6;
1834         }
1835         set_switch_pending(prev, spu);          /* Step 7. */
1836         save_mfc_cntl(prev, spu);               /* Step 8. */
1837         save_spu_runcntl(prev, spu);            /* Step 9. */
1838         save_mfc_sr1(prev, spu);                /* Step 10. */
1839         save_spu_status(prev, spu);             /* Step 11. */
1840         save_mfc_decr(prev, spu);               /* Step 12. */
1841         halt_mfc_decr(prev, spu);               /* Step 13. */
1842         save_timebase(prev, spu);               /* Step 14. */
1843         remove_other_spu_access(prev, spu);     /* Step 15. */
1844         do_mfc_mssync(prev, spu);               /* Step 16. */
1845         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1846         handle_pending_interrupts(prev, spu);   /* Step 18. */
1847
1848         return 0;
1849 }
1850
1851 static void save_csa(struct spu_state *prev, struct spu *spu)
1852 {
1853         /*
1854          * Combine steps 19-44 of SPU context save sequence, which
1855          * save regions of the privileged & problem state areas.
1856          */
1857
1858         save_mfc_queues(prev, spu);     /* Step 19. */
1859         save_ppu_querymask(prev, spu);  /* Step 20. */
1860         save_ppu_querytype(prev, spu);  /* Step 21. */
1861         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1862         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1863         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1864         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1865         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1866         purge_mfc_queue(prev, spu);     /* Step 27. */
1867         wait_purge_complete(prev, spu); /* Step 28. */
1868         save_mfc_slbs(prev, spu);       /* Step 29. */
1869         setup_mfc_sr1(prev, spu);       /* Step 30. */
1870         save_spu_npc(prev, spu);        /* Step 31. */
1871         save_spu_privcntl(prev, spu);   /* Step 32. */
1872         reset_spu_privcntl(prev, spu);  /* Step 33. */
1873         save_spu_lslr(prev, spu);       /* Step 34. */
1874         reset_spu_lslr(prev, spu);      /* Step 35. */
1875         save_spu_cfg(prev, spu);        /* Step 36. */
1876         save_pm_trace(prev, spu);       /* Step 37. */
1877         save_mfc_rag(prev, spu);        /* Step 38. */
1878         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1879         save_ppu_mb(prev, spu);         /* Step 40. */
1880         save_ppuint_mb(prev, spu);      /* Step 41. */
1881         save_ch_part1(prev, spu);       /* Step 42. */
1882         save_spu_mb(prev, spu);         /* Step 43. */
1883         save_mfc_cmd(prev, spu);        /* Step 44. */
1884         reset_ch(prev, spu);            /* Step 45. */
1885 }
1886
1887 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1888 {
1889         /*
1890          * Perform steps 46-57 of SPU context save sequence,
1891          * which save regions of the local store and register
1892          * file.
1893          */
1894
1895         resume_mfc_queue(prev, spu);    /* Step 46. */
1896         setup_mfc_slbs(prev, spu);      /* Step 47. */
1897         set_switch_active(prev, spu);   /* Step 48. */
1898         enable_interrupts(prev, spu);   /* Step 49. */
1899         save_ls_16kb(prev, spu);        /* Step 50. */
1900         set_spu_npc(prev, spu);         /* Step 51. */
1901         set_signot1(prev, spu);         /* Step 52. */
1902         set_signot2(prev, spu);         /* Step 53. */
1903         send_save_code(prev, spu);      /* Step 54. */
1904         set_ppu_querymask(prev, spu);   /* Step 55. */
1905         wait_tag_complete(prev, spu);   /* Step 56. */
1906         wait_spu_stopped(prev, spu);    /* Step 57. */
1907 }
1908
1909 static void harvest(struct spu_state *prev, struct spu *spu)
1910 {
1911         /*
1912          * Perform steps 2-25 of SPU context restore sequence,
1913          * which resets an SPU either after a failed save, or
1914          * when using SPU for first time.
1915          */
1916
1917         disable_interrupts(prev, spu);          /* Step 2.  */
1918         inhibit_user_access(prev, spu);         /* Step 3.  */
1919         terminate_spu_app(prev, spu);           /* Step 4.  */
1920         set_switch_pending(prev, spu);          /* Step 5.  */
1921         remove_other_spu_access(prev, spu);     /* Step 6.  */
1922         suspend_mfc(prev, spu);                 /* Step 7.  */
1923         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1924         if (!suspend_spe(prev, spu))            /* Step 9.  */
1925                 clear_spu_status(prev, spu);    /* Step 10. */
1926         do_mfc_mssync(prev, spu);               /* Step 11. */
1927         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1928         handle_pending_interrupts(prev, spu);   /* Step 13. */
1929         purge_mfc_queue(prev, spu);             /* Step 14. */
1930         wait_purge_complete(prev, spu);         /* Step 15. */
1931         reset_spu_privcntl(prev, spu);          /* Step 16. */
1932         reset_spu_lslr(prev, spu);              /* Step 17. */
1933         setup_mfc_sr1(prev, spu);               /* Step 18. */
1934         invalidate_slbs(prev, spu);             /* Step 19. */
1935         reset_ch_part1(prev, spu);              /* Step 20. */
1936         reset_ch_part2(prev, spu);              /* Step 21. */
1937         enable_interrupts(prev, spu);           /* Step 22. */
1938         set_switch_active(prev, spu);           /* Step 23. */
1939         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1940         resume_mfc_queue(prev, spu);            /* Step 25. */
1941 }
1942
1943 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1944 {
1945         /*
1946          * Perform steps 26-40 of SPU context restore sequence,
1947          * which restores regions of the local store and register
1948          * file.
1949          */
1950
1951         set_watchdog_timer(next, spu);          /* Step 26. */
1952         setup_spu_status_part1(next, spu);      /* Step 27. */
1953         setup_spu_status_part2(next, spu);      /* Step 28. */
1954         restore_mfc_rag(next, spu);             /* Step 29. */
1955         setup_mfc_slbs(next, spu);              /* Step 30. */
1956         set_spu_npc(next, spu);                 /* Step 31. */
1957         set_signot1(next, spu);                 /* Step 32. */
1958         set_signot2(next, spu);                 /* Step 33. */
1959         setup_decr(next, spu);                  /* Step 34. */
1960         setup_ppu_mb(next, spu);                /* Step 35. */
1961         setup_ppuint_mb(next, spu);             /* Step 36. */
1962         send_restore_code(next, spu);           /* Step 37. */
1963         set_ppu_querymask(next, spu);           /* Step 38. */
1964         wait_tag_complete(next, spu);           /* Step 39. */
1965         wait_spu_stopped(next, spu);            /* Step 40. */
1966 }
1967
1968 static void restore_csa(struct spu_state *next, struct spu *spu)
1969 {
1970         /*
1971          * Combine steps 41-76 of SPU context restore sequence, which
1972          * restore regions of the privileged & problem state areas.
1973          */
1974
1975         restore_spu_privcntl(next, spu);        /* Step 41. */
1976         restore_status_part1(next, spu);        /* Step 42. */
1977         restore_status_part2(next, spu);        /* Step 43. */
1978         restore_ls_16kb(next, spu);             /* Step 44. */
1979         wait_tag_complete(next, spu);           /* Step 45. */
1980         suspend_mfc(next, spu);                 /* Step 46. */
1981         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1982         issue_mfc_tlbie(next, spu);             /* Step 48. */
1983         clear_interrupts(next, spu);            /* Step 49. */
1984         restore_mfc_queues(next, spu);          /* Step 50. */
1985         restore_ppu_querymask(next, spu);       /* Step 51. */
1986         restore_ppu_querytype(next, spu);       /* Step 52. */
1987         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1988         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
1989         restore_mfc_csr_ato(next, spu);         /* Step 55. */
1990         restore_mfc_tclass_id(next, spu);       /* Step 56. */
1991         set_llr_event(next, spu);               /* Step 57. */
1992         restore_decr_wrapped(next, spu);        /* Step 58. */
1993         restore_ch_part1(next, spu);            /* Step 59. */
1994         restore_ch_part2(next, spu);            /* Step 60. */
1995         restore_spu_lslr(next, spu);            /* Step 61. */
1996         restore_spu_cfg(next, spu);             /* Step 62. */
1997         restore_pm_trace(next, spu);            /* Step 63. */
1998         restore_spu_npc(next, spu);             /* Step 64. */
1999         restore_spu_mb(next, spu);              /* Step 65. */
2000         check_ppu_mb_stat(next, spu);           /* Step 66. */
2001         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2002         restore_mfc_slbs(next, spu);            /* Step 68. */
2003         restore_mfc_sr1(next, spu);             /* Step 69. */
2004         restore_other_spu_access(next, spu);    /* Step 70. */
2005         restore_spu_runcntl(next, spu);         /* Step 71. */
2006         restore_mfc_cntl(next, spu);            /* Step 72. */
2007         enable_user_access(next, spu);          /* Step 73. */
2008         reset_switch_active(next, spu);         /* Step 74. */
2009         reenable_interrupts(next, spu);         /* Step 75. */
2010 }
2011
2012 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2013 {
2014         int rc;
2015
2016         /*
2017          * SPU context save can be broken into three phases:
2018          *
2019          *     (a) quiesce [steps 2-16].
2020          *     (b) save of CSA, performed by PPE [steps 17-42]
2021          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2022          *
2023          * Returns      0 on success.
2024          *              2,6 if failed to quiece SPU
2025          *              53 if SPU-side of save failed.
2026          */
2027
2028         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2029         switch (rc) {
2030         default:
2031         case 2:
2032         case 6:
2033                 harvest(prev, spu);
2034                 return rc;
2035                 break;
2036         case 0:
2037                 break;
2038         }
2039         save_csa(prev, spu);                    /* Steps 17-43. */
2040         save_lscsa(prev, spu);                  /* Steps 44-53. */
2041         return check_save_status(prev, spu);    /* Step 54.     */
2042 }
2043
2044 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2045 {
2046         int rc;
2047
2048         /*
2049          * SPU context restore can be broken into three phases:
2050          *
2051          *    (a) harvest (or reset) SPU [steps 2-24].
2052          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2053          *    (c) restore CSA [steps 41-76], performed by PPE.
2054          *
2055          * The 'harvest' step is not performed here, but rather
2056          * as needed below.
2057          */
2058
2059         restore_lscsa(next, spu);               /* Steps 24-39. */
2060         rc = check_restore_status(next, spu);   /* Step 40.     */
2061         switch (rc) {
2062         default:
2063                 /* Failed. Return now. */
2064                 return rc;
2065                 break;
2066         case 0:
2067                 /* Fall through to next step. */
2068                 break;
2069         }
2070         restore_csa(next, spu);
2071
2072         return 0;
2073 }
2074
2075 /**
2076  * spu_save - SPU context save, with locking.
2077  * @prev: pointer to SPU context save area, to be saved.
2078  * @spu: pointer to SPU iomem structure.
2079  *
2080  * Acquire locks, perform the save operation then return.
2081  */
2082 int spu_save(struct spu_state *prev, struct spu *spu)
2083 {
2084         int rc;
2085
2086         acquire_spu_lock(spu);          /* Step 1.     */
2087         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2088         release_spu_lock(spu);
2089         if (rc) {
2090                 panic("%s failed on SPU[%d], rc=%d.\n",
2091                       __func__, spu->number, rc);
2092         }
2093         return rc;
2094 }
2095 EXPORT_SYMBOL_GPL(spu_save);
2096
2097 /**
2098  * spu_restore - SPU context restore, with harvest and locking.
2099  * @new: pointer to SPU context save area, to be restored.
2100  * @spu: pointer to SPU iomem structure.
2101  *
2102  * Perform harvest + restore, as we may not be coming
2103  * from a previous successful save operation, and the
2104  * hardware state is unknown.
2105  */
2106 int spu_restore(struct spu_state *new, struct spu *spu)
2107 {
2108         int rc;
2109
2110         acquire_spu_lock(spu);
2111         harvest(NULL, spu);
2112         spu->dar = 0;
2113         spu->dsisr = 0;
2114         spu->slb_replace = 0;
2115         spu->class_0_pending = 0;
2116         rc = __do_spu_restore(new, spu);
2117         release_spu_lock(spu);
2118         if (rc) {
2119                 panic("%s failed on SPU[%d] rc=%d.\n",
2120                        __func__, spu->number, rc);
2121         }
2122         return rc;
2123 }
2124 EXPORT_SYMBOL_GPL(spu_restore);
2125
2126 /**
2127  * spu_harvest - SPU harvest (reset) operation
2128  * @spu: pointer to SPU iomem structure.
2129  *
2130  * Perform SPU harvest (reset) operation.
2131  */
2132 void spu_harvest(struct spu *spu)
2133 {
2134         acquire_spu_lock(spu);
2135         harvest(NULL, spu);
2136         release_spu_lock(spu);
2137 }
2138
2139 static void init_prob(struct spu_state *csa)
2140 {
2141         csa->spu_chnlcnt_RW[9] = 1;
2142         csa->spu_chnlcnt_RW[21] = 16;
2143         csa->spu_chnlcnt_RW[23] = 1;
2144         csa->spu_chnlcnt_RW[28] = 1;
2145         csa->spu_chnlcnt_RW[30] = 1;
2146         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2147         csa->prob.mb_stat_R = 0x000400;
2148 }
2149
2150 static void init_priv1(struct spu_state *csa)
2151 {
2152         /* Enable decode, relocate, tlbie response, master runcntl. */
2153         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2154             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2155             MFC_STATE1_PROBLEM_STATE_MASK |
2156             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2157
2158         /* Set storage description.  */
2159         csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2160
2161         /* Enable OS-specific set of interrupts. */
2162         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2163             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2164             CLASS0_ENABLE_SPU_ERROR_INTR;
2165         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2166             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2167         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2168             CLASS2_ENABLE_SPU_HALT_INTR |
2169             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2170 }
2171
2172 static void init_priv2(struct spu_state *csa)
2173 {
2174         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2175         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2176             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2177             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2178 }
2179
2180 /**
2181  * spu_alloc_csa - allocate and initialize an SPU context save area.
2182  *
2183  * Allocate and initialize the contents of an SPU context save area.
2184  * This includes enabling address translation, interrupt masks, etc.,
2185  * as appropriate for the given OS environment.
2186  *
2187  * Note that storage for the 'lscsa' is allocated separately,
2188  * as it is by far the largest of the context save regions,
2189  * and may need to be pinned or otherwise specially aligned.
2190  */
2191 void spu_init_csa(struct spu_state *csa)
2192 {
2193         struct spu_lscsa *lscsa;
2194         unsigned char *p;
2195
2196         if (!csa)
2197                 return;
2198         memset(csa, 0, sizeof(struct spu_state));
2199
2200         lscsa = vmalloc(sizeof(struct spu_lscsa));
2201         if (!lscsa)
2202                 return;
2203
2204         memset(lscsa, 0, sizeof(struct spu_lscsa));
2205         csa->lscsa = lscsa;
2206         csa->register_lock = SPIN_LOCK_UNLOCKED;
2207
2208         /* Set LS pages reserved to allow for user-space mapping. */
2209         for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2210                 SetPageReserved(vmalloc_to_page(p));
2211
2212         init_prob(csa);
2213         init_priv1(csa);
2214         init_priv2(csa);
2215 }
2216 EXPORT_SYMBOL_GPL(spu_init_csa);
2217
2218 void spu_fini_csa(struct spu_state *csa)
2219 {
2220         /* Clear reserved bit before vfree. */
2221         unsigned char *p;
2222         for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2223                 ClearPageReserved(vmalloc_to_page(p));
2224
2225         vfree(csa->lscsa);
2226 }
2227 EXPORT_SYMBOL_GPL(spu_fini_csa);