Merge tag 'powerpc-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2  * SPU file system -- file contents
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  *
6  * Author: Arnd Bergmann <arndb@de.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <linux/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47         int (*get)(void *, u64 *);
48         int (*set)(void *, u64);
49         char get_buf[24];       /* enough to store a u64 and "\n\0" */
50         char set_buf[24];
51         void *data;
52         const char *fmt;        /* format for read operation */
53         struct mutex mutex;     /* protects access to these buffers */
54 };
55
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57                 int (*get)(void *, u64 *), int (*set)(void *, u64),
58                 const char *fmt)
59 {
60         struct spufs_attr *attr;
61
62         attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63         if (!attr)
64                 return -ENOMEM;
65
66         attr->get = get;
67         attr->set = set;
68         attr->data = inode->i_private;
69         attr->fmt = fmt;
70         mutex_init(&attr->mutex);
71         file->private_data = attr;
72
73         return nonseekable_open(inode, file);
74 }
75
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78        kfree(file->private_data);
79         return 0;
80 }
81
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83                 size_t len, loff_t *ppos)
84 {
85         struct spufs_attr *attr;
86         size_t size;
87         ssize_t ret;
88
89         attr = file->private_data;
90         if (!attr->get)
91                 return -EACCES;
92
93         ret = mutex_lock_interruptible(&attr->mutex);
94         if (ret)
95                 return ret;
96
97         if (*ppos) {            /* continued read */
98                 size = strlen(attr->get_buf);
99         } else {                /* first read */
100                 u64 val;
101                 ret = attr->get(attr->data, &val);
102                 if (ret)
103                         goto out;
104
105                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106                                  attr->fmt, (unsigned long long)val);
107         }
108
109         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111         mutex_unlock(&attr->mutex);
112         return ret;
113 }
114
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116                 size_t len, loff_t *ppos)
117 {
118         struct spufs_attr *attr;
119         u64 val;
120         size_t size;
121         ssize_t ret;
122
123         attr = file->private_data;
124         if (!attr->set)
125                 return -EACCES;
126
127         ret = mutex_lock_interruptible(&attr->mutex);
128         if (ret)
129                 return ret;
130
131         ret = -EFAULT;
132         size = min(sizeof(attr->set_buf) - 1, len);
133         if (copy_from_user(attr->set_buf, buf, size))
134                 goto out;
135
136         ret = len; /* claim we got the whole input */
137         attr->set_buf[size] = '\0';
138         val = simple_strtol(attr->set_buf, NULL, 0);
139         attr->set(attr->data, val);
140 out:
141         mutex_unlock(&attr->mutex);
142         return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)      \
146 static int __fops ## _open(struct inode *inode, struct file *file)      \
147 {                                                                       \
148         __simple_attr_check_format(__fmt, 0ull);                        \
149         return spufs_attr_open(inode, file, __get, __set, __fmt);       \
150 }                                                                       \
151 static const struct file_operations __fops = {                          \
152         .open    = __fops ## _open,                                     \
153         .release = spufs_attr_release,                                  \
154         .read    = spufs_attr_read,                                     \
155         .write   = spufs_attr_write,                                    \
156         .llseek  = generic_file_llseek,                                 \
157 };
158
159
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163         struct spufs_inode_info *i = SPUFS_I(inode);
164         struct spu_context *ctx = i->i_ctx;
165
166         mutex_lock(&ctx->mapping_lock);
167         file->private_data = ctx;
168         if (!i->i_openers++)
169                 ctx->local_store = inode->i_mapping;
170         mutex_unlock(&ctx->mapping_lock);
171         return 0;
172 }
173
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177         struct spufs_inode_info *i = SPUFS_I(inode);
178         struct spu_context *ctx = i->i_ctx;
179
180         mutex_lock(&ctx->mapping_lock);
181         if (!--i->i_openers)
182                 ctx->local_store = NULL;
183         mutex_unlock(&ctx->mapping_lock);
184         return 0;
185 }
186
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189                         size_t size, loff_t *pos)
190 {
191         char *local_store = ctx->ops->get_ls(ctx);
192         return simple_read_from_buffer(buffer, size, pos, local_store,
193                                         LS_SIZE);
194 }
195
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198                                 size_t size, loff_t *pos)
199 {
200         struct spu_context *ctx = file->private_data;
201         ssize_t ret;
202
203         ret = spu_acquire(ctx);
204         if (ret)
205                 return ret;
206         ret = __spufs_mem_read(ctx, buffer, size, pos);
207         spu_release(ctx);
208
209         return ret;
210 }
211
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214                                         size_t size, loff_t *ppos)
215 {
216         struct spu_context *ctx = file->private_data;
217         char *local_store;
218         loff_t pos = *ppos;
219         int ret;
220
221         if (pos > LS_SIZE)
222                 return -EFBIG;
223
224         ret = spu_acquire(ctx);
225         if (ret)
226                 return ret;
227
228         local_store = ctx->ops->get_ls(ctx);
229         size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230         spu_release(ctx);
231
232         return size;
233 }
234
235 static int
236 spufs_mem_mmap_fault(struct vm_fault *vmf)
237 {
238         struct vm_area_struct *vma = vmf->vma;
239         struct spu_context *ctx = vma->vm_file->private_data;
240         unsigned long pfn, offset;
241
242         offset = vmf->pgoff << PAGE_SHIFT;
243         if (offset >= LS_SIZE)
244                 return VM_FAULT_SIGBUS;
245
246         pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
247                         vmf->address, offset);
248
249         if (spu_acquire(ctx))
250                 return VM_FAULT_NOPAGE;
251
252         if (ctx->state == SPU_STATE_SAVED) {
253                 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
254                 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
255         } else {
256                 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
257                 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
258         }
259         vm_insert_pfn(vma, vmf->address, pfn);
260
261         spu_release(ctx);
262
263         return VM_FAULT_NOPAGE;
264 }
265
266 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
267                                 unsigned long address,
268                                 void *buf, int len, int write)
269 {
270         struct spu_context *ctx = vma->vm_file->private_data;
271         unsigned long offset = address - vma->vm_start;
272         char *local_store;
273
274         if (write && !(vma->vm_flags & VM_WRITE))
275                 return -EACCES;
276         if (spu_acquire(ctx))
277                 return -EINTR;
278         if ((offset + len) > vma->vm_end)
279                 len = vma->vm_end - offset;
280         local_store = ctx->ops->get_ls(ctx);
281         if (write)
282                 memcpy_toio(local_store + offset, buf, len);
283         else
284                 memcpy_fromio(buf, local_store + offset, len);
285         spu_release(ctx);
286         return len;
287 }
288
289 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
290         .fault = spufs_mem_mmap_fault,
291         .access = spufs_mem_mmap_access,
292 };
293
294 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
295 {
296         if (!(vma->vm_flags & VM_SHARED))
297                 return -EINVAL;
298
299         vma->vm_flags |= VM_IO | VM_PFNMAP;
300         vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
301
302         vma->vm_ops = &spufs_mem_mmap_vmops;
303         return 0;
304 }
305
306 static const struct file_operations spufs_mem_fops = {
307         .open                   = spufs_mem_open,
308         .release                = spufs_mem_release,
309         .read                   = spufs_mem_read,
310         .write                  = spufs_mem_write,
311         .llseek                 = generic_file_llseek,
312         .mmap                   = spufs_mem_mmap,
313 };
314
315 static int spufs_ps_fault(struct vm_fault *vmf,
316                                     unsigned long ps_offs,
317                                     unsigned long ps_size)
318 {
319         struct spu_context *ctx = vmf->vma->vm_file->private_data;
320         unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
321         int ret = 0;
322
323         spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
324
325         if (offset >= ps_size)
326                 return VM_FAULT_SIGBUS;
327
328         if (fatal_signal_pending(current))
329                 return VM_FAULT_SIGBUS;
330
331         /*
332          * Because we release the mmap_sem, the context may be destroyed while
333          * we're in spu_wait. Grab an extra reference so it isn't destroyed
334          * in the meantime.
335          */
336         get_spu_context(ctx);
337
338         /*
339          * We have to wait for context to be loaded before we have
340          * pages to hand out to the user, but we don't want to wait
341          * with the mmap_sem held.
342          * It is possible to drop the mmap_sem here, but then we need
343          * to return VM_FAULT_NOPAGE because the mappings may have
344          * hanged.
345          */
346         if (spu_acquire(ctx))
347                 goto refault;
348
349         if (ctx->state == SPU_STATE_SAVED) {
350                 up_read(&current->mm->mmap_sem);
351                 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
352                 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
353                 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
354                 down_read(&current->mm->mmap_sem);
355         } else {
356                 area = ctx->spu->problem_phys + ps_offs;
357                 vm_insert_pfn(vmf->vma, vmf->address, (area + offset) >> PAGE_SHIFT);
358                 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
359         }
360
361         if (!ret)
362                 spu_release(ctx);
363
364 refault:
365         put_spu_context(ctx);
366         return VM_FAULT_NOPAGE;
367 }
368
369 #if SPUFS_MMAP_4K
370 static int spufs_cntl_mmap_fault(struct vm_fault *vmf)
371 {
372         return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
373 }
374
375 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
376         .fault = spufs_cntl_mmap_fault,
377 };
378
379 /*
380  * mmap support for problem state control area [0x4000 - 0x4fff].
381  */
382 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384         if (!(vma->vm_flags & VM_SHARED))
385                 return -EINVAL;
386
387         vma->vm_flags |= VM_IO | VM_PFNMAP;
388         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
389
390         vma->vm_ops = &spufs_cntl_mmap_vmops;
391         return 0;
392 }
393 #else /* SPUFS_MMAP_4K */
394 #define spufs_cntl_mmap NULL
395 #endif /* !SPUFS_MMAP_4K */
396
397 static int spufs_cntl_get(void *data, u64 *val)
398 {
399         struct spu_context *ctx = data;
400         int ret;
401
402         ret = spu_acquire(ctx);
403         if (ret)
404                 return ret;
405         *val = ctx->ops->status_read(ctx);
406         spu_release(ctx);
407
408         return 0;
409 }
410
411 static int spufs_cntl_set(void *data, u64 val)
412 {
413         struct spu_context *ctx = data;
414         int ret;
415
416         ret = spu_acquire(ctx);
417         if (ret)
418                 return ret;
419         ctx->ops->runcntl_write(ctx, val);
420         spu_release(ctx);
421
422         return 0;
423 }
424
425 static int spufs_cntl_open(struct inode *inode, struct file *file)
426 {
427         struct spufs_inode_info *i = SPUFS_I(inode);
428         struct spu_context *ctx = i->i_ctx;
429
430         mutex_lock(&ctx->mapping_lock);
431         file->private_data = ctx;
432         if (!i->i_openers++)
433                 ctx->cntl = inode->i_mapping;
434         mutex_unlock(&ctx->mapping_lock);
435         return simple_attr_open(inode, file, spufs_cntl_get,
436                                         spufs_cntl_set, "0x%08lx");
437 }
438
439 static int
440 spufs_cntl_release(struct inode *inode, struct file *file)
441 {
442         struct spufs_inode_info *i = SPUFS_I(inode);
443         struct spu_context *ctx = i->i_ctx;
444
445         simple_attr_release(inode, file);
446
447         mutex_lock(&ctx->mapping_lock);
448         if (!--i->i_openers)
449                 ctx->cntl = NULL;
450         mutex_unlock(&ctx->mapping_lock);
451         return 0;
452 }
453
454 static const struct file_operations spufs_cntl_fops = {
455         .open = spufs_cntl_open,
456         .release = spufs_cntl_release,
457         .read = simple_attr_read,
458         .write = simple_attr_write,
459         .llseek = generic_file_llseek,
460         .mmap = spufs_cntl_mmap,
461 };
462
463 static int
464 spufs_regs_open(struct inode *inode, struct file *file)
465 {
466         struct spufs_inode_info *i = SPUFS_I(inode);
467         file->private_data = i->i_ctx;
468         return 0;
469 }
470
471 static ssize_t
472 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
473                         size_t size, loff_t *pos)
474 {
475         struct spu_lscsa *lscsa = ctx->csa.lscsa;
476         return simple_read_from_buffer(buffer, size, pos,
477                                       lscsa->gprs, sizeof lscsa->gprs);
478 }
479
480 static ssize_t
481 spufs_regs_read(struct file *file, char __user *buffer,
482                 size_t size, loff_t *pos)
483 {
484         int ret;
485         struct spu_context *ctx = file->private_data;
486
487         /* pre-check for file position: if we'd return EOF, there's no point
488          * causing a deschedule */
489         if (*pos >= sizeof(ctx->csa.lscsa->gprs))
490                 return 0;
491
492         ret = spu_acquire_saved(ctx);
493         if (ret)
494                 return ret;
495         ret = __spufs_regs_read(ctx, buffer, size, pos);
496         spu_release_saved(ctx);
497         return ret;
498 }
499
500 static ssize_t
501 spufs_regs_write(struct file *file, const char __user *buffer,
502                  size_t size, loff_t *pos)
503 {
504         struct spu_context *ctx = file->private_data;
505         struct spu_lscsa *lscsa = ctx->csa.lscsa;
506         int ret;
507
508         if (*pos >= sizeof(lscsa->gprs))
509                 return -EFBIG;
510
511         ret = spu_acquire_saved(ctx);
512         if (ret)
513                 return ret;
514
515         size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
516                                         buffer, size);
517
518         spu_release_saved(ctx);
519         return size;
520 }
521
522 static const struct file_operations spufs_regs_fops = {
523         .open    = spufs_regs_open,
524         .read    = spufs_regs_read,
525         .write   = spufs_regs_write,
526         .llseek  = generic_file_llseek,
527 };
528
529 static ssize_t
530 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
531                         size_t size, loff_t * pos)
532 {
533         struct spu_lscsa *lscsa = ctx->csa.lscsa;
534         return simple_read_from_buffer(buffer, size, pos,
535                                       &lscsa->fpcr, sizeof(lscsa->fpcr));
536 }
537
538 static ssize_t
539 spufs_fpcr_read(struct file *file, char __user * buffer,
540                 size_t size, loff_t * pos)
541 {
542         int ret;
543         struct spu_context *ctx = file->private_data;
544
545         ret = spu_acquire_saved(ctx);
546         if (ret)
547                 return ret;
548         ret = __spufs_fpcr_read(ctx, buffer, size, pos);
549         spu_release_saved(ctx);
550         return ret;
551 }
552
553 static ssize_t
554 spufs_fpcr_write(struct file *file, const char __user * buffer,
555                  size_t size, loff_t * pos)
556 {
557         struct spu_context *ctx = file->private_data;
558         struct spu_lscsa *lscsa = ctx->csa.lscsa;
559         int ret;
560
561         if (*pos >= sizeof(lscsa->fpcr))
562                 return -EFBIG;
563
564         ret = spu_acquire_saved(ctx);
565         if (ret)
566                 return ret;
567
568         size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
569                                         buffer, size);
570
571         spu_release_saved(ctx);
572         return size;
573 }
574
575 static const struct file_operations spufs_fpcr_fops = {
576         .open = spufs_regs_open,
577         .read = spufs_fpcr_read,
578         .write = spufs_fpcr_write,
579         .llseek = generic_file_llseek,
580 };
581
582 /* generic open function for all pipe-like files */
583 static int spufs_pipe_open(struct inode *inode, struct file *file)
584 {
585         struct spufs_inode_info *i = SPUFS_I(inode);
586         file->private_data = i->i_ctx;
587
588         return nonseekable_open(inode, file);
589 }
590
591 /*
592  * Read as many bytes from the mailbox as possible, until
593  * one of the conditions becomes true:
594  *
595  * - no more data available in the mailbox
596  * - end of the user provided buffer
597  * - end of the mapped area
598  */
599 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
600                         size_t len, loff_t *pos)
601 {
602         struct spu_context *ctx = file->private_data;
603         u32 mbox_data, __user *udata;
604         ssize_t count;
605
606         if (len < 4)
607                 return -EINVAL;
608
609         if (!access_ok(VERIFY_WRITE, buf, len))
610                 return -EFAULT;
611
612         udata = (void __user *)buf;
613
614         count = spu_acquire(ctx);
615         if (count)
616                 return count;
617
618         for (count = 0; (count + 4) <= len; count += 4, udata++) {
619                 int ret;
620                 ret = ctx->ops->mbox_read(ctx, &mbox_data);
621                 if (ret == 0)
622                         break;
623
624                 /*
625                  * at the end of the mapped area, we can fault
626                  * but still need to return the data we have
627                  * read successfully so far.
628                  */
629                 ret = __put_user(mbox_data, udata);
630                 if (ret) {
631                         if (!count)
632                                 count = -EFAULT;
633                         break;
634                 }
635         }
636         spu_release(ctx);
637
638         if (!count)
639                 count = -EAGAIN;
640
641         return count;
642 }
643
644 static const struct file_operations spufs_mbox_fops = {
645         .open   = spufs_pipe_open,
646         .read   = spufs_mbox_read,
647         .llseek = no_llseek,
648 };
649
650 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
651                         size_t len, loff_t *pos)
652 {
653         struct spu_context *ctx = file->private_data;
654         ssize_t ret;
655         u32 mbox_stat;
656
657         if (len < 4)
658                 return -EINVAL;
659
660         ret = spu_acquire(ctx);
661         if (ret)
662                 return ret;
663
664         mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
665
666         spu_release(ctx);
667
668         if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
669                 return -EFAULT;
670
671         return 4;
672 }
673
674 static const struct file_operations spufs_mbox_stat_fops = {
675         .open   = spufs_pipe_open,
676         .read   = spufs_mbox_stat_read,
677         .llseek = no_llseek,
678 };
679
680 /* low-level ibox access function */
681 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
682 {
683         return ctx->ops->ibox_read(ctx, data);
684 }
685
686 /* interrupt-level ibox callback function. */
687 void spufs_ibox_callback(struct spu *spu)
688 {
689         struct spu_context *ctx = spu->ctx;
690
691         if (ctx)
692                 wake_up_all(&ctx->ibox_wq);
693 }
694
695 /*
696  * Read as many bytes from the interrupt mailbox as possible, until
697  * one of the conditions becomes true:
698  *
699  * - no more data available in the mailbox
700  * - end of the user provided buffer
701  * - end of the mapped area
702  *
703  * If the file is opened without O_NONBLOCK, we wait here until
704  * any data is available, but return when we have been able to
705  * read something.
706  */
707 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
708                         size_t len, loff_t *pos)
709 {
710         struct spu_context *ctx = file->private_data;
711         u32 ibox_data, __user *udata;
712         ssize_t count;
713
714         if (len < 4)
715                 return -EINVAL;
716
717         if (!access_ok(VERIFY_WRITE, buf, len))
718                 return -EFAULT;
719
720         udata = (void __user *)buf;
721
722         count = spu_acquire(ctx);
723         if (count)
724                 goto out;
725
726         /* wait only for the first element */
727         count = 0;
728         if (file->f_flags & O_NONBLOCK) {
729                 if (!spu_ibox_read(ctx, &ibox_data)) {
730                         count = -EAGAIN;
731                         goto out_unlock;
732                 }
733         } else {
734                 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
735                 if (count)
736                         goto out;
737         }
738
739         /* if we can't write at all, return -EFAULT */
740         count = __put_user(ibox_data, udata);
741         if (count)
742                 goto out_unlock;
743
744         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
745                 int ret;
746                 ret = ctx->ops->ibox_read(ctx, &ibox_data);
747                 if (ret == 0)
748                         break;
749                 /*
750                  * at the end of the mapped area, we can fault
751                  * but still need to return the data we have
752                  * read successfully so far.
753                  */
754                 ret = __put_user(ibox_data, udata);
755                 if (ret)
756                         break;
757         }
758
759 out_unlock:
760         spu_release(ctx);
761 out:
762         return count;
763 }
764
765 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
766 {
767         struct spu_context *ctx = file->private_data;
768         __poll_t mask;
769
770         poll_wait(file, &ctx->ibox_wq, wait);
771
772         /*
773          * For now keep this uninterruptible and also ignore the rule
774          * that poll should not sleep.  Will be fixed later.
775          */
776         mutex_lock(&ctx->state_mutex);
777         mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
778         spu_release(ctx);
779
780         return mask;
781 }
782
783 static const struct file_operations spufs_ibox_fops = {
784         .open   = spufs_pipe_open,
785         .read   = spufs_ibox_read,
786         .poll   = spufs_ibox_poll,
787         .llseek = no_llseek,
788 };
789
790 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
791                         size_t len, loff_t *pos)
792 {
793         struct spu_context *ctx = file->private_data;
794         ssize_t ret;
795         u32 ibox_stat;
796
797         if (len < 4)
798                 return -EINVAL;
799
800         ret = spu_acquire(ctx);
801         if (ret)
802                 return ret;
803         ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
804         spu_release(ctx);
805
806         if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
807                 return -EFAULT;
808
809         return 4;
810 }
811
812 static const struct file_operations spufs_ibox_stat_fops = {
813         .open   = spufs_pipe_open,
814         .read   = spufs_ibox_stat_read,
815         .llseek = no_llseek,
816 };
817
818 /* low-level mailbox write */
819 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
820 {
821         return ctx->ops->wbox_write(ctx, data);
822 }
823
824 /* interrupt-level wbox callback function. */
825 void spufs_wbox_callback(struct spu *spu)
826 {
827         struct spu_context *ctx = spu->ctx;
828
829         if (ctx)
830                 wake_up_all(&ctx->wbox_wq);
831 }
832
833 /*
834  * Write as many bytes to the interrupt mailbox as possible, until
835  * one of the conditions becomes true:
836  *
837  * - the mailbox is full
838  * - end of the user provided buffer
839  * - end of the mapped area
840  *
841  * If the file is opened without O_NONBLOCK, we wait here until
842  * space is available, but return when we have been able to
843  * write something.
844  */
845 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
846                         size_t len, loff_t *pos)
847 {
848         struct spu_context *ctx = file->private_data;
849         u32 wbox_data, __user *udata;
850         ssize_t count;
851
852         if (len < 4)
853                 return -EINVAL;
854
855         udata = (void __user *)buf;
856         if (!access_ok(VERIFY_READ, buf, len))
857                 return -EFAULT;
858
859         if (__get_user(wbox_data, udata))
860                 return -EFAULT;
861
862         count = spu_acquire(ctx);
863         if (count)
864                 goto out;
865
866         /*
867          * make sure we can at least write one element, by waiting
868          * in case of !O_NONBLOCK
869          */
870         count = 0;
871         if (file->f_flags & O_NONBLOCK) {
872                 if (!spu_wbox_write(ctx, wbox_data)) {
873                         count = -EAGAIN;
874                         goto out_unlock;
875                 }
876         } else {
877                 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
878                 if (count)
879                         goto out;
880         }
881
882
883         /* write as much as possible */
884         for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
885                 int ret;
886                 ret = __get_user(wbox_data, udata);
887                 if (ret)
888                         break;
889
890                 ret = spu_wbox_write(ctx, wbox_data);
891                 if (ret == 0)
892                         break;
893         }
894
895 out_unlock:
896         spu_release(ctx);
897 out:
898         return count;
899 }
900
901 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
902 {
903         struct spu_context *ctx = file->private_data;
904         __poll_t mask;
905
906         poll_wait(file, &ctx->wbox_wq, wait);
907
908         /*
909          * For now keep this uninterruptible and also ignore the rule
910          * that poll should not sleep.  Will be fixed later.
911          */
912         mutex_lock(&ctx->state_mutex);
913         mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
914         spu_release(ctx);
915
916         return mask;
917 }
918
919 static const struct file_operations spufs_wbox_fops = {
920         .open   = spufs_pipe_open,
921         .write  = spufs_wbox_write,
922         .poll   = spufs_wbox_poll,
923         .llseek = no_llseek,
924 };
925
926 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
927                         size_t len, loff_t *pos)
928 {
929         struct spu_context *ctx = file->private_data;
930         ssize_t ret;
931         u32 wbox_stat;
932
933         if (len < 4)
934                 return -EINVAL;
935
936         ret = spu_acquire(ctx);
937         if (ret)
938                 return ret;
939         wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
940         spu_release(ctx);
941
942         if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
943                 return -EFAULT;
944
945         return 4;
946 }
947
948 static const struct file_operations spufs_wbox_stat_fops = {
949         .open   = spufs_pipe_open,
950         .read   = spufs_wbox_stat_read,
951         .llseek = no_llseek,
952 };
953
954 static int spufs_signal1_open(struct inode *inode, struct file *file)
955 {
956         struct spufs_inode_info *i = SPUFS_I(inode);
957         struct spu_context *ctx = i->i_ctx;
958
959         mutex_lock(&ctx->mapping_lock);
960         file->private_data = ctx;
961         if (!i->i_openers++)
962                 ctx->signal1 = inode->i_mapping;
963         mutex_unlock(&ctx->mapping_lock);
964         return nonseekable_open(inode, file);
965 }
966
967 static int
968 spufs_signal1_release(struct inode *inode, struct file *file)
969 {
970         struct spufs_inode_info *i = SPUFS_I(inode);
971         struct spu_context *ctx = i->i_ctx;
972
973         mutex_lock(&ctx->mapping_lock);
974         if (!--i->i_openers)
975                 ctx->signal1 = NULL;
976         mutex_unlock(&ctx->mapping_lock);
977         return 0;
978 }
979
980 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
981                         size_t len, loff_t *pos)
982 {
983         int ret = 0;
984         u32 data;
985
986         if (len < 4)
987                 return -EINVAL;
988
989         if (ctx->csa.spu_chnlcnt_RW[3]) {
990                 data = ctx->csa.spu_chnldata_RW[3];
991                 ret = 4;
992         }
993
994         if (!ret)
995                 goto out;
996
997         if (copy_to_user(buf, &data, 4))
998                 return -EFAULT;
999
1000 out:
1001         return ret;
1002 }
1003
1004 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1005                         size_t len, loff_t *pos)
1006 {
1007         int ret;
1008         struct spu_context *ctx = file->private_data;
1009
1010         ret = spu_acquire_saved(ctx);
1011         if (ret)
1012                 return ret;
1013         ret = __spufs_signal1_read(ctx, buf, len, pos);
1014         spu_release_saved(ctx);
1015
1016         return ret;
1017 }
1018
1019 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1020                         size_t len, loff_t *pos)
1021 {
1022         struct spu_context *ctx;
1023         ssize_t ret;
1024         u32 data;
1025
1026         ctx = file->private_data;
1027
1028         if (len < 4)
1029                 return -EINVAL;
1030
1031         if (copy_from_user(&data, buf, 4))
1032                 return -EFAULT;
1033
1034         ret = spu_acquire(ctx);
1035         if (ret)
1036                 return ret;
1037         ctx->ops->signal1_write(ctx, data);
1038         spu_release(ctx);
1039
1040         return 4;
1041 }
1042
1043 static int
1044 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1045 {
1046 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1047         return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1048 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1049         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1050          * signal 1 and 2 area
1051          */
1052         return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1053 #else
1054 #error unsupported page size
1055 #endif
1056 }
1057
1058 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1059         .fault = spufs_signal1_mmap_fault,
1060 };
1061
1062 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1063 {
1064         if (!(vma->vm_flags & VM_SHARED))
1065                 return -EINVAL;
1066
1067         vma->vm_flags |= VM_IO | VM_PFNMAP;
1068         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1069
1070         vma->vm_ops = &spufs_signal1_mmap_vmops;
1071         return 0;
1072 }
1073
1074 static const struct file_operations spufs_signal1_fops = {
1075         .open = spufs_signal1_open,
1076         .release = spufs_signal1_release,
1077         .read = spufs_signal1_read,
1078         .write = spufs_signal1_write,
1079         .mmap = spufs_signal1_mmap,
1080         .llseek = no_llseek,
1081 };
1082
1083 static const struct file_operations spufs_signal1_nosched_fops = {
1084         .open = spufs_signal1_open,
1085         .release = spufs_signal1_release,
1086         .write = spufs_signal1_write,
1087         .mmap = spufs_signal1_mmap,
1088         .llseek = no_llseek,
1089 };
1090
1091 static int spufs_signal2_open(struct inode *inode, struct file *file)
1092 {
1093         struct spufs_inode_info *i = SPUFS_I(inode);
1094         struct spu_context *ctx = i->i_ctx;
1095
1096         mutex_lock(&ctx->mapping_lock);
1097         file->private_data = ctx;
1098         if (!i->i_openers++)
1099                 ctx->signal2 = inode->i_mapping;
1100         mutex_unlock(&ctx->mapping_lock);
1101         return nonseekable_open(inode, file);
1102 }
1103
1104 static int
1105 spufs_signal2_release(struct inode *inode, struct file *file)
1106 {
1107         struct spufs_inode_info *i = SPUFS_I(inode);
1108         struct spu_context *ctx = i->i_ctx;
1109
1110         mutex_lock(&ctx->mapping_lock);
1111         if (!--i->i_openers)
1112                 ctx->signal2 = NULL;
1113         mutex_unlock(&ctx->mapping_lock);
1114         return 0;
1115 }
1116
1117 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1118                         size_t len, loff_t *pos)
1119 {
1120         int ret = 0;
1121         u32 data;
1122
1123         if (len < 4)
1124                 return -EINVAL;
1125
1126         if (ctx->csa.spu_chnlcnt_RW[4]) {
1127                 data =  ctx->csa.spu_chnldata_RW[4];
1128                 ret = 4;
1129         }
1130
1131         if (!ret)
1132                 goto out;
1133
1134         if (copy_to_user(buf, &data, 4))
1135                 return -EFAULT;
1136
1137 out:
1138         return ret;
1139 }
1140
1141 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1142                         size_t len, loff_t *pos)
1143 {
1144         struct spu_context *ctx = file->private_data;
1145         int ret;
1146
1147         ret = spu_acquire_saved(ctx);
1148         if (ret)
1149                 return ret;
1150         ret = __spufs_signal2_read(ctx, buf, len, pos);
1151         spu_release_saved(ctx);
1152
1153         return ret;
1154 }
1155
1156 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1157                         size_t len, loff_t *pos)
1158 {
1159         struct spu_context *ctx;
1160         ssize_t ret;
1161         u32 data;
1162
1163         ctx = file->private_data;
1164
1165         if (len < 4)
1166                 return -EINVAL;
1167
1168         if (copy_from_user(&data, buf, 4))
1169                 return -EFAULT;
1170
1171         ret = spu_acquire(ctx);
1172         if (ret)
1173                 return ret;
1174         ctx->ops->signal2_write(ctx, data);
1175         spu_release(ctx);
1176
1177         return 4;
1178 }
1179
1180 #if SPUFS_MMAP_4K
1181 static int
1182 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1183 {
1184 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1185         return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1186 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1187         /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1188          * signal 1 and 2 area
1189          */
1190         return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1191 #else
1192 #error unsupported page size
1193 #endif
1194 }
1195
1196 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1197         .fault = spufs_signal2_mmap_fault,
1198 };
1199
1200 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1201 {
1202         if (!(vma->vm_flags & VM_SHARED))
1203                 return -EINVAL;
1204
1205         vma->vm_flags |= VM_IO | VM_PFNMAP;
1206         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1207
1208         vma->vm_ops = &spufs_signal2_mmap_vmops;
1209         return 0;
1210 }
1211 #else /* SPUFS_MMAP_4K */
1212 #define spufs_signal2_mmap NULL
1213 #endif /* !SPUFS_MMAP_4K */
1214
1215 static const struct file_operations spufs_signal2_fops = {
1216         .open = spufs_signal2_open,
1217         .release = spufs_signal2_release,
1218         .read = spufs_signal2_read,
1219         .write = spufs_signal2_write,
1220         .mmap = spufs_signal2_mmap,
1221         .llseek = no_llseek,
1222 };
1223
1224 static const struct file_operations spufs_signal2_nosched_fops = {
1225         .open = spufs_signal2_open,
1226         .release = spufs_signal2_release,
1227         .write = spufs_signal2_write,
1228         .mmap = spufs_signal2_mmap,
1229         .llseek = no_llseek,
1230 };
1231
1232 /*
1233  * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1234  * work of acquiring (or not) the SPU context before calling through
1235  * to the actual get routine. The set routine is called directly.
1236  */
1237 #define SPU_ATTR_NOACQUIRE      0
1238 #define SPU_ATTR_ACQUIRE        1
1239 #define SPU_ATTR_ACQUIRE_SAVED  2
1240
1241 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)  \
1242 static int __##__get(void *data, u64 *val)                              \
1243 {                                                                       \
1244         struct spu_context *ctx = data;                                 \
1245         int ret = 0;                                                    \
1246                                                                         \
1247         if (__acquire == SPU_ATTR_ACQUIRE) {                            \
1248                 ret = spu_acquire(ctx);                                 \
1249                 if (ret)                                                \
1250                         return ret;                                     \
1251                 *val = __get(ctx);                                      \
1252                 spu_release(ctx);                                       \
1253         } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) {               \
1254                 ret = spu_acquire_saved(ctx);                           \
1255                 if (ret)                                                \
1256                         return ret;                                     \
1257                 *val = __get(ctx);                                      \
1258                 spu_release_saved(ctx);                                 \
1259         } else                                                          \
1260                 *val = __get(ctx);                                      \
1261                                                                         \
1262         return 0;                                                       \
1263 }                                                                       \
1264 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1265
1266 static int spufs_signal1_type_set(void *data, u64 val)
1267 {
1268         struct spu_context *ctx = data;
1269         int ret;
1270
1271         ret = spu_acquire(ctx);
1272         if (ret)
1273                 return ret;
1274         ctx->ops->signal1_type_set(ctx, val);
1275         spu_release(ctx);
1276
1277         return 0;
1278 }
1279
1280 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1281 {
1282         return ctx->ops->signal1_type_get(ctx);
1283 }
1284 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1285                        spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1286
1287
1288 static int spufs_signal2_type_set(void *data, u64 val)
1289 {
1290         struct spu_context *ctx = data;
1291         int ret;
1292
1293         ret = spu_acquire(ctx);
1294         if (ret)
1295                 return ret;
1296         ctx->ops->signal2_type_set(ctx, val);
1297         spu_release(ctx);
1298
1299         return 0;
1300 }
1301
1302 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1303 {
1304         return ctx->ops->signal2_type_get(ctx);
1305 }
1306 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1307                        spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1308
1309 #if SPUFS_MMAP_4K
1310 static int
1311 spufs_mss_mmap_fault(struct vm_fault *vmf)
1312 {
1313         return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1314 }
1315
1316 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1317         .fault = spufs_mss_mmap_fault,
1318 };
1319
1320 /*
1321  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1322  */
1323 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1324 {
1325         if (!(vma->vm_flags & VM_SHARED))
1326                 return -EINVAL;
1327
1328         vma->vm_flags |= VM_IO | VM_PFNMAP;
1329         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1330
1331         vma->vm_ops = &spufs_mss_mmap_vmops;
1332         return 0;
1333 }
1334 #else /* SPUFS_MMAP_4K */
1335 #define spufs_mss_mmap NULL
1336 #endif /* !SPUFS_MMAP_4K */
1337
1338 static int spufs_mss_open(struct inode *inode, struct file *file)
1339 {
1340         struct spufs_inode_info *i = SPUFS_I(inode);
1341         struct spu_context *ctx = i->i_ctx;
1342
1343         file->private_data = i->i_ctx;
1344
1345         mutex_lock(&ctx->mapping_lock);
1346         if (!i->i_openers++)
1347                 ctx->mss = inode->i_mapping;
1348         mutex_unlock(&ctx->mapping_lock);
1349         return nonseekable_open(inode, file);
1350 }
1351
1352 static int
1353 spufs_mss_release(struct inode *inode, struct file *file)
1354 {
1355         struct spufs_inode_info *i = SPUFS_I(inode);
1356         struct spu_context *ctx = i->i_ctx;
1357
1358         mutex_lock(&ctx->mapping_lock);
1359         if (!--i->i_openers)
1360                 ctx->mss = NULL;
1361         mutex_unlock(&ctx->mapping_lock);
1362         return 0;
1363 }
1364
1365 static const struct file_operations spufs_mss_fops = {
1366         .open    = spufs_mss_open,
1367         .release = spufs_mss_release,
1368         .mmap    = spufs_mss_mmap,
1369         .llseek  = no_llseek,
1370 };
1371
1372 static int
1373 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1374 {
1375         return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1376 }
1377
1378 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1379         .fault = spufs_psmap_mmap_fault,
1380 };
1381
1382 /*
1383  * mmap support for full problem state area [0x00000 - 0x1ffff].
1384  */
1385 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1386 {
1387         if (!(vma->vm_flags & VM_SHARED))
1388                 return -EINVAL;
1389
1390         vma->vm_flags |= VM_IO | VM_PFNMAP;
1391         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1392
1393         vma->vm_ops = &spufs_psmap_mmap_vmops;
1394         return 0;
1395 }
1396
1397 static int spufs_psmap_open(struct inode *inode, struct file *file)
1398 {
1399         struct spufs_inode_info *i = SPUFS_I(inode);
1400         struct spu_context *ctx = i->i_ctx;
1401
1402         mutex_lock(&ctx->mapping_lock);
1403         file->private_data = i->i_ctx;
1404         if (!i->i_openers++)
1405                 ctx->psmap = inode->i_mapping;
1406         mutex_unlock(&ctx->mapping_lock);
1407         return nonseekable_open(inode, file);
1408 }
1409
1410 static int
1411 spufs_psmap_release(struct inode *inode, struct file *file)
1412 {
1413         struct spufs_inode_info *i = SPUFS_I(inode);
1414         struct spu_context *ctx = i->i_ctx;
1415
1416         mutex_lock(&ctx->mapping_lock);
1417         if (!--i->i_openers)
1418                 ctx->psmap = NULL;
1419         mutex_unlock(&ctx->mapping_lock);
1420         return 0;
1421 }
1422
1423 static const struct file_operations spufs_psmap_fops = {
1424         .open    = spufs_psmap_open,
1425         .release = spufs_psmap_release,
1426         .mmap    = spufs_psmap_mmap,
1427         .llseek  = no_llseek,
1428 };
1429
1430
1431 #if SPUFS_MMAP_4K
1432 static int
1433 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1434 {
1435         return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1436 }
1437
1438 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1439         .fault = spufs_mfc_mmap_fault,
1440 };
1441
1442 /*
1443  * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1444  */
1445 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1446 {
1447         if (!(vma->vm_flags & VM_SHARED))
1448                 return -EINVAL;
1449
1450         vma->vm_flags |= VM_IO | VM_PFNMAP;
1451         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1452
1453         vma->vm_ops = &spufs_mfc_mmap_vmops;
1454         return 0;
1455 }
1456 #else /* SPUFS_MMAP_4K */
1457 #define spufs_mfc_mmap NULL
1458 #endif /* !SPUFS_MMAP_4K */
1459
1460 static int spufs_mfc_open(struct inode *inode, struct file *file)
1461 {
1462         struct spufs_inode_info *i = SPUFS_I(inode);
1463         struct spu_context *ctx = i->i_ctx;
1464
1465         /* we don't want to deal with DMA into other processes */
1466         if (ctx->owner != current->mm)
1467                 return -EINVAL;
1468
1469         if (atomic_read(&inode->i_count) != 1)
1470                 return -EBUSY;
1471
1472         mutex_lock(&ctx->mapping_lock);
1473         file->private_data = ctx;
1474         if (!i->i_openers++)
1475                 ctx->mfc = inode->i_mapping;
1476         mutex_unlock(&ctx->mapping_lock);
1477         return nonseekable_open(inode, file);
1478 }
1479
1480 static int
1481 spufs_mfc_release(struct inode *inode, struct file *file)
1482 {
1483         struct spufs_inode_info *i = SPUFS_I(inode);
1484         struct spu_context *ctx = i->i_ctx;
1485
1486         mutex_lock(&ctx->mapping_lock);
1487         if (!--i->i_openers)
1488                 ctx->mfc = NULL;
1489         mutex_unlock(&ctx->mapping_lock);
1490         return 0;
1491 }
1492
1493 /* interrupt-level mfc callback function. */
1494 void spufs_mfc_callback(struct spu *spu)
1495 {
1496         struct spu_context *ctx = spu->ctx;
1497
1498         if (ctx)
1499                 wake_up_all(&ctx->mfc_wq);
1500 }
1501
1502 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1503 {
1504         /* See if there is one tag group is complete */
1505         /* FIXME we need locking around tagwait */
1506         *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1507         ctx->tagwait &= ~*status;
1508         if (*status)
1509                 return 1;
1510
1511         /* enable interrupt waiting for any tag group,
1512            may silently fail if interrupts are already enabled */
1513         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1514         return 0;
1515 }
1516
1517 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1518                         size_t size, loff_t *pos)
1519 {
1520         struct spu_context *ctx = file->private_data;
1521         int ret = -EINVAL;
1522         u32 status;
1523
1524         if (size != 4)
1525                 goto out;
1526
1527         ret = spu_acquire(ctx);
1528         if (ret)
1529                 return ret;
1530
1531         ret = -EINVAL;
1532         if (file->f_flags & O_NONBLOCK) {
1533                 status = ctx->ops->read_mfc_tagstatus(ctx);
1534                 if (!(status & ctx->tagwait))
1535                         ret = -EAGAIN;
1536                 else
1537                         /* XXX(hch): shouldn't we clear ret here? */
1538                         ctx->tagwait &= ~status;
1539         } else {
1540                 ret = spufs_wait(ctx->mfc_wq,
1541                            spufs_read_mfc_tagstatus(ctx, &status));
1542                 if (ret)
1543                         goto out;
1544         }
1545         spu_release(ctx);
1546
1547         ret = 4;
1548         if (copy_to_user(buffer, &status, 4))
1549                 ret = -EFAULT;
1550
1551 out:
1552         return ret;
1553 }
1554
1555 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1556 {
1557         pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1558                  cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1559
1560         switch (cmd->cmd) {
1561         case MFC_PUT_CMD:
1562         case MFC_PUTF_CMD:
1563         case MFC_PUTB_CMD:
1564         case MFC_GET_CMD:
1565         case MFC_GETF_CMD:
1566         case MFC_GETB_CMD:
1567                 break;
1568         default:
1569                 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1570                 return -EIO;
1571         }
1572
1573         if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1574                 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1575                                 cmd->ea, cmd->lsa);
1576                 return -EIO;
1577         }
1578
1579         switch (cmd->size & 0xf) {
1580         case 1:
1581                 break;
1582         case 2:
1583                 if (cmd->lsa & 1)
1584                         goto error;
1585                 break;
1586         case 4:
1587                 if (cmd->lsa & 3)
1588                         goto error;
1589                 break;
1590         case 8:
1591                 if (cmd->lsa & 7)
1592                         goto error;
1593                 break;
1594         case 0:
1595                 if (cmd->lsa & 15)
1596                         goto error;
1597                 break;
1598         error:
1599         default:
1600                 pr_debug("invalid DMA alignment %x for size %x\n",
1601                         cmd->lsa & 0xf, cmd->size);
1602                 return -EIO;
1603         }
1604
1605         if (cmd->size > 16 * 1024) {
1606                 pr_debug("invalid DMA size %x\n", cmd->size);
1607                 return -EIO;
1608         }
1609
1610         if (cmd->tag & 0xfff0) {
1611                 /* we reserve the higher tag numbers for kernel use */
1612                 pr_debug("invalid DMA tag\n");
1613                 return -EIO;
1614         }
1615
1616         if (cmd->class) {
1617                 /* not supported in this version */
1618                 pr_debug("invalid DMA class\n");
1619                 return -EIO;
1620         }
1621
1622         return 0;
1623 }
1624
1625 static int spu_send_mfc_command(struct spu_context *ctx,
1626                                 struct mfc_dma_command cmd,
1627                                 int *error)
1628 {
1629         *error = ctx->ops->send_mfc_command(ctx, &cmd);
1630         if (*error == -EAGAIN) {
1631                 /* wait for any tag group to complete
1632                    so we have space for the new command */
1633                 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1634                 /* try again, because the queue might be
1635                    empty again */
1636                 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1637                 if (*error == -EAGAIN)
1638                         return 0;
1639         }
1640         return 1;
1641 }
1642
1643 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1644                         size_t size, loff_t *pos)
1645 {
1646         struct spu_context *ctx = file->private_data;
1647         struct mfc_dma_command cmd;
1648         int ret = -EINVAL;
1649
1650         if (size != sizeof cmd)
1651                 goto out;
1652
1653         ret = -EFAULT;
1654         if (copy_from_user(&cmd, buffer, sizeof cmd))
1655                 goto out;
1656
1657         ret = spufs_check_valid_dma(&cmd);
1658         if (ret)
1659                 goto out;
1660
1661         ret = spu_acquire(ctx);
1662         if (ret)
1663                 goto out;
1664
1665         ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1666         if (ret)
1667                 goto out;
1668
1669         if (file->f_flags & O_NONBLOCK) {
1670                 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1671         } else {
1672                 int status;
1673                 ret = spufs_wait(ctx->mfc_wq,
1674                                  spu_send_mfc_command(ctx, cmd, &status));
1675                 if (ret)
1676                         goto out;
1677                 if (status)
1678                         ret = status;
1679         }
1680
1681         if (ret)
1682                 goto out_unlock;
1683
1684         ctx->tagwait |= 1 << cmd.tag;
1685         ret = size;
1686
1687 out_unlock:
1688         spu_release(ctx);
1689 out:
1690         return ret;
1691 }
1692
1693 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1694 {
1695         struct spu_context *ctx = file->private_data;
1696         u32 free_elements, tagstatus;
1697         __poll_t mask;
1698
1699         poll_wait(file, &ctx->mfc_wq, wait);
1700
1701         /*
1702          * For now keep this uninterruptible and also ignore the rule
1703          * that poll should not sleep.  Will be fixed later.
1704          */
1705         mutex_lock(&ctx->state_mutex);
1706         ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1707         free_elements = ctx->ops->get_mfc_free_elements(ctx);
1708         tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1709         spu_release(ctx);
1710
1711         mask = 0;
1712         if (free_elements & 0xffff)
1713                 mask |= EPOLLOUT | EPOLLWRNORM;
1714         if (tagstatus & ctx->tagwait)
1715                 mask |= EPOLLIN | EPOLLRDNORM;
1716
1717         pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1718                 free_elements, tagstatus, ctx->tagwait);
1719
1720         return mask;
1721 }
1722
1723 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1724 {
1725         struct spu_context *ctx = file->private_data;
1726         int ret;
1727
1728         ret = spu_acquire(ctx);
1729         if (ret)
1730                 goto out;
1731 #if 0
1732 /* this currently hangs */
1733         ret = spufs_wait(ctx->mfc_wq,
1734                          ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1735         if (ret)
1736                 goto out;
1737         ret = spufs_wait(ctx->mfc_wq,
1738                          ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1739         if (ret)
1740                 goto out;
1741 #else
1742         ret = 0;
1743 #endif
1744         spu_release(ctx);
1745 out:
1746         return ret;
1747 }
1748
1749 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1750 {
1751         struct inode *inode = file_inode(file);
1752         int err = file_write_and_wait_range(file, start, end);
1753         if (!err) {
1754                 inode_lock(inode);
1755                 err = spufs_mfc_flush(file, NULL);
1756                 inode_unlock(inode);
1757         }
1758         return err;
1759 }
1760
1761 static const struct file_operations spufs_mfc_fops = {
1762         .open    = spufs_mfc_open,
1763         .release = spufs_mfc_release,
1764         .read    = spufs_mfc_read,
1765         .write   = spufs_mfc_write,
1766         .poll    = spufs_mfc_poll,
1767         .flush   = spufs_mfc_flush,
1768         .fsync   = spufs_mfc_fsync,
1769         .mmap    = spufs_mfc_mmap,
1770         .llseek  = no_llseek,
1771 };
1772
1773 static int spufs_npc_set(void *data, u64 val)
1774 {
1775         struct spu_context *ctx = data;
1776         int ret;
1777
1778         ret = spu_acquire(ctx);
1779         if (ret)
1780                 return ret;
1781         ctx->ops->npc_write(ctx, val);
1782         spu_release(ctx);
1783
1784         return 0;
1785 }
1786
1787 static u64 spufs_npc_get(struct spu_context *ctx)
1788 {
1789         return ctx->ops->npc_read(ctx);
1790 }
1791 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1792                        "0x%llx\n", SPU_ATTR_ACQUIRE);
1793
1794 static int spufs_decr_set(void *data, u64 val)
1795 {
1796         struct spu_context *ctx = data;
1797         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1798         int ret;
1799
1800         ret = spu_acquire_saved(ctx);
1801         if (ret)
1802                 return ret;
1803         lscsa->decr.slot[0] = (u32) val;
1804         spu_release_saved(ctx);
1805
1806         return 0;
1807 }
1808
1809 static u64 spufs_decr_get(struct spu_context *ctx)
1810 {
1811         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1812         return lscsa->decr.slot[0];
1813 }
1814 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1815                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1816
1817 static int spufs_decr_status_set(void *data, u64 val)
1818 {
1819         struct spu_context *ctx = data;
1820         int ret;
1821
1822         ret = spu_acquire_saved(ctx);
1823         if (ret)
1824                 return ret;
1825         if (val)
1826                 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1827         else
1828                 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1829         spu_release_saved(ctx);
1830
1831         return 0;
1832 }
1833
1834 static u64 spufs_decr_status_get(struct spu_context *ctx)
1835 {
1836         if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1837                 return SPU_DECR_STATUS_RUNNING;
1838         else
1839                 return 0;
1840 }
1841 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1842                        spufs_decr_status_set, "0x%llx\n",
1843                        SPU_ATTR_ACQUIRE_SAVED);
1844
1845 static int spufs_event_mask_set(void *data, u64 val)
1846 {
1847         struct spu_context *ctx = data;
1848         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1849         int ret;
1850
1851         ret = spu_acquire_saved(ctx);
1852         if (ret)
1853                 return ret;
1854         lscsa->event_mask.slot[0] = (u32) val;
1855         spu_release_saved(ctx);
1856
1857         return 0;
1858 }
1859
1860 static u64 spufs_event_mask_get(struct spu_context *ctx)
1861 {
1862         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1863         return lscsa->event_mask.slot[0];
1864 }
1865
1866 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1867                        spufs_event_mask_set, "0x%llx\n",
1868                        SPU_ATTR_ACQUIRE_SAVED);
1869
1870 static u64 spufs_event_status_get(struct spu_context *ctx)
1871 {
1872         struct spu_state *state = &ctx->csa;
1873         u64 stat;
1874         stat = state->spu_chnlcnt_RW[0];
1875         if (stat)
1876                 return state->spu_chnldata_RW[0];
1877         return 0;
1878 }
1879 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1880                        NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1881
1882 static int spufs_srr0_set(void *data, u64 val)
1883 {
1884         struct spu_context *ctx = data;
1885         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1886         int ret;
1887
1888         ret = spu_acquire_saved(ctx);
1889         if (ret)
1890                 return ret;
1891         lscsa->srr0.slot[0] = (u32) val;
1892         spu_release_saved(ctx);
1893
1894         return 0;
1895 }
1896
1897 static u64 spufs_srr0_get(struct spu_context *ctx)
1898 {
1899         struct spu_lscsa *lscsa = ctx->csa.lscsa;
1900         return lscsa->srr0.slot[0];
1901 }
1902 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1903                        "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1904
1905 static u64 spufs_id_get(struct spu_context *ctx)
1906 {
1907         u64 num;
1908
1909         if (ctx->state == SPU_STATE_RUNNABLE)
1910                 num = ctx->spu->number;
1911         else
1912                 num = (unsigned int)-1;
1913
1914         return num;
1915 }
1916 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1917                        SPU_ATTR_ACQUIRE)
1918
1919 static u64 spufs_object_id_get(struct spu_context *ctx)
1920 {
1921         /* FIXME: Should there really be no locking here? */
1922         return ctx->object_id;
1923 }
1924
1925 static int spufs_object_id_set(void *data, u64 id)
1926 {
1927         struct spu_context *ctx = data;
1928         ctx->object_id = id;
1929
1930         return 0;
1931 }
1932
1933 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1934                        spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1935
1936 static u64 spufs_lslr_get(struct spu_context *ctx)
1937 {
1938         return ctx->csa.priv2.spu_lslr_RW;
1939 }
1940 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1941                        SPU_ATTR_ACQUIRE_SAVED);
1942
1943 static int spufs_info_open(struct inode *inode, struct file *file)
1944 {
1945         struct spufs_inode_info *i = SPUFS_I(inode);
1946         struct spu_context *ctx = i->i_ctx;
1947         file->private_data = ctx;
1948         return 0;
1949 }
1950
1951 static int spufs_caps_show(struct seq_file *s, void *private)
1952 {
1953         struct spu_context *ctx = s->private;
1954
1955         if (!(ctx->flags & SPU_CREATE_NOSCHED))
1956                 seq_puts(s, "sched\n");
1957         if (!(ctx->flags & SPU_CREATE_ISOLATE))
1958                 seq_puts(s, "step\n");
1959         return 0;
1960 }
1961
1962 static int spufs_caps_open(struct inode *inode, struct file *file)
1963 {
1964         return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1965 }
1966
1967 static const struct file_operations spufs_caps_fops = {
1968         .open           = spufs_caps_open,
1969         .read           = seq_read,
1970         .llseek         = seq_lseek,
1971         .release        = single_release,
1972 };
1973
1974 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1975                         char __user *buf, size_t len, loff_t *pos)
1976 {
1977         u32 data;
1978
1979         /* EOF if there's no entry in the mbox */
1980         if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1981                 return 0;
1982
1983         data = ctx->csa.prob.pu_mb_R;
1984
1985         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1986 }
1987
1988 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1989                                    size_t len, loff_t *pos)
1990 {
1991         int ret;
1992         struct spu_context *ctx = file->private_data;
1993
1994         if (!access_ok(VERIFY_WRITE, buf, len))
1995                 return -EFAULT;
1996
1997         ret = spu_acquire_saved(ctx);
1998         if (ret)
1999                 return ret;
2000         spin_lock(&ctx->csa.register_lock);
2001         ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2002         spin_unlock(&ctx->csa.register_lock);
2003         spu_release_saved(ctx);
2004
2005         return ret;
2006 }
2007
2008 static const struct file_operations spufs_mbox_info_fops = {
2009         .open = spufs_info_open,
2010         .read = spufs_mbox_info_read,
2011         .llseek  = generic_file_llseek,
2012 };
2013
2014 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2015                                 char __user *buf, size_t len, loff_t *pos)
2016 {
2017         u32 data;
2018
2019         /* EOF if there's no entry in the ibox */
2020         if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2021                 return 0;
2022
2023         data = ctx->csa.priv2.puint_mb_R;
2024
2025         return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2026 }
2027
2028 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2029                                    size_t len, loff_t *pos)
2030 {
2031         struct spu_context *ctx = file->private_data;
2032         int ret;
2033
2034         if (!access_ok(VERIFY_WRITE, buf, len))
2035                 return -EFAULT;
2036
2037         ret = spu_acquire_saved(ctx);
2038         if (ret)
2039                 return ret;
2040         spin_lock(&ctx->csa.register_lock);
2041         ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2042         spin_unlock(&ctx->csa.register_lock);
2043         spu_release_saved(ctx);
2044
2045         return ret;
2046 }
2047
2048 static const struct file_operations spufs_ibox_info_fops = {
2049         .open = spufs_info_open,
2050         .read = spufs_ibox_info_read,
2051         .llseek  = generic_file_llseek,
2052 };
2053
2054 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2055                         char __user *buf, size_t len, loff_t *pos)
2056 {
2057         int i, cnt;
2058         u32 data[4];
2059         u32 wbox_stat;
2060
2061         wbox_stat = ctx->csa.prob.mb_stat_R;
2062         cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2063         for (i = 0; i < cnt; i++) {
2064                 data[i] = ctx->csa.spu_mailbox_data[i];
2065         }
2066
2067         return simple_read_from_buffer(buf, len, pos, &data,
2068                                 cnt * sizeof(u32));
2069 }
2070
2071 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2072                                    size_t len, loff_t *pos)
2073 {
2074         struct spu_context *ctx = file->private_data;
2075         int ret;
2076
2077         if (!access_ok(VERIFY_WRITE, buf, len))
2078                 return -EFAULT;
2079
2080         ret = spu_acquire_saved(ctx);
2081         if (ret)
2082                 return ret;
2083         spin_lock(&ctx->csa.register_lock);
2084         ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2085         spin_unlock(&ctx->csa.register_lock);
2086         spu_release_saved(ctx);
2087
2088         return ret;
2089 }
2090
2091 static const struct file_operations spufs_wbox_info_fops = {
2092         .open = spufs_info_open,
2093         .read = spufs_wbox_info_read,
2094         .llseek  = generic_file_llseek,
2095 };
2096
2097 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2098                         char __user *buf, size_t len, loff_t *pos)
2099 {
2100         struct spu_dma_info info;
2101         struct mfc_cq_sr *qp, *spuqp;
2102         int i;
2103
2104         info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2105         info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2106         info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2107         info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2108         info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2109         for (i = 0; i < 16; i++) {
2110                 qp = &info.dma_info_command_data[i];
2111                 spuqp = &ctx->csa.priv2.spuq[i];
2112
2113                 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2114                 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2115                 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2116                 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2117         }
2118
2119         return simple_read_from_buffer(buf, len, pos, &info,
2120                                 sizeof info);
2121 }
2122
2123 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2124                               size_t len, loff_t *pos)
2125 {
2126         struct spu_context *ctx = file->private_data;
2127         int ret;
2128
2129         if (!access_ok(VERIFY_WRITE, buf, len))
2130                 return -EFAULT;
2131
2132         ret = spu_acquire_saved(ctx);
2133         if (ret)
2134                 return ret;
2135         spin_lock(&ctx->csa.register_lock);
2136         ret = __spufs_dma_info_read(ctx, buf, len, pos);
2137         spin_unlock(&ctx->csa.register_lock);
2138         spu_release_saved(ctx);
2139
2140         return ret;
2141 }
2142
2143 static const struct file_operations spufs_dma_info_fops = {
2144         .open = spufs_info_open,
2145         .read = spufs_dma_info_read,
2146         .llseek = no_llseek,
2147 };
2148
2149 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2150                         char __user *buf, size_t len, loff_t *pos)
2151 {
2152         struct spu_proxydma_info info;
2153         struct mfc_cq_sr *qp, *puqp;
2154         int ret = sizeof info;
2155         int i;
2156
2157         if (len < ret)
2158                 return -EINVAL;
2159
2160         if (!access_ok(VERIFY_WRITE, buf, len))
2161                 return -EFAULT;
2162
2163         info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2164         info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2165         info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2166         for (i = 0; i < 8; i++) {
2167                 qp = &info.proxydma_info_command_data[i];
2168                 puqp = &ctx->csa.priv2.puq[i];
2169
2170                 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2171                 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2172                 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2173                 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2174         }
2175
2176         return simple_read_from_buffer(buf, len, pos, &info,
2177                                 sizeof info);
2178 }
2179
2180 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2181                                    size_t len, loff_t *pos)
2182 {
2183         struct spu_context *ctx = file->private_data;
2184         int ret;
2185
2186         ret = spu_acquire_saved(ctx);
2187         if (ret)
2188                 return ret;
2189         spin_lock(&ctx->csa.register_lock);
2190         ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2191         spin_unlock(&ctx->csa.register_lock);
2192         spu_release_saved(ctx);
2193
2194         return ret;
2195 }
2196
2197 static const struct file_operations spufs_proxydma_info_fops = {
2198         .open = spufs_info_open,
2199         .read = spufs_proxydma_info_read,
2200         .llseek = no_llseek,
2201 };
2202
2203 static int spufs_show_tid(struct seq_file *s, void *private)
2204 {
2205         struct spu_context *ctx = s->private;
2206
2207         seq_printf(s, "%d\n", ctx->tid);
2208         return 0;
2209 }
2210
2211 static int spufs_tid_open(struct inode *inode, struct file *file)
2212 {
2213         return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2214 }
2215
2216 static const struct file_operations spufs_tid_fops = {
2217         .open           = spufs_tid_open,
2218         .read           = seq_read,
2219         .llseek         = seq_lseek,
2220         .release        = single_release,
2221 };
2222
2223 static const char *ctx_state_names[] = {
2224         "user", "system", "iowait", "loaded"
2225 };
2226
2227 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2228                 enum spu_utilization_state state)
2229 {
2230         unsigned long long time = ctx->stats.times[state];
2231
2232         /*
2233          * In general, utilization statistics are updated by the controlling
2234          * thread as the spu context moves through various well defined
2235          * state transitions, but if the context is lazily loaded its
2236          * utilization statistics are not updated as the controlling thread
2237          * is not tightly coupled with the execution of the spu context.  We
2238          * calculate and apply the time delta from the last recorded state
2239          * of the spu context.
2240          */
2241         if (ctx->spu && ctx->stats.util_state == state) {
2242                 time += ktime_get_ns() - ctx->stats.tstamp;
2243         }
2244
2245         return time / NSEC_PER_MSEC;
2246 }
2247
2248 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2249 {
2250         unsigned long long slb_flts = ctx->stats.slb_flt;
2251
2252         if (ctx->state == SPU_STATE_RUNNABLE) {
2253                 slb_flts += (ctx->spu->stats.slb_flt -
2254                              ctx->stats.slb_flt_base);
2255         }
2256
2257         return slb_flts;
2258 }
2259
2260 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2261 {
2262         unsigned long long class2_intrs = ctx->stats.class2_intr;
2263
2264         if (ctx->state == SPU_STATE_RUNNABLE) {
2265                 class2_intrs += (ctx->spu->stats.class2_intr -
2266                                  ctx->stats.class2_intr_base);
2267         }
2268
2269         return class2_intrs;
2270 }
2271
2272
2273 static int spufs_show_stat(struct seq_file *s, void *private)
2274 {
2275         struct spu_context *ctx = s->private;
2276         int ret;
2277
2278         ret = spu_acquire(ctx);
2279         if (ret)
2280                 return ret;
2281
2282         seq_printf(s, "%s %llu %llu %llu %llu "
2283                       "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2284                 ctx_state_names[ctx->stats.util_state],
2285                 spufs_acct_time(ctx, SPU_UTIL_USER),
2286                 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2287                 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2288                 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2289                 ctx->stats.vol_ctx_switch,
2290                 ctx->stats.invol_ctx_switch,
2291                 spufs_slb_flts(ctx),
2292                 ctx->stats.hash_flt,
2293                 ctx->stats.min_flt,
2294                 ctx->stats.maj_flt,
2295                 spufs_class2_intrs(ctx),
2296                 ctx->stats.libassist);
2297         spu_release(ctx);
2298         return 0;
2299 }
2300
2301 static int spufs_stat_open(struct inode *inode, struct file *file)
2302 {
2303         return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2304 }
2305
2306 static const struct file_operations spufs_stat_fops = {
2307         .open           = spufs_stat_open,
2308         .read           = seq_read,
2309         .llseek         = seq_lseek,
2310         .release        = single_release,
2311 };
2312
2313 static inline int spufs_switch_log_used(struct spu_context *ctx)
2314 {
2315         return (ctx->switch_log->head - ctx->switch_log->tail) %
2316                 SWITCH_LOG_BUFSIZE;
2317 }
2318
2319 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2320 {
2321         return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2322 }
2323
2324 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2325 {
2326         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2327         int rc;
2328
2329         rc = spu_acquire(ctx);
2330         if (rc)
2331                 return rc;
2332
2333         if (ctx->switch_log) {
2334                 rc = -EBUSY;
2335                 goto out;
2336         }
2337
2338         ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2339                 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2340                 GFP_KERNEL);
2341
2342         if (!ctx->switch_log) {
2343                 rc = -ENOMEM;
2344                 goto out;
2345         }
2346
2347         ctx->switch_log->head = ctx->switch_log->tail = 0;
2348         init_waitqueue_head(&ctx->switch_log->wait);
2349         rc = 0;
2350
2351 out:
2352         spu_release(ctx);
2353         return rc;
2354 }
2355
2356 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2357 {
2358         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2359         int rc;
2360
2361         rc = spu_acquire(ctx);
2362         if (rc)
2363                 return rc;
2364
2365         kfree(ctx->switch_log);
2366         ctx->switch_log = NULL;
2367         spu_release(ctx);
2368
2369         return 0;
2370 }
2371
2372 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2373 {
2374         struct switch_log_entry *p;
2375
2376         p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2377
2378         return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2379                         (unsigned long long) p->tstamp.tv_sec,
2380                         (unsigned int) p->tstamp.tv_nsec,
2381                         p->spu_id,
2382                         (unsigned int) p->type,
2383                         (unsigned int) p->val,
2384                         (unsigned long long) p->timebase);
2385 }
2386
2387 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2388                              size_t len, loff_t *ppos)
2389 {
2390         struct inode *inode = file_inode(file);
2391         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2392         int error = 0, cnt = 0;
2393
2394         if (!buf)
2395                 return -EINVAL;
2396
2397         error = spu_acquire(ctx);
2398         if (error)
2399                 return error;
2400
2401         while (cnt < len) {
2402                 char tbuf[128];
2403                 int width;
2404
2405                 if (spufs_switch_log_used(ctx) == 0) {
2406                         if (cnt > 0) {
2407                                 /* If there's data ready to go, we can
2408                                  * just return straight away */
2409                                 break;
2410
2411                         } else if (file->f_flags & O_NONBLOCK) {
2412                                 error = -EAGAIN;
2413                                 break;
2414
2415                         } else {
2416                                 /* spufs_wait will drop the mutex and
2417                                  * re-acquire, but since we're in read(), the
2418                                  * file cannot be _released (and so
2419                                  * ctx->switch_log is stable).
2420                                  */
2421                                 error = spufs_wait(ctx->switch_log->wait,
2422                                                 spufs_switch_log_used(ctx) > 0);
2423
2424                                 /* On error, spufs_wait returns without the
2425                                  * state mutex held */
2426                                 if (error)
2427                                         return error;
2428
2429                                 /* We may have had entries read from underneath
2430                                  * us while we dropped the mutex in spufs_wait,
2431                                  * so re-check */
2432                                 if (spufs_switch_log_used(ctx) == 0)
2433                                         continue;
2434                         }
2435                 }
2436
2437                 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2438                 if (width < len)
2439                         ctx->switch_log->tail =
2440                                 (ctx->switch_log->tail + 1) %
2441                                  SWITCH_LOG_BUFSIZE;
2442                 else
2443                         /* If the record is greater than space available return
2444                          * partial buffer (so far) */
2445                         break;
2446
2447                 error = copy_to_user(buf + cnt, tbuf, width);
2448                 if (error)
2449                         break;
2450                 cnt += width;
2451         }
2452
2453         spu_release(ctx);
2454
2455         return cnt == 0 ? error : cnt;
2456 }
2457
2458 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2459 {
2460         struct inode *inode = file_inode(file);
2461         struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462         __poll_t mask = 0;
2463         int rc;
2464
2465         poll_wait(file, &ctx->switch_log->wait, wait);
2466
2467         rc = spu_acquire(ctx);
2468         if (rc)
2469                 return rc;
2470
2471         if (spufs_switch_log_used(ctx) > 0)
2472                 mask |= EPOLLIN;
2473
2474         spu_release(ctx);
2475
2476         return mask;
2477 }
2478
2479 static const struct file_operations spufs_switch_log_fops = {
2480         .open           = spufs_switch_log_open,
2481         .read           = spufs_switch_log_read,
2482         .poll           = spufs_switch_log_poll,
2483         .release        = spufs_switch_log_release,
2484         .llseek         = no_llseek,
2485 };
2486
2487 /**
2488  * Log a context switch event to a switch log reader.
2489  *
2490  * Must be called with ctx->state_mutex held.
2491  */
2492 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2493                 u32 type, u32 val)
2494 {
2495         if (!ctx->switch_log)
2496                 return;
2497
2498         if (spufs_switch_log_avail(ctx) > 1) {
2499                 struct switch_log_entry *p;
2500
2501                 p = ctx->switch_log->log + ctx->switch_log->head;
2502                 ktime_get_ts64(&p->tstamp);
2503                 p->timebase = get_tb();
2504                 p->spu_id = spu ? spu->number : -1;
2505                 p->type = type;
2506                 p->val = val;
2507
2508                 ctx->switch_log->head =
2509                         (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2510         }
2511
2512         wake_up(&ctx->switch_log->wait);
2513 }
2514
2515 static int spufs_show_ctx(struct seq_file *s, void *private)
2516 {
2517         struct spu_context *ctx = s->private;
2518         u64 mfc_control_RW;
2519
2520         mutex_lock(&ctx->state_mutex);
2521         if (ctx->spu) {
2522                 struct spu *spu = ctx->spu;
2523                 struct spu_priv2 __iomem *priv2 = spu->priv2;
2524
2525                 spin_lock_irq(&spu->register_lock);
2526                 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2527                 spin_unlock_irq(&spu->register_lock);
2528         } else {
2529                 struct spu_state *csa = &ctx->csa;
2530
2531                 mfc_control_RW = csa->priv2.mfc_control_RW;
2532         }
2533
2534         seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2535                 " %c %llx %llx %llx %llx %x %x\n",
2536                 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2537                 ctx->flags,
2538                 ctx->sched_flags,
2539                 ctx->prio,
2540                 ctx->time_slice,
2541                 ctx->spu ? ctx->spu->number : -1,
2542                 !list_empty(&ctx->rq) ? 'q' : ' ',
2543                 ctx->csa.class_0_pending,
2544                 ctx->csa.class_0_dar,
2545                 ctx->csa.class_1_dsisr,
2546                 mfc_control_RW,
2547                 ctx->ops->runcntl_read(ctx),
2548                 ctx->ops->status_read(ctx));
2549
2550         mutex_unlock(&ctx->state_mutex);
2551
2552         return 0;
2553 }
2554
2555 static int spufs_ctx_open(struct inode *inode, struct file *file)
2556 {
2557         return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2558 }
2559
2560 static const struct file_operations spufs_ctx_fops = {
2561         .open           = spufs_ctx_open,
2562         .read           = seq_read,
2563         .llseek         = seq_lseek,
2564         .release        = single_release,
2565 };
2566
2567 const struct spufs_tree_descr spufs_dir_contents[] = {
2568         { "capabilities", &spufs_caps_fops, 0444, },
2569         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2570         { "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2571         { "mbox", &spufs_mbox_fops, 0444, },
2572         { "ibox", &spufs_ibox_fops, 0444, },
2573         { "wbox", &spufs_wbox_fops, 0222, },
2574         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2575         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2576         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2577         { "signal1", &spufs_signal1_fops, 0666, },
2578         { "signal2", &spufs_signal2_fops, 0666, },
2579         { "signal1_type", &spufs_signal1_type, 0666, },
2580         { "signal2_type", &spufs_signal2_type, 0666, },
2581         { "cntl", &spufs_cntl_fops,  0666, },
2582         { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2583         { "lslr", &spufs_lslr_ops, 0444, },
2584         { "mfc", &spufs_mfc_fops, 0666, },
2585         { "mss", &spufs_mss_fops, 0666, },
2586         { "npc", &spufs_npc_ops, 0666, },
2587         { "srr0", &spufs_srr0_ops, 0666, },
2588         { "decr", &spufs_decr_ops, 0666, },
2589         { "decr_status", &spufs_decr_status_ops, 0666, },
2590         { "event_mask", &spufs_event_mask_ops, 0666, },
2591         { "event_status", &spufs_event_status_ops, 0444, },
2592         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2593         { "phys-id", &spufs_id_ops, 0666, },
2594         { "object-id", &spufs_object_id_ops, 0666, },
2595         { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2596         { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2597         { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2598         { "dma_info", &spufs_dma_info_fops, 0444,
2599                 sizeof(struct spu_dma_info), },
2600         { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2601                 sizeof(struct spu_proxydma_info)},
2602         { "tid", &spufs_tid_fops, 0444, },
2603         { "stat", &spufs_stat_fops, 0444, },
2604         { "switch_log", &spufs_switch_log_fops, 0444 },
2605         {},
2606 };
2607
2608 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2609         { "capabilities", &spufs_caps_fops, 0444, },
2610         { "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2611         { "mbox", &spufs_mbox_fops, 0444, },
2612         { "ibox", &spufs_ibox_fops, 0444, },
2613         { "wbox", &spufs_wbox_fops, 0222, },
2614         { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2615         { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2616         { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2617         { "signal1", &spufs_signal1_nosched_fops, 0222, },
2618         { "signal2", &spufs_signal2_nosched_fops, 0222, },
2619         { "signal1_type", &spufs_signal1_type, 0666, },
2620         { "signal2_type", &spufs_signal2_type, 0666, },
2621         { "mss", &spufs_mss_fops, 0666, },
2622         { "mfc", &spufs_mfc_fops, 0666, },
2623         { "cntl", &spufs_cntl_fops,  0666, },
2624         { "npc", &spufs_npc_ops, 0666, },
2625         { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2626         { "phys-id", &spufs_id_ops, 0666, },
2627         { "object-id", &spufs_object_id_ops, 0666, },
2628         { "tid", &spufs_tid_fops, 0444, },
2629         { "stat", &spufs_stat_fops, 0444, },
2630         {},
2631 };
2632
2633 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2634         { ".ctx", &spufs_ctx_fops, 0444, },
2635         {},
2636 };
2637
2638 const struct spufs_coredump_reader spufs_coredump_read[] = {
2639         { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2640         { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2641         { "lslr", NULL, spufs_lslr_get, 19 },
2642         { "decr", NULL, spufs_decr_get, 19 },
2643         { "decr_status", NULL, spufs_decr_status_get, 19 },
2644         { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2645         { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2646         { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2647         { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2648         { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2649         { "event_mask", NULL, spufs_event_mask_get, 19 },
2650         { "event_status", NULL, spufs_event_status_get, 19 },
2651         { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2652         { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2653         { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2654         { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2655         { "proxydma_info", __spufs_proxydma_info_read,
2656                            NULL, sizeof(struct spu_proxydma_info)},
2657         { "object-id", NULL, spufs_object_id_get, 19 },
2658         { "npc", NULL, spufs_npc_get, 19 },
2659         { NULL },
2660 };