Merge branch 'work.ipc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / powerpc / perf / imc-pmu.c
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20
21 /* Nest IMC data structures and variables */
22
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS];
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33
34 /* Core IMC data structures and variables */
35
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39
40 /* Thread IMC data structures and variables */
41
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48         return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56         &format_attr_event.attr,
57         &format_attr_offset.attr,
58         &format_attr_rvalue.attr,
59         &format_attr_mode.attr,
60         NULL,
61 };
62
63 static struct attribute_group imc_format_group = {
64         .name = "format",
65         .attrs = imc_format_attrs,
66 };
67
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70                                         struct device_attribute *attr,
71                                         char *buf)
72 {
73         struct pmu *pmu = dev_get_drvdata(dev);
74         struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75         cpumask_t *active_mask;
76
77         switch(imc_pmu->domain){
78         case IMC_DOMAIN_NEST:
79                 active_mask = &nest_imc_cpumask;
80                 break;
81         case IMC_DOMAIN_CORE:
82                 active_mask = &core_imc_cpumask;
83                 break;
84         default:
85                 return 0;
86         }
87
88         return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94         &dev_attr_cpumask.attr,
95         NULL,
96 };
97
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99         .attrs = imc_pmu_cpumask_attrs,
100 };
101
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105         struct perf_pmu_events_attr *attr;
106
107         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108         if (!attr)
109                 return NULL;
110         sysfs_attr_init(&attr->attr.attr);
111
112         attr->event_str = str;
113         attr->attr.attr.name = name;
114         attr->attr.attr.mode = 0444;
115         attr->attr.show = perf_event_sysfs_show;
116
117         return &attr->attr.attr;
118 }
119
120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121                                   const char *unit, const char *prefix, u32 base)
122 {
123         struct imc_events *event;
124         const char *s;
125         u32 reg;
126
127         event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128         if (!event)
129                 return NULL;
130
131         if (of_property_read_u32(np, "reg", &reg))
132                 goto error;
133         /* Add the base_reg value to the "reg" */
134         event->value = base + reg;
135
136         if (of_property_read_string(np, "event-name", &s))
137                 goto error;
138
139         event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140         if (!event->name)
141                 goto error;
142
143         if (of_property_read_string(np, "scale", &s))
144                 s = scale;
145
146         if (s) {
147                 event->scale = kstrdup(s, GFP_KERNEL);
148                 if (!event->scale)
149                         goto error;
150         }
151
152         if (of_property_read_string(np, "unit", &s))
153                 s = unit;
154
155         if (s) {
156                 event->unit = kstrdup(s, GFP_KERNEL);
157                 if (!event->unit)
158                         goto error;
159         }
160
161         return event;
162 error:
163         kfree(event->unit);
164         kfree(event->scale);
165         kfree(event->name);
166         kfree(event);
167
168         return NULL;
169 }
170
171 /*
172  * update_events_in_group: Update the "events" information in an attr_group
173  *                         and assign the attr_group to the pmu "pmu".
174  */
175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176 {
177         struct attribute_group *attr_group;
178         struct attribute **attrs, *dev_str;
179         struct device_node *np, *pmu_events;
180         struct imc_events *ev;
181         u32 handle, base_reg;
182         int i=0, j=0, ct;
183         const char *prefix, *g_scale, *g_unit;
184         const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185
186         if (!of_property_read_u32(node, "events", &handle))
187                 pmu_events = of_find_node_by_phandle(handle);
188         else
189                 return 0;
190
191         /* Did not find any node with a given phandle */
192         if (!pmu_events)
193                 return 0;
194
195         /* Get a count of number of child nodes */
196         ct = of_get_child_count(pmu_events);
197
198         /* Get the event prefix */
199         if (of_property_read_string(node, "events-prefix", &prefix))
200                 return 0;
201
202         /* Get a global unit and scale data if available */
203         if (of_property_read_string(node, "scale", &g_scale))
204                 g_scale = NULL;
205
206         if (of_property_read_string(node, "unit", &g_unit))
207                 g_unit = NULL;
208
209         /* "reg" property gives out the base offset of the counters data */
210         of_property_read_u32(node, "reg", &base_reg);
211
212         /* Allocate memory for the events */
213         pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214         if (!pmu->events)
215                 return -ENOMEM;
216
217         ct = 0;
218         /* Parse the events and update the struct */
219         for_each_child_of_node(pmu_events, np) {
220                 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221                 if (ev)
222                         pmu->events[ct++] = ev;
223         }
224
225         /* Allocate memory for attribute group */
226         attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227         if (!attr_group)
228                 return -ENOMEM;
229
230         /*
231          * Allocate memory for attributes.
232          * Since we have count of events for this pmu, we also allocate
233          * memory for the scale and unit attribute for now.
234          * "ct" has the total event structs added from the events-parent node.
235          * So allocate three times the "ct" (this includes event, event_scale and
236          * event_unit).
237          */
238         attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239         if (!attrs) {
240                 kfree(attr_group);
241                 kfree(pmu->events);
242                 return -ENOMEM;
243         }
244
245         attr_group->name = "events";
246         attr_group->attrs = attrs;
247         do {
248                 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249                 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250                 if (!dev_str)
251                         continue;
252
253                 attrs[j++] = dev_str;
254                 if (pmu->events[i]->scale) {
255                         ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256                         dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257                         if (!dev_str)
258                                 continue;
259
260                         attrs[j++] = dev_str;
261                 }
262
263                 if (pmu->events[i]->unit) {
264                         ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265                         dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266                         if (!dev_str)
267                                 continue;
268
269                         attrs[j++] = dev_str;
270                 }
271         } while (++i < ct);
272
273         /* Save the event attribute */
274         pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275
276         kfree(pmu->events);
277         return 0;
278 }
279
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282 {
283         return per_cpu(local_nest_imc_refc, cpu);
284 }
285
286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
287 {
288         struct imc_pmu **pn = per_nest_pmu_arr;
289         int i;
290
291         if (old_cpu < 0 || new_cpu < 0)
292                 return;
293
294         for (i = 0; *pn && i < IMC_MAX_PMUS; i++, pn++)
295                 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
296 }
297
298 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
299 {
300         int nid, target = -1;
301         const struct cpumask *l_cpumask;
302         struct imc_pmu_ref *ref;
303
304         /*
305          * Check in the designated list for this cpu. Dont bother
306          * if not one of them.
307          */
308         if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
309                 return 0;
310
311         /*
312          * Now that this cpu is one of the designated,
313          * find a next cpu a) which is online and b) in same chip.
314          */
315         nid = cpu_to_node(cpu);
316         l_cpumask = cpumask_of_node(nid);
317         target = cpumask_any_but(l_cpumask, cpu);
318
319         /*
320          * Update the cpumask with the target cpu and
321          * migrate the context if needed
322          */
323         if (target >= 0 && target < nr_cpu_ids) {
324                 cpumask_set_cpu(target, &nest_imc_cpumask);
325                 nest_change_cpu_context(cpu, target);
326         } else {
327                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
328                                        get_hard_smp_processor_id(cpu));
329                 /*
330                  * If this is the last cpu in this chip then, skip the reference
331                  * count mutex lock and make the reference count on this chip zero.
332                  */
333                 ref = get_nest_pmu_ref(cpu);
334                 if (!ref)
335                         return -EINVAL;
336
337                 ref->refc = 0;
338         }
339         return 0;
340 }
341
342 static int ppc_nest_imc_cpu_online(unsigned int cpu)
343 {
344         const struct cpumask *l_cpumask;
345         static struct cpumask tmp_mask;
346         int res;
347
348         /* Get the cpumask of this node */
349         l_cpumask = cpumask_of_node(cpu_to_node(cpu));
350
351         /*
352          * If this is not the first online CPU on this node, then
353          * just return.
354          */
355         if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
356                 return 0;
357
358         /*
359          * If this is the first online cpu on this node
360          * disable the nest counters by making an OPAL call.
361          */
362         res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
363                                      get_hard_smp_processor_id(cpu));
364         if (res)
365                 return res;
366
367         /* Make this CPU the designated target for counter collection */
368         cpumask_set_cpu(cpu, &nest_imc_cpumask);
369         return 0;
370 }
371
372 static int nest_pmu_cpumask_init(void)
373 {
374         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
375                                  "perf/powerpc/imc:online",
376                                  ppc_nest_imc_cpu_online,
377                                  ppc_nest_imc_cpu_offline);
378 }
379
380 static void nest_imc_counters_release(struct perf_event *event)
381 {
382         int rc, node_id;
383         struct imc_pmu_ref *ref;
384
385         if (event->cpu < 0)
386                 return;
387
388         node_id = cpu_to_node(event->cpu);
389
390         /*
391          * See if we need to disable the nest PMU.
392          * If no events are currently in use, then we have to take a
393          * mutex to ensure that we don't race with another task doing
394          * enable or disable the nest counters.
395          */
396         ref = get_nest_pmu_ref(event->cpu);
397         if (!ref)
398                 return;
399
400         /* Take the mutex lock for this node and then decrement the reference count */
401         mutex_lock(&ref->lock);
402         ref->refc--;
403         if (ref->refc == 0) {
404                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
405                                             get_hard_smp_processor_id(event->cpu));
406                 if (rc) {
407                         mutex_unlock(&ref->lock);
408                         pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
409                         return;
410                 }
411         } else if (ref->refc < 0) {
412                 WARN(1, "nest-imc: Invalid event reference count\n");
413                 ref->refc = 0;
414         }
415         mutex_unlock(&ref->lock);
416 }
417
418 static int nest_imc_event_init(struct perf_event *event)
419 {
420         int chip_id, rc, node_id;
421         u32 l_config, config = event->attr.config;
422         struct imc_mem_info *pcni;
423         struct imc_pmu *pmu;
424         struct imc_pmu_ref *ref;
425         bool flag = false;
426
427         if (event->attr.type != event->pmu->type)
428                 return -ENOENT;
429
430         /* Sampling not supported */
431         if (event->hw.sample_period)
432                 return -EINVAL;
433
434         /* unsupported modes and filters */
435         if (event->attr.exclude_user   ||
436             event->attr.exclude_kernel ||
437             event->attr.exclude_hv     ||
438             event->attr.exclude_idle   ||
439             event->attr.exclude_host   ||
440             event->attr.exclude_guest)
441                 return -EINVAL;
442
443         if (event->cpu < 0)
444                 return -EINVAL;
445
446         pmu = imc_event_to_pmu(event);
447
448         /* Sanity check for config (event offset) */
449         if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
450                 return -EINVAL;
451
452         /*
453          * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
454          * Get the base memory addresss for this cpu.
455          */
456         chip_id = topology_physical_package_id(event->cpu);
457         pcni = pmu->mem_info;
458         do {
459                 if (pcni->id == chip_id) {
460                         flag = true;
461                         break;
462                 }
463                 pcni++;
464         } while (pcni);
465
466         if (!flag)
467                 return -ENODEV;
468
469         /*
470          * Add the event offset to the base address.
471          */
472         l_config = config & IMC_EVENT_OFFSET_MASK;
473         event->hw.event_base = (u64)pcni->vbase + l_config;
474         node_id = cpu_to_node(event->cpu);
475
476         /*
477          * Get the imc_pmu_ref struct for this node.
478          * Take the mutex lock and then increment the count of nest pmu events
479          * inited.
480          */
481         ref = get_nest_pmu_ref(event->cpu);
482         if (!ref)
483                 return -EINVAL;
484
485         mutex_lock(&ref->lock);
486         if (ref->refc == 0) {
487                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
488                                              get_hard_smp_processor_id(event->cpu));
489                 if (rc) {
490                         mutex_unlock(&ref->lock);
491                         pr_err("nest-imc: Unable to start the counters for node %d\n",
492                                                                         node_id);
493                         return rc;
494                 }
495         }
496         ++ref->refc;
497         mutex_unlock(&ref->lock);
498
499         event->destroy = nest_imc_counters_release;
500         return 0;
501 }
502
503 /*
504  * core_imc_mem_init : Initializes memory for the current core.
505  *
506  * Uses alloc_pages_node() and uses the returned address as an argument to
507  * an opal call to configure the pdbar. The address sent as an argument is
508  * converted to physical address before the opal call is made. This is the
509  * base address at which the core imc counters are populated.
510  */
511 static int core_imc_mem_init(int cpu, int size)
512 {
513         int phys_id, rc = 0, core_id = (cpu / threads_per_core);
514         struct imc_mem_info *mem_info;
515
516         /*
517          * alloc_pages_node() will allocate memory for core in the
518          * local node only.
519          */
520         phys_id = topology_physical_package_id(cpu);
521         mem_info = &core_imc_pmu->mem_info[core_id];
522         mem_info->id = core_id;
523
524         /* We need only vbase for core counters */
525         mem_info->vbase = page_address(alloc_pages_node(phys_id,
526                                           GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
527                                           get_order(size)));
528         if (!mem_info->vbase)
529                 return -ENOMEM;
530
531         /* Init the mutex */
532         core_imc_refc[core_id].id = core_id;
533         mutex_init(&core_imc_refc[core_id].lock);
534
535         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
536                                 __pa((void *)mem_info->vbase),
537                                 get_hard_smp_processor_id(cpu));
538         if (rc) {
539                 free_pages((u64)mem_info->vbase, get_order(size));
540                 mem_info->vbase = NULL;
541         }
542
543         return rc;
544 }
545
546 static bool is_core_imc_mem_inited(int cpu)
547 {
548         struct imc_mem_info *mem_info;
549         int core_id = (cpu / threads_per_core);
550
551         mem_info = &core_imc_pmu->mem_info[core_id];
552         if (!mem_info->vbase)
553                 return false;
554
555         return true;
556 }
557
558 static int ppc_core_imc_cpu_online(unsigned int cpu)
559 {
560         const struct cpumask *l_cpumask;
561         static struct cpumask tmp_mask;
562         int ret = 0;
563
564         /* Get the cpumask for this core */
565         l_cpumask = cpu_sibling_mask(cpu);
566
567         /* If a cpu for this core is already set, then, don't do anything */
568         if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
569                 return 0;
570
571         if (!is_core_imc_mem_inited(cpu)) {
572                 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
573                 if (ret) {
574                         pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
575                         return ret;
576                 }
577         }
578
579         /* set the cpu in the mask */
580         cpumask_set_cpu(cpu, &core_imc_cpumask);
581         return 0;
582 }
583
584 static int ppc_core_imc_cpu_offline(unsigned int cpu)
585 {
586         unsigned int ncpu, core_id;
587         struct imc_pmu_ref *ref;
588
589         /*
590          * clear this cpu out of the mask, if not present in the mask,
591          * don't bother doing anything.
592          */
593         if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
594                 return 0;
595
596         /* Find any online cpu in that core except the current "cpu" */
597         ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
598
599         if (ncpu >= 0 && ncpu < nr_cpu_ids) {
600                 cpumask_set_cpu(ncpu, &core_imc_cpumask);
601                 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
602         } else {
603                 /*
604                  * If this is the last cpu in this core then, skip taking refernce
605                  * count mutex lock for this core and directly zero "refc" for
606                  * this core.
607                  */
608                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
609                                        get_hard_smp_processor_id(cpu));
610                 core_id = cpu / threads_per_core;
611                 ref = &core_imc_refc[core_id];
612                 if (!ref)
613                         return -EINVAL;
614
615                 ref->refc = 0;
616         }
617         return 0;
618 }
619
620 static int core_imc_pmu_cpumask_init(void)
621 {
622         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
623                                  "perf/powerpc/imc_core:online",
624                                  ppc_core_imc_cpu_online,
625                                  ppc_core_imc_cpu_offline);
626 }
627
628 static void core_imc_counters_release(struct perf_event *event)
629 {
630         int rc, core_id;
631         struct imc_pmu_ref *ref;
632
633         if (event->cpu < 0)
634                 return;
635         /*
636          * See if we need to disable the IMC PMU.
637          * If no events are currently in use, then we have to take a
638          * mutex to ensure that we don't race with another task doing
639          * enable or disable the core counters.
640          */
641         core_id = event->cpu / threads_per_core;
642
643         /* Take the mutex lock and decrement the refernce count for this core */
644         ref = &core_imc_refc[core_id];
645         if (!ref)
646                 return;
647
648         mutex_lock(&ref->lock);
649         ref->refc--;
650         if (ref->refc == 0) {
651                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
652                                             get_hard_smp_processor_id(event->cpu));
653                 if (rc) {
654                         mutex_unlock(&ref->lock);
655                         pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
656                         return;
657                 }
658         } else if (ref->refc < 0) {
659                 WARN(1, "core-imc: Invalid event reference count\n");
660                 ref->refc = 0;
661         }
662         mutex_unlock(&ref->lock);
663 }
664
665 static int core_imc_event_init(struct perf_event *event)
666 {
667         int core_id, rc;
668         u64 config = event->attr.config;
669         struct imc_mem_info *pcmi;
670         struct imc_pmu *pmu;
671         struct imc_pmu_ref *ref;
672
673         if (event->attr.type != event->pmu->type)
674                 return -ENOENT;
675
676         /* Sampling not supported */
677         if (event->hw.sample_period)
678                 return -EINVAL;
679
680         /* unsupported modes and filters */
681         if (event->attr.exclude_user   ||
682             event->attr.exclude_kernel ||
683             event->attr.exclude_hv     ||
684             event->attr.exclude_idle   ||
685             event->attr.exclude_host   ||
686             event->attr.exclude_guest)
687                 return -EINVAL;
688
689         if (event->cpu < 0)
690                 return -EINVAL;
691
692         event->hw.idx = -1;
693         pmu = imc_event_to_pmu(event);
694
695         /* Sanity check for config (event offset) */
696         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
697                 return -EINVAL;
698
699         if (!is_core_imc_mem_inited(event->cpu))
700                 return -ENODEV;
701
702         core_id = event->cpu / threads_per_core;
703         pcmi = &core_imc_pmu->mem_info[core_id];
704         if ((!pcmi->vbase))
705                 return -ENODEV;
706
707         /* Get the core_imc mutex for this core */
708         ref = &core_imc_refc[core_id];
709         if (!ref)
710                 return -EINVAL;
711
712         /*
713          * Core pmu units are enabled only when it is used.
714          * See if this is triggered for the first time.
715          * If yes, take the mutex lock and enable the core counters.
716          * If not, just increment the count in core_imc_refc struct.
717          */
718         mutex_lock(&ref->lock);
719         if (ref->refc == 0) {
720                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
721                                              get_hard_smp_processor_id(event->cpu));
722                 if (rc) {
723                         mutex_unlock(&ref->lock);
724                         pr_err("core-imc: Unable to start the counters for core %d\n",
725                                                                         core_id);
726                         return rc;
727                 }
728         }
729         ++ref->refc;
730         mutex_unlock(&ref->lock);
731
732         event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
733         event->destroy = core_imc_counters_release;
734         return 0;
735 }
736
737 /*
738  * Allocates a page of memory for each of the online cpus, and write the
739  * physical base address of that page to the LDBAR for that cpu.
740  *
741  * LDBAR Register Layout:
742  *
743  *  0          4         8         12        16        20        24        28
744  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
745  *   | |       [   ]    [                   Counter Address [8:50]
746  *   | * Mode    |
747  *   |           * PB Scope
748  *   * Enable/Disable
749  *
750  *  32        36        40        44        48        52        56        60
751  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
752  *           Counter Address [8:50]              ]
753  *
754  */
755 static int thread_imc_mem_alloc(int cpu_id, int size)
756 {
757         u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
758         int phys_id = topology_physical_package_id(cpu_id);
759
760         if (!local_mem) {
761                 /*
762                  * This case could happen only once at start, since we dont
763                  * free the memory in cpu offline path.
764                  */
765                 local_mem = page_address(alloc_pages_node(phys_id,
766                                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE,
767                                   get_order(size)));
768                 if (!local_mem)
769                         return -ENOMEM;
770
771                 per_cpu(thread_imc_mem, cpu_id) = local_mem;
772         }
773
774         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
775
776         mtspr(SPRN_LDBAR, ldbar_value);
777         return 0;
778 }
779
780 static int ppc_thread_imc_cpu_online(unsigned int cpu)
781 {
782         return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
783 }
784
785 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
786 {
787         mtspr(SPRN_LDBAR, 0);
788         return 0;
789 }
790
791 static int thread_imc_cpu_init(void)
792 {
793         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
794                           "perf/powerpc/imc_thread:online",
795                           ppc_thread_imc_cpu_online,
796                           ppc_thread_imc_cpu_offline);
797 }
798
799 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
800                                       bool sched_in)
801 {
802         int core_id;
803         struct imc_pmu_ref *ref;
804
805         if (!is_core_imc_mem_inited(smp_processor_id()))
806                 return;
807
808         core_id = smp_processor_id() / threads_per_core;
809         /*
810          * imc pmus are enabled only when it is used.
811          * See if this is triggered for the first time.
812          * If yes, take the mutex lock and enable the counters.
813          * If not, just increment the count in ref count struct.
814          */
815         ref = &core_imc_refc[core_id];
816         if (!ref)
817                 return;
818
819         if (sched_in) {
820                 mutex_lock(&ref->lock);
821                 if (ref->refc == 0) {
822                         if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
823                              get_hard_smp_processor_id(smp_processor_id()))) {
824                                 mutex_unlock(&ref->lock);
825                                 pr_err("thread-imc: Unable to start the counter\
826                                                         for core %d\n", core_id);
827                                 return;
828                         }
829                 }
830                 ++ref->refc;
831                 mutex_unlock(&ref->lock);
832         } else {
833                 mutex_lock(&ref->lock);
834                 ref->refc--;
835                 if (ref->refc == 0) {
836                         if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
837                             get_hard_smp_processor_id(smp_processor_id()))) {
838                                 mutex_unlock(&ref->lock);
839                                 pr_err("thread-imc: Unable to stop the counters\
840                                                         for core %d\n", core_id);
841                                 return;
842                         }
843                 } else if (ref->refc < 0) {
844                         ref->refc = 0;
845                 }
846                 mutex_unlock(&ref->lock);
847         }
848
849         return;
850 }
851
852 static int thread_imc_event_init(struct perf_event *event)
853 {
854         u32 config = event->attr.config;
855         struct task_struct *target;
856         struct imc_pmu *pmu;
857
858         if (event->attr.type != event->pmu->type)
859                 return -ENOENT;
860
861         /* Sampling not supported */
862         if (event->hw.sample_period)
863                 return -EINVAL;
864
865         event->hw.idx = -1;
866         pmu = imc_event_to_pmu(event);
867
868         /* Sanity check for config offset */
869         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
870                 return -EINVAL;
871
872         target = event->hw.target;
873         if (!target)
874                 return -EINVAL;
875
876         event->pmu->task_ctx_nr = perf_sw_context;
877         return 0;
878 }
879
880 static bool is_thread_imc_pmu(struct perf_event *event)
881 {
882         if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
883                 return true;
884
885         return false;
886 }
887
888 static u64 * get_event_base_addr(struct perf_event *event)
889 {
890         u64 addr;
891
892         if (is_thread_imc_pmu(event)) {
893                 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
894                 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
895         }
896
897         return (u64 *)event->hw.event_base;
898 }
899
900 static void thread_imc_pmu_start_txn(struct pmu *pmu,
901                                      unsigned int txn_flags)
902 {
903         if (txn_flags & ~PERF_PMU_TXN_ADD)
904                 return;
905         perf_pmu_disable(pmu);
906 }
907
908 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
909 {
910         perf_pmu_enable(pmu);
911 }
912
913 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
914 {
915         perf_pmu_enable(pmu);
916         return 0;
917 }
918
919 static u64 imc_read_counter(struct perf_event *event)
920 {
921         u64 *addr, data;
922
923         /*
924          * In-Memory Collection (IMC) counters are free flowing counters.
925          * So we take a snapshot of the counter value on enable and save it
926          * to calculate the delta at later stage to present the event counter
927          * value.
928          */
929         addr = get_event_base_addr(event);
930         data = be64_to_cpu(READ_ONCE(*addr));
931         local64_set(&event->hw.prev_count, data);
932
933         return data;
934 }
935
936 static void imc_event_update(struct perf_event *event)
937 {
938         u64 counter_prev, counter_new, final_count;
939
940         counter_prev = local64_read(&event->hw.prev_count);
941         counter_new = imc_read_counter(event);
942         final_count = counter_new - counter_prev;
943
944         /* Update the delta to the event count */
945         local64_add(final_count, &event->count);
946 }
947
948 static void imc_event_start(struct perf_event *event, int flags)
949 {
950         /*
951          * In Memory Counters are free flowing counters. HW or the microcode
952          * keeps adding to the counter offset in memory. To get event
953          * counter value, we snapshot the value here and we calculate
954          * delta at later point.
955          */
956         imc_read_counter(event);
957 }
958
959 static void imc_event_stop(struct perf_event *event, int flags)
960 {
961         /*
962          * Take a snapshot and calculate the delta and update
963          * the event counter values.
964          */
965         imc_event_update(event);
966 }
967
968 static int imc_event_add(struct perf_event *event, int flags)
969 {
970         if (flags & PERF_EF_START)
971                 imc_event_start(event, flags);
972
973         return 0;
974 }
975
976 static int thread_imc_event_add(struct perf_event *event, int flags)
977 {
978         if (flags & PERF_EF_START)
979                 imc_event_start(event, flags);
980
981         /* Enable the sched_task to start the engine */
982         perf_sched_cb_inc(event->ctx->pmu);
983         return 0;
984 }
985
986 static void thread_imc_event_del(struct perf_event *event, int flags)
987 {
988         /*
989          * Take a snapshot and calculate the delta and update
990          * the event counter values.
991          */
992         imc_event_update(event);
993         perf_sched_cb_dec(event->ctx->pmu);
994 }
995
996 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
997 static int update_pmu_ops(struct imc_pmu *pmu)
998 {
999         pmu->pmu.task_ctx_nr = perf_invalid_context;
1000         pmu->pmu.add = imc_event_add;
1001         pmu->pmu.del = imc_event_stop;
1002         pmu->pmu.start = imc_event_start;
1003         pmu->pmu.stop = imc_event_stop;
1004         pmu->pmu.read = imc_event_update;
1005         pmu->pmu.attr_groups = pmu->attr_groups;
1006         pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1007
1008         switch (pmu->domain) {
1009         case IMC_DOMAIN_NEST:
1010                 pmu->pmu.event_init = nest_imc_event_init;
1011                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1012                 break;
1013         case IMC_DOMAIN_CORE:
1014                 pmu->pmu.event_init = core_imc_event_init;
1015                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1016                 break;
1017         case IMC_DOMAIN_THREAD:
1018                 pmu->pmu.event_init = thread_imc_event_init;
1019                 pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1020                 pmu->pmu.add = thread_imc_event_add;
1021                 pmu->pmu.del = thread_imc_event_del;
1022                 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1023                 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1024                 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1025                 break;
1026         default:
1027                 break;
1028         }
1029
1030         return 0;
1031 }
1032
1033 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1034 static int init_nest_pmu_ref(void)
1035 {
1036         int nid, i, cpu;
1037
1038         nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1039                                                                 GFP_KERNEL);
1040
1041         if (!nest_imc_refc)
1042                 return -ENOMEM;
1043
1044         i = 0;
1045         for_each_node(nid) {
1046                 /*
1047                  * Mutex lock to avoid races while tracking the number of
1048                  * sessions using the chip's nest pmu units.
1049                  */
1050                 mutex_init(&nest_imc_refc[i].lock);
1051
1052                 /*
1053                  * Loop to init the "id" with the node_id. Variable "i" initialized to
1054                  * 0 and will be used as index to the array. "i" will not go off the
1055                  * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1056                  * nodes only.
1057                  */
1058                 nest_imc_refc[i++].id = nid;
1059         }
1060
1061         /*
1062          * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1063          * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1064          */
1065         for_each_possible_cpu(cpu) {
1066                 nid = cpu_to_node(cpu);
1067                 for (i = 0; i < num_possible_nodes(); i++) {
1068                         if (nest_imc_refc[i].id == nid) {
1069                                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1070                                 break;
1071                         }
1072                 }
1073         }
1074         return 0;
1075 }
1076
1077 static void cleanup_all_core_imc_memory(void)
1078 {
1079         int i, nr_cores = num_present_cpus() / threads_per_core;
1080         struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1081         int size = core_imc_pmu->counter_mem_size;
1082
1083         /* mem_info will never be NULL */
1084         for (i = 0; i < nr_cores; i++) {
1085                 if (ptr[i].vbase)
1086                         free_pages((u64)ptr->vbase, get_order(size));
1087         }
1088
1089         kfree(ptr);
1090         kfree(core_imc_refc);
1091 }
1092
1093 static void thread_imc_ldbar_disable(void *dummy)
1094 {
1095         /*
1096          * By Zeroing LDBAR, we disable thread-imc
1097          * updates.
1098          */
1099         mtspr(SPRN_LDBAR, 0);
1100 }
1101
1102 void thread_imc_disable(void)
1103 {
1104         on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1105 }
1106
1107 static void cleanup_all_thread_imc_memory(void)
1108 {
1109         int i, order = get_order(thread_imc_mem_size);
1110
1111         for_each_online_cpu(i) {
1112                 if (per_cpu(thread_imc_mem, i))
1113                         free_pages((u64)per_cpu(thread_imc_mem, i), order);
1114
1115         }
1116 }
1117
1118 /*
1119  * Common function to unregister cpu hotplug callback and
1120  * free the memory.
1121  * TODO: Need to handle pmu unregistering, which will be
1122  * done in followup series.
1123  */
1124 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1125 {
1126         if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1127                 mutex_lock(&nest_init_lock);
1128                 if (nest_pmus == 1) {
1129                         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1130                         kfree(nest_imc_refc);
1131                 }
1132
1133                 if (nest_pmus > 0)
1134                         nest_pmus--;
1135                 mutex_unlock(&nest_init_lock);
1136         }
1137
1138         /* Free core_imc memory */
1139         if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1140                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1141                 cleanup_all_core_imc_memory();
1142         }
1143
1144         /* Free thread_imc memory */
1145         if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1146                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1147                 cleanup_all_thread_imc_memory();
1148         }
1149
1150         /* Only free the attr_groups which are dynamically allocated  */
1151         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1152         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1153         kfree(pmu_ptr);
1154         return;
1155 }
1156
1157
1158 /*
1159  * imc_mem_init : Function to support memory allocation for core imc.
1160  */
1161 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1162                                                                 int pmu_index)
1163 {
1164         const char *s;
1165         int nr_cores, cpu, res;
1166
1167         if (of_property_read_string(parent, "name", &s))
1168                 return -ENODEV;
1169
1170         switch (pmu_ptr->domain) {
1171         case IMC_DOMAIN_NEST:
1172                 /* Update the pmu name */
1173                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1174                 if (!pmu_ptr->pmu.name)
1175                         return -ENOMEM;
1176
1177                 /* Needed for hotplug/migration */
1178                 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1179                 break;
1180         case IMC_DOMAIN_CORE:
1181                 /* Update the pmu name */
1182                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1183                 if (!pmu_ptr->pmu.name)
1184                         return -ENOMEM;
1185
1186                 nr_cores = num_present_cpus() / threads_per_core;
1187                 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1188                                                                 GFP_KERNEL);
1189
1190                 if (!pmu_ptr->mem_info)
1191                         return -ENOMEM;
1192
1193                 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1194                                                                 GFP_KERNEL);
1195
1196                 if (!core_imc_refc)
1197                         return -ENOMEM;
1198
1199                 core_imc_pmu = pmu_ptr;
1200                 break;
1201         case IMC_DOMAIN_THREAD:
1202                 /* Update the pmu name */
1203                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1204                 if (!pmu_ptr->pmu.name)
1205                         return -ENOMEM;
1206
1207                 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1208                 for_each_online_cpu(cpu) {
1209                         res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1210                         if (res)
1211                                 return res;
1212                 }
1213
1214                 thread_imc_pmu = pmu_ptr;
1215                 break;
1216         default:
1217                 return -EINVAL;
1218         }
1219
1220         return 0;
1221 }
1222
1223 /*
1224  * init_imc_pmu : Setup and register the IMC pmu device.
1225  *
1226  * @parent:     Device tree unit node
1227  * @pmu_ptr:    memory allocated for this pmu
1228  * @pmu_idx:    Count of nest pmc registered
1229  *
1230  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1231  * Handles failure cases and accordingly frees memory.
1232  */
1233 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1234 {
1235         int ret;
1236
1237         ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1238         if (ret)
1239                 goto err_free;
1240
1241         switch (pmu_ptr->domain) {
1242         case IMC_DOMAIN_NEST:
1243                 /*
1244                 * Nest imc pmu need only one cpu per chip, we initialize the
1245                 * cpumask for the first nest imc pmu and use the same for the
1246                 * rest. To handle the cpuhotplug callback unregister, we track
1247                 * the number of nest pmus in "nest_pmus".
1248                 */
1249                 mutex_lock(&nest_init_lock);
1250                 if (nest_pmus == 0) {
1251                         ret = init_nest_pmu_ref();
1252                         if (ret) {
1253                                 mutex_unlock(&nest_init_lock);
1254                                 goto err_free;
1255                         }
1256                         /* Register for cpu hotplug notification. */
1257                         ret = nest_pmu_cpumask_init();
1258                         if (ret) {
1259                                 mutex_unlock(&nest_init_lock);
1260                                 goto err_free;
1261                         }
1262                 }
1263                 nest_pmus++;
1264                 mutex_unlock(&nest_init_lock);
1265                 break;
1266         case IMC_DOMAIN_CORE:
1267                 ret = core_imc_pmu_cpumask_init();
1268                 if (ret) {
1269                         cleanup_all_core_imc_memory();
1270                         return ret;
1271                 }
1272
1273                 break;
1274         case IMC_DOMAIN_THREAD:
1275                 ret = thread_imc_cpu_init();
1276                 if (ret) {
1277                         cleanup_all_thread_imc_memory();
1278                         return ret;
1279                 }
1280
1281                 break;
1282         default:
1283                 return  -1;     /* Unknown domain */
1284         }
1285
1286         ret = update_events_in_group(parent, pmu_ptr);
1287         if (ret)
1288                 goto err_free;
1289
1290         ret = update_pmu_ops(pmu_ptr);
1291         if (ret)
1292                 goto err_free;
1293
1294         ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1295         if (ret)
1296                 goto err_free;
1297
1298         pr_info("%s performance monitor hardware support registered\n",
1299                                                         pmu_ptr->pmu.name);
1300
1301         return 0;
1302
1303 err_free:
1304         imc_common_cpuhp_mem_free(pmu_ptr);
1305         return ret;
1306 }