2 * In-Memory Collection (IMC) Performance Monitor counter support.
4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5 * (C) 2017 Anju T Sudhakar, IBM Corporation.
6 * (C) 2017 Hemant K Shaw, IBM Corporation.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or later version.
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
19 #include <linux/string.h>
21 /* Nest IMC data structures and variables */
24 * Used to avoid races in counting the nest-pmu units during hotplug
25 * register and unregister
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu *per_nest_pmu_arr[IMC_MAX_PMUS];
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
34 /* Core IMC data structures and variables */
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
40 /* Thread IMC data structures and variables */
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
48 return container_of(event->pmu, struct imc_pmu, pmu);
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 &format_attr_event.attr,
57 &format_attr_offset.attr,
58 &format_attr_rvalue.attr,
59 &format_attr_mode.attr,
63 static struct attribute_group imc_format_group = {
65 .attrs = imc_format_attrs,
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 struct device_attribute *attr,
73 struct pmu *pmu = dev_get_drvdata(dev);
74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 cpumask_t *active_mask;
77 switch(imc_pmu->domain){
79 active_mask = &nest_imc_cpumask;
82 active_mask = &core_imc_cpumask;
88 return cpumap_print_to_pagebuf(true, buf, active_mask);
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 &dev_attr_cpumask.attr,
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 .attrs = imc_pmu_cpumask_attrs,
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
105 struct perf_pmu_events_attr *attr;
107 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
110 sysfs_attr_init(&attr->attr.attr);
112 attr->event_str = str;
113 attr->attr.attr.name = name;
114 attr->attr.attr.mode = 0444;
115 attr->attr.show = perf_event_sysfs_show;
117 return &attr->attr.attr;
120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121 const char *unit, const char *prefix, u32 base)
123 struct imc_events *event;
127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
131 if (of_property_read_u32(np, "reg", ®))
133 /* Add the base_reg value to the "reg" */
134 event->value = base + reg;
136 if (of_property_read_string(np, "event-name", &s))
139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
143 if (of_property_read_string(np, "scale", &s))
147 event->scale = kstrdup(s, GFP_KERNEL);
152 if (of_property_read_string(np, "unit", &s))
156 event->unit = kstrdup(s, GFP_KERNEL);
172 * update_events_in_group: Update the "events" information in an attr_group
173 * and assign the attr_group to the pmu "pmu".
175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
177 struct attribute_group *attr_group;
178 struct attribute **attrs, *dev_str;
179 struct device_node *np, *pmu_events;
180 struct imc_events *ev;
181 u32 handle, base_reg;
183 const char *prefix, *g_scale, *g_unit;
184 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
186 if (!of_property_read_u32(node, "events", &handle))
187 pmu_events = of_find_node_by_phandle(handle);
191 /* Did not find any node with a given phandle */
195 /* Get a count of number of child nodes */
196 ct = of_get_child_count(pmu_events);
198 /* Get the event prefix */
199 if (of_property_read_string(node, "events-prefix", &prefix))
202 /* Get a global unit and scale data if available */
203 if (of_property_read_string(node, "scale", &g_scale))
206 if (of_property_read_string(node, "unit", &g_unit))
209 /* "reg" property gives out the base offset of the counters data */
210 of_property_read_u32(node, "reg", &base_reg);
212 /* Allocate memory for the events */
213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
218 /* Parse the events and update the struct */
219 for_each_child_of_node(pmu_events, np) {
220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
222 pmu->events[ct++] = ev;
225 /* Allocate memory for attribute group */
226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
231 * Allocate memory for attributes.
232 * Since we have count of events for this pmu, we also allocate
233 * memory for the scale and unit attribute for now.
234 * "ct" has the total event structs added from the events-parent node.
235 * So allocate three times the "ct" (this includes event, event_scale and
238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
245 attr_group->name = "events";
246 attr_group->attrs = attrs;
248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
253 attrs[j++] = dev_str;
254 if (pmu->events[i]->scale) {
255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
260 attrs[j++] = dev_str;
263 if (pmu->events[i]->unit) {
264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
269 attrs[j++] = dev_str;
273 /* Save the event attribute */
274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
283 return per_cpu(local_nest_imc_refc, cpu);
286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
288 struct imc_pmu **pn = per_nest_pmu_arr;
291 if (old_cpu < 0 || new_cpu < 0)
294 for (i = 0; *pn && i < IMC_MAX_PMUS; i++, pn++)
295 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
298 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
300 int nid, target = -1;
301 const struct cpumask *l_cpumask;
302 struct imc_pmu_ref *ref;
305 * Check in the designated list for this cpu. Dont bother
306 * if not one of them.
308 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
312 * Now that this cpu is one of the designated,
313 * find a next cpu a) which is online and b) in same chip.
315 nid = cpu_to_node(cpu);
316 l_cpumask = cpumask_of_node(nid);
317 target = cpumask_any_but(l_cpumask, cpu);
320 * Update the cpumask with the target cpu and
321 * migrate the context if needed
323 if (target >= 0 && target < nr_cpu_ids) {
324 cpumask_set_cpu(target, &nest_imc_cpumask);
325 nest_change_cpu_context(cpu, target);
327 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
328 get_hard_smp_processor_id(cpu));
330 * If this is the last cpu in this chip then, skip the reference
331 * count mutex lock and make the reference count on this chip zero.
333 ref = get_nest_pmu_ref(cpu);
342 static int ppc_nest_imc_cpu_online(unsigned int cpu)
344 const struct cpumask *l_cpumask;
345 static struct cpumask tmp_mask;
348 /* Get the cpumask of this node */
349 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
352 * If this is not the first online CPU on this node, then
355 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
359 * If this is the first online cpu on this node
360 * disable the nest counters by making an OPAL call.
362 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
363 get_hard_smp_processor_id(cpu));
367 /* Make this CPU the designated target for counter collection */
368 cpumask_set_cpu(cpu, &nest_imc_cpumask);
372 static int nest_pmu_cpumask_init(void)
374 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
375 "perf/powerpc/imc:online",
376 ppc_nest_imc_cpu_online,
377 ppc_nest_imc_cpu_offline);
380 static void nest_imc_counters_release(struct perf_event *event)
383 struct imc_pmu_ref *ref;
388 node_id = cpu_to_node(event->cpu);
391 * See if we need to disable the nest PMU.
392 * If no events are currently in use, then we have to take a
393 * mutex to ensure that we don't race with another task doing
394 * enable or disable the nest counters.
396 ref = get_nest_pmu_ref(event->cpu);
400 /* Take the mutex lock for this node and then decrement the reference count */
401 mutex_lock(&ref->lock);
402 if (ref->refc == 0) {
404 * The scenario where this is true is, when perf session is
405 * started, followed by offlining of all cpus in a given node.
407 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
408 * function set the ref->count to zero, if the cpu which is
409 * about to offline is the last cpu in a given node and make
410 * an OPAL call to disable the engine in that node.
413 mutex_unlock(&ref->lock);
417 if (ref->refc == 0) {
418 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
419 get_hard_smp_processor_id(event->cpu));
421 mutex_unlock(&ref->lock);
422 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
425 } else if (ref->refc < 0) {
426 WARN(1, "nest-imc: Invalid event reference count\n");
429 mutex_unlock(&ref->lock);
432 static int nest_imc_event_init(struct perf_event *event)
434 int chip_id, rc, node_id;
435 u32 l_config, config = event->attr.config;
436 struct imc_mem_info *pcni;
438 struct imc_pmu_ref *ref;
441 if (event->attr.type != event->pmu->type)
444 /* Sampling not supported */
445 if (event->hw.sample_period)
448 /* unsupported modes and filters */
449 if (event->attr.exclude_user ||
450 event->attr.exclude_kernel ||
451 event->attr.exclude_hv ||
452 event->attr.exclude_idle ||
453 event->attr.exclude_host ||
454 event->attr.exclude_guest)
460 pmu = imc_event_to_pmu(event);
462 /* Sanity check for config (event offset) */
463 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
467 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
468 * Get the base memory addresss for this cpu.
470 chip_id = topology_physical_package_id(event->cpu);
471 pcni = pmu->mem_info;
473 if (pcni->id == chip_id) {
484 * Add the event offset to the base address.
486 l_config = config & IMC_EVENT_OFFSET_MASK;
487 event->hw.event_base = (u64)pcni->vbase + l_config;
488 node_id = cpu_to_node(event->cpu);
491 * Get the imc_pmu_ref struct for this node.
492 * Take the mutex lock and then increment the count of nest pmu events
495 ref = get_nest_pmu_ref(event->cpu);
499 mutex_lock(&ref->lock);
500 if (ref->refc == 0) {
501 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
502 get_hard_smp_processor_id(event->cpu));
504 mutex_unlock(&ref->lock);
505 pr_err("nest-imc: Unable to start the counters for node %d\n",
511 mutex_unlock(&ref->lock);
513 event->destroy = nest_imc_counters_release;
518 * core_imc_mem_init : Initializes memory for the current core.
520 * Uses alloc_pages_node() and uses the returned address as an argument to
521 * an opal call to configure the pdbar. The address sent as an argument is
522 * converted to physical address before the opal call is made. This is the
523 * base address at which the core imc counters are populated.
525 static int core_imc_mem_init(int cpu, int size)
527 int phys_id, rc = 0, core_id = (cpu / threads_per_core);
528 struct imc_mem_info *mem_info;
531 * alloc_pages_node() will allocate memory for core in the
534 phys_id = topology_physical_package_id(cpu);
535 mem_info = &core_imc_pmu->mem_info[core_id];
536 mem_info->id = core_id;
538 /* We need only vbase for core counters */
539 mem_info->vbase = page_address(alloc_pages_node(phys_id,
540 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
541 __GFP_NOWARN, get_order(size)));
542 if (!mem_info->vbase)
546 core_imc_refc[core_id].id = core_id;
547 mutex_init(&core_imc_refc[core_id].lock);
549 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
550 __pa((void *)mem_info->vbase),
551 get_hard_smp_processor_id(cpu));
553 free_pages((u64)mem_info->vbase, get_order(size));
554 mem_info->vbase = NULL;
560 static bool is_core_imc_mem_inited(int cpu)
562 struct imc_mem_info *mem_info;
563 int core_id = (cpu / threads_per_core);
565 mem_info = &core_imc_pmu->mem_info[core_id];
566 if (!mem_info->vbase)
572 static int ppc_core_imc_cpu_online(unsigned int cpu)
574 const struct cpumask *l_cpumask;
575 static struct cpumask tmp_mask;
578 /* Get the cpumask for this core */
579 l_cpumask = cpu_sibling_mask(cpu);
581 /* If a cpu for this core is already set, then, don't do anything */
582 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
585 if (!is_core_imc_mem_inited(cpu)) {
586 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
588 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
593 /* set the cpu in the mask */
594 cpumask_set_cpu(cpu, &core_imc_cpumask);
598 static int ppc_core_imc_cpu_offline(unsigned int cpu)
600 unsigned int ncpu, core_id;
601 struct imc_pmu_ref *ref;
604 * clear this cpu out of the mask, if not present in the mask,
605 * don't bother doing anything.
607 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
610 /* Find any online cpu in that core except the current "cpu" */
611 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
613 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
614 cpumask_set_cpu(ncpu, &core_imc_cpumask);
615 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
618 * If this is the last cpu in this core then, skip taking refernce
619 * count mutex lock for this core and directly zero "refc" for
622 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
623 get_hard_smp_processor_id(cpu));
624 core_id = cpu / threads_per_core;
625 ref = &core_imc_refc[core_id];
634 static int core_imc_pmu_cpumask_init(void)
636 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
637 "perf/powerpc/imc_core:online",
638 ppc_core_imc_cpu_online,
639 ppc_core_imc_cpu_offline);
642 static void core_imc_counters_release(struct perf_event *event)
645 struct imc_pmu_ref *ref;
650 * See if we need to disable the IMC PMU.
651 * If no events are currently in use, then we have to take a
652 * mutex to ensure that we don't race with another task doing
653 * enable or disable the core counters.
655 core_id = event->cpu / threads_per_core;
657 /* Take the mutex lock and decrement the refernce count for this core */
658 ref = &core_imc_refc[core_id];
662 mutex_lock(&ref->lock);
663 if (ref->refc == 0) {
665 * The scenario where this is true is, when perf session is
666 * started, followed by offlining of all cpus in a given core.
668 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
669 * function set the ref->count to zero, if the cpu which is
670 * about to offline is the last cpu in a given core and make
671 * an OPAL call to disable the engine in that core.
674 mutex_unlock(&ref->lock);
678 if (ref->refc == 0) {
679 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
680 get_hard_smp_processor_id(event->cpu));
682 mutex_unlock(&ref->lock);
683 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
686 } else if (ref->refc < 0) {
687 WARN(1, "core-imc: Invalid event reference count\n");
690 mutex_unlock(&ref->lock);
693 static int core_imc_event_init(struct perf_event *event)
696 u64 config = event->attr.config;
697 struct imc_mem_info *pcmi;
699 struct imc_pmu_ref *ref;
701 if (event->attr.type != event->pmu->type)
704 /* Sampling not supported */
705 if (event->hw.sample_period)
708 /* unsupported modes and filters */
709 if (event->attr.exclude_user ||
710 event->attr.exclude_kernel ||
711 event->attr.exclude_hv ||
712 event->attr.exclude_idle ||
713 event->attr.exclude_host ||
714 event->attr.exclude_guest)
721 pmu = imc_event_to_pmu(event);
723 /* Sanity check for config (event offset) */
724 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
727 if (!is_core_imc_mem_inited(event->cpu))
730 core_id = event->cpu / threads_per_core;
731 pcmi = &core_imc_pmu->mem_info[core_id];
735 /* Get the core_imc mutex for this core */
736 ref = &core_imc_refc[core_id];
741 * Core pmu units are enabled only when it is used.
742 * See if this is triggered for the first time.
743 * If yes, take the mutex lock and enable the core counters.
744 * If not, just increment the count in core_imc_refc struct.
746 mutex_lock(&ref->lock);
747 if (ref->refc == 0) {
748 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
749 get_hard_smp_processor_id(event->cpu));
751 mutex_unlock(&ref->lock);
752 pr_err("core-imc: Unable to start the counters for core %d\n",
758 mutex_unlock(&ref->lock);
760 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
761 event->destroy = core_imc_counters_release;
766 * Allocates a page of memory for each of the online cpus, and write the
767 * physical base address of that page to the LDBAR for that cpu.
769 * LDBAR Register Layout:
771 * 0 4 8 12 16 20 24 28
772 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
773 * | | [ ] [ Counter Address [8:50]
778 * 32 36 40 44 48 52 56 60
779 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
780 * Counter Address [8:50] ]
783 static int thread_imc_mem_alloc(int cpu_id, int size)
785 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
786 int phys_id = topology_physical_package_id(cpu_id);
790 * This case could happen only once at start, since we dont
791 * free the memory in cpu offline path.
793 local_mem = page_address(alloc_pages_node(phys_id,
794 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
795 __GFP_NOWARN, get_order(size)));
799 per_cpu(thread_imc_mem, cpu_id) = local_mem;
802 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
804 mtspr(SPRN_LDBAR, ldbar_value);
808 static int ppc_thread_imc_cpu_online(unsigned int cpu)
810 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
813 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
815 mtspr(SPRN_LDBAR, 0);
819 static int thread_imc_cpu_init(void)
821 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
822 "perf/powerpc/imc_thread:online",
823 ppc_thread_imc_cpu_online,
824 ppc_thread_imc_cpu_offline);
827 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
831 struct imc_pmu_ref *ref;
833 if (!is_core_imc_mem_inited(smp_processor_id()))
836 core_id = smp_processor_id() / threads_per_core;
838 * imc pmus are enabled only when it is used.
839 * See if this is triggered for the first time.
840 * If yes, take the mutex lock and enable the counters.
841 * If not, just increment the count in ref count struct.
843 ref = &core_imc_refc[core_id];
848 mutex_lock(&ref->lock);
849 if (ref->refc == 0) {
850 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
851 get_hard_smp_processor_id(smp_processor_id()))) {
852 mutex_unlock(&ref->lock);
853 pr_err("thread-imc: Unable to start the counter\
854 for core %d\n", core_id);
859 mutex_unlock(&ref->lock);
861 mutex_lock(&ref->lock);
863 if (ref->refc == 0) {
864 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
865 get_hard_smp_processor_id(smp_processor_id()))) {
866 mutex_unlock(&ref->lock);
867 pr_err("thread-imc: Unable to stop the counters\
868 for core %d\n", core_id);
871 } else if (ref->refc < 0) {
874 mutex_unlock(&ref->lock);
880 static int thread_imc_event_init(struct perf_event *event)
882 u32 config = event->attr.config;
883 struct task_struct *target;
886 if (event->attr.type != event->pmu->type)
889 /* Sampling not supported */
890 if (event->hw.sample_period)
894 pmu = imc_event_to_pmu(event);
896 /* Sanity check for config offset */
897 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
900 target = event->hw.target;
904 event->pmu->task_ctx_nr = perf_sw_context;
908 static bool is_thread_imc_pmu(struct perf_event *event)
910 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
916 static u64 * get_event_base_addr(struct perf_event *event)
920 if (is_thread_imc_pmu(event)) {
921 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
922 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
925 return (u64 *)event->hw.event_base;
928 static void thread_imc_pmu_start_txn(struct pmu *pmu,
929 unsigned int txn_flags)
931 if (txn_flags & ~PERF_PMU_TXN_ADD)
933 perf_pmu_disable(pmu);
936 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
938 perf_pmu_enable(pmu);
941 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
943 perf_pmu_enable(pmu);
947 static u64 imc_read_counter(struct perf_event *event)
952 * In-Memory Collection (IMC) counters are free flowing counters.
953 * So we take a snapshot of the counter value on enable and save it
954 * to calculate the delta at later stage to present the event counter
957 addr = get_event_base_addr(event);
958 data = be64_to_cpu(READ_ONCE(*addr));
959 local64_set(&event->hw.prev_count, data);
964 static void imc_event_update(struct perf_event *event)
966 u64 counter_prev, counter_new, final_count;
968 counter_prev = local64_read(&event->hw.prev_count);
969 counter_new = imc_read_counter(event);
970 final_count = counter_new - counter_prev;
972 /* Update the delta to the event count */
973 local64_add(final_count, &event->count);
976 static void imc_event_start(struct perf_event *event, int flags)
979 * In Memory Counters are free flowing counters. HW or the microcode
980 * keeps adding to the counter offset in memory. To get event
981 * counter value, we snapshot the value here and we calculate
982 * delta at later point.
984 imc_read_counter(event);
987 static void imc_event_stop(struct perf_event *event, int flags)
990 * Take a snapshot and calculate the delta and update
991 * the event counter values.
993 imc_event_update(event);
996 static int imc_event_add(struct perf_event *event, int flags)
998 if (flags & PERF_EF_START)
999 imc_event_start(event, flags);
1004 static int thread_imc_event_add(struct perf_event *event, int flags)
1006 if (flags & PERF_EF_START)
1007 imc_event_start(event, flags);
1009 /* Enable the sched_task to start the engine */
1010 perf_sched_cb_inc(event->ctx->pmu);
1014 static void thread_imc_event_del(struct perf_event *event, int flags)
1017 * Take a snapshot and calculate the delta and update
1018 * the event counter values.
1020 imc_event_update(event);
1021 perf_sched_cb_dec(event->ctx->pmu);
1024 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1025 static int update_pmu_ops(struct imc_pmu *pmu)
1027 pmu->pmu.task_ctx_nr = perf_invalid_context;
1028 pmu->pmu.add = imc_event_add;
1029 pmu->pmu.del = imc_event_stop;
1030 pmu->pmu.start = imc_event_start;
1031 pmu->pmu.stop = imc_event_stop;
1032 pmu->pmu.read = imc_event_update;
1033 pmu->pmu.attr_groups = pmu->attr_groups;
1034 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1036 switch (pmu->domain) {
1037 case IMC_DOMAIN_NEST:
1038 pmu->pmu.event_init = nest_imc_event_init;
1039 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1041 case IMC_DOMAIN_CORE:
1042 pmu->pmu.event_init = core_imc_event_init;
1043 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1045 case IMC_DOMAIN_THREAD:
1046 pmu->pmu.event_init = thread_imc_event_init;
1047 pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1048 pmu->pmu.add = thread_imc_event_add;
1049 pmu->pmu.del = thread_imc_event_del;
1050 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1051 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1052 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1061 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1062 static int init_nest_pmu_ref(void)
1066 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1073 for_each_node(nid) {
1075 * Mutex lock to avoid races while tracking the number of
1076 * sessions using the chip's nest pmu units.
1078 mutex_init(&nest_imc_refc[i].lock);
1081 * Loop to init the "id" with the node_id. Variable "i" initialized to
1082 * 0 and will be used as index to the array. "i" will not go off the
1083 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1086 nest_imc_refc[i++].id = nid;
1090 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1091 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1093 for_each_possible_cpu(cpu) {
1094 nid = cpu_to_node(cpu);
1095 for (i = 0; i < num_possible_nodes(); i++) {
1096 if (nest_imc_refc[i].id == nid) {
1097 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1105 static void cleanup_all_core_imc_memory(void)
1107 int i, nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1108 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1109 int size = core_imc_pmu->counter_mem_size;
1111 /* mem_info will never be NULL */
1112 for (i = 0; i < nr_cores; i++) {
1114 free_pages((u64)ptr->vbase, get_order(size));
1118 kfree(core_imc_refc);
1121 static void thread_imc_ldbar_disable(void *dummy)
1124 * By Zeroing LDBAR, we disable thread-imc
1127 mtspr(SPRN_LDBAR, 0);
1130 void thread_imc_disable(void)
1132 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1135 static void cleanup_all_thread_imc_memory(void)
1137 int i, order = get_order(thread_imc_mem_size);
1139 for_each_online_cpu(i) {
1140 if (per_cpu(thread_imc_mem, i))
1141 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1147 * Common function to unregister cpu hotplug callback and
1149 * TODO: Need to handle pmu unregistering, which will be
1150 * done in followup series.
1152 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1154 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1155 mutex_lock(&nest_init_lock);
1156 if (nest_pmus == 1) {
1157 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1158 kfree(nest_imc_refc);
1163 mutex_unlock(&nest_init_lock);
1166 /* Free core_imc memory */
1167 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1168 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1169 cleanup_all_core_imc_memory();
1172 /* Free thread_imc memory */
1173 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1174 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1175 cleanup_all_thread_imc_memory();
1178 /* Only free the attr_groups which are dynamically allocated */
1179 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1180 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1181 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1188 * imc_mem_init : Function to support memory allocation for core imc.
1190 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1194 int nr_cores, cpu, res;
1196 if (of_property_read_string(parent, "name", &s))
1199 switch (pmu_ptr->domain) {
1200 case IMC_DOMAIN_NEST:
1201 /* Update the pmu name */
1202 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1203 if (!pmu_ptr->pmu.name)
1206 /* Needed for hotplug/migration */
1207 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1209 case IMC_DOMAIN_CORE:
1210 /* Update the pmu name */
1211 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1212 if (!pmu_ptr->pmu.name)
1215 nr_cores = DIV_ROUND_UP(num_present_cpus(), threads_per_core);
1216 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1219 if (!pmu_ptr->mem_info)
1222 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1228 core_imc_pmu = pmu_ptr;
1230 case IMC_DOMAIN_THREAD:
1231 /* Update the pmu name */
1232 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1233 if (!pmu_ptr->pmu.name)
1236 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1237 for_each_online_cpu(cpu) {
1238 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1243 thread_imc_pmu = pmu_ptr;
1253 * init_imc_pmu : Setup and register the IMC pmu device.
1255 * @parent: Device tree unit node
1256 * @pmu_ptr: memory allocated for this pmu
1257 * @pmu_idx: Count of nest pmc registered
1259 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1260 * Handles failure cases and accordingly frees memory.
1262 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1266 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1270 switch (pmu_ptr->domain) {
1271 case IMC_DOMAIN_NEST:
1273 * Nest imc pmu need only one cpu per chip, we initialize the
1274 * cpumask for the first nest imc pmu and use the same for the
1275 * rest. To handle the cpuhotplug callback unregister, we track
1276 * the number of nest pmus in "nest_pmus".
1278 mutex_lock(&nest_init_lock);
1279 if (nest_pmus == 0) {
1280 ret = init_nest_pmu_ref();
1282 mutex_unlock(&nest_init_lock);
1285 /* Register for cpu hotplug notification. */
1286 ret = nest_pmu_cpumask_init();
1288 mutex_unlock(&nest_init_lock);
1293 mutex_unlock(&nest_init_lock);
1295 case IMC_DOMAIN_CORE:
1296 ret = core_imc_pmu_cpumask_init();
1298 cleanup_all_core_imc_memory();
1303 case IMC_DOMAIN_THREAD:
1304 ret = thread_imc_cpu_init();
1306 cleanup_all_thread_imc_memory();
1312 return -1; /* Unknown domain */
1315 ret = update_events_in_group(parent, pmu_ptr);
1319 ret = update_pmu_ops(pmu_ptr);
1323 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1327 pr_info("%s performance monitor hardware support registered\n",
1333 imc_common_cpuhp_mem_free(pmu_ptr);