Merge branches 'x86/early-printk', 'x86/microcode' and 'core/objtool' into x86/urgent...
[sfrench/cifs-2.6.git] / arch / powerpc / perf / imc-pmu.c
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20
21 /* Nest IMC data structures and variables */
22
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33
34 /* Core IMC data structures and variables */
35
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39
40 /* Thread IMC data structures and variables */
41
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45
46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48         return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56         &format_attr_event.attr,
57         &format_attr_offset.attr,
58         &format_attr_rvalue.attr,
59         &format_attr_mode.attr,
60         NULL,
61 };
62
63 static struct attribute_group imc_format_group = {
64         .name = "format",
65         .attrs = imc_format_attrs,
66 };
67
68 /* Get the cpumask printed to a buffer "buf" */
69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70                                         struct device_attribute *attr,
71                                         char *buf)
72 {
73         struct pmu *pmu = dev_get_drvdata(dev);
74         struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75         cpumask_t *active_mask;
76
77         switch(imc_pmu->domain){
78         case IMC_DOMAIN_NEST:
79                 active_mask = &nest_imc_cpumask;
80                 break;
81         case IMC_DOMAIN_CORE:
82                 active_mask = &core_imc_cpumask;
83                 break;
84         default:
85                 return 0;
86         }
87
88         return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94         &dev_attr_cpumask.attr,
95         NULL,
96 };
97
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99         .attrs = imc_pmu_cpumask_attrs,
100 };
101
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105         struct perf_pmu_events_attr *attr;
106
107         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108         if (!attr)
109                 return NULL;
110         sysfs_attr_init(&attr->attr.attr);
111
112         attr->event_str = str;
113         attr->attr.attr.name = name;
114         attr->attr.attr.mode = 0444;
115         attr->attr.show = perf_event_sysfs_show;
116
117         return &attr->attr.attr;
118 }
119
120 static int imc_parse_event(struct device_node *np, const char *scale,
121                                   const char *unit, const char *prefix,
122                                   u32 base, struct imc_events *event)
123 {
124         const char *s;
125         u32 reg;
126
127         if (of_property_read_u32(np, "reg", &reg))
128                 goto error;
129         /* Add the base_reg value to the "reg" */
130         event->value = base + reg;
131
132         if (of_property_read_string(np, "event-name", &s))
133                 goto error;
134
135         event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
136         if (!event->name)
137                 goto error;
138
139         if (of_property_read_string(np, "scale", &s))
140                 s = scale;
141
142         if (s) {
143                 event->scale = kstrdup(s, GFP_KERNEL);
144                 if (!event->scale)
145                         goto error;
146         }
147
148         if (of_property_read_string(np, "unit", &s))
149                 s = unit;
150
151         if (s) {
152                 event->unit = kstrdup(s, GFP_KERNEL);
153                 if (!event->unit)
154                         goto error;
155         }
156
157         return 0;
158 error:
159         kfree(event->unit);
160         kfree(event->scale);
161         kfree(event->name);
162         return -EINVAL;
163 }
164
165 /*
166  * imc_free_events: Function to cleanup the events list, having
167  *                  "nr_entries".
168  */
169 static void imc_free_events(struct imc_events *events, int nr_entries)
170 {
171         int i;
172
173         /* Nothing to clean, return */
174         if (!events)
175                 return;
176         for (i = 0; i < nr_entries; i++) {
177                 kfree(events[i].unit);
178                 kfree(events[i].scale);
179                 kfree(events[i].name);
180         }
181
182         kfree(events);
183 }
184
185 /*
186  * update_events_in_group: Update the "events" information in an attr_group
187  *                         and assign the attr_group to the pmu "pmu".
188  */
189 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
190 {
191         struct attribute_group *attr_group;
192         struct attribute **attrs, *dev_str;
193         struct device_node *np, *pmu_events;
194         u32 handle, base_reg;
195         int i = 0, j = 0, ct, ret;
196         const char *prefix, *g_scale, *g_unit;
197         const char *ev_val_str, *ev_scale_str, *ev_unit_str;
198
199         if (!of_property_read_u32(node, "events", &handle))
200                 pmu_events = of_find_node_by_phandle(handle);
201         else
202                 return 0;
203
204         /* Did not find any node with a given phandle */
205         if (!pmu_events)
206                 return 0;
207
208         /* Get a count of number of child nodes */
209         ct = of_get_child_count(pmu_events);
210
211         /* Get the event prefix */
212         if (of_property_read_string(node, "events-prefix", &prefix))
213                 return 0;
214
215         /* Get a global unit and scale data if available */
216         if (of_property_read_string(node, "scale", &g_scale))
217                 g_scale = NULL;
218
219         if (of_property_read_string(node, "unit", &g_unit))
220                 g_unit = NULL;
221
222         /* "reg" property gives out the base offset of the counters data */
223         of_property_read_u32(node, "reg", &base_reg);
224
225         /* Allocate memory for the events */
226         pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
227         if (!pmu->events)
228                 return -ENOMEM;
229
230         ct = 0;
231         /* Parse the events and update the struct */
232         for_each_child_of_node(pmu_events, np) {
233                 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
234                 if (!ret)
235                         ct++;
236         }
237
238         /* Allocate memory for attribute group */
239         attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
240         if (!attr_group) {
241                 imc_free_events(pmu->events, ct);
242                 return -ENOMEM;
243         }
244
245         /*
246          * Allocate memory for attributes.
247          * Since we have count of events for this pmu, we also allocate
248          * memory for the scale and unit attribute for now.
249          * "ct" has the total event structs added from the events-parent node.
250          * So allocate three times the "ct" (this includes event, event_scale and
251          * event_unit).
252          */
253         attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
254         if (!attrs) {
255                 kfree(attr_group);
256                 imc_free_events(pmu->events, ct);
257                 return -ENOMEM;
258         }
259
260         attr_group->name = "events";
261         attr_group->attrs = attrs;
262         do {
263                 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
264                 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
265                 if (!dev_str)
266                         continue;
267
268                 attrs[j++] = dev_str;
269                 if (pmu->events[i].scale) {
270                         ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
271                         dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
272                         if (!dev_str)
273                                 continue;
274
275                         attrs[j++] = dev_str;
276                 }
277
278                 if (pmu->events[i].unit) {
279                         ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
280                         dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
281                         if (!dev_str)
282                                 continue;
283
284                         attrs[j++] = dev_str;
285                 }
286         } while (++i < ct);
287
288         /* Save the event attribute */
289         pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
290
291         return 0;
292 }
293
294 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
295 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
296 {
297         return per_cpu(local_nest_imc_refc, cpu);
298 }
299
300 static void nest_change_cpu_context(int old_cpu, int new_cpu)
301 {
302         struct imc_pmu **pn = per_nest_pmu_arr;
303
304         if (old_cpu < 0 || new_cpu < 0)
305                 return;
306
307         while (*pn) {
308                 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
309                 pn++;
310         }
311 }
312
313 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
314 {
315         int nid, target = -1;
316         const struct cpumask *l_cpumask;
317         struct imc_pmu_ref *ref;
318
319         /*
320          * Check in the designated list for this cpu. Dont bother
321          * if not one of them.
322          */
323         if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
324                 return 0;
325
326         /*
327          * Check whether nest_imc is registered. We could end up here if the
328          * cpuhotplug callback registration fails. i.e, callback invokes the
329          * offline path for all successfully registered nodes. At this stage,
330          * nest_imc pmu will not be registered and we should return here.
331          *
332          * We return with a zero since this is not an offline failure. And
333          * cpuhp_setup_state() returns the actual failure reason to the caller,
334          * which in turn will call the cleanup routine.
335          */
336         if (!nest_pmus)
337                 return 0;
338
339         /*
340          * Now that this cpu is one of the designated,
341          * find a next cpu a) which is online and b) in same chip.
342          */
343         nid = cpu_to_node(cpu);
344         l_cpumask = cpumask_of_node(nid);
345         target = cpumask_any_but(l_cpumask, cpu);
346
347         /*
348          * Update the cpumask with the target cpu and
349          * migrate the context if needed
350          */
351         if (target >= 0 && target < nr_cpu_ids) {
352                 cpumask_set_cpu(target, &nest_imc_cpumask);
353                 nest_change_cpu_context(cpu, target);
354         } else {
355                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
356                                        get_hard_smp_processor_id(cpu));
357                 /*
358                  * If this is the last cpu in this chip then, skip the reference
359                  * count mutex lock and make the reference count on this chip zero.
360                  */
361                 ref = get_nest_pmu_ref(cpu);
362                 if (!ref)
363                         return -EINVAL;
364
365                 ref->refc = 0;
366         }
367         return 0;
368 }
369
370 static int ppc_nest_imc_cpu_online(unsigned int cpu)
371 {
372         const struct cpumask *l_cpumask;
373         static struct cpumask tmp_mask;
374         int res;
375
376         /* Get the cpumask of this node */
377         l_cpumask = cpumask_of_node(cpu_to_node(cpu));
378
379         /*
380          * If this is not the first online CPU on this node, then
381          * just return.
382          */
383         if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
384                 return 0;
385
386         /*
387          * If this is the first online cpu on this node
388          * disable the nest counters by making an OPAL call.
389          */
390         res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
391                                      get_hard_smp_processor_id(cpu));
392         if (res)
393                 return res;
394
395         /* Make this CPU the designated target for counter collection */
396         cpumask_set_cpu(cpu, &nest_imc_cpumask);
397         return 0;
398 }
399
400 static int nest_pmu_cpumask_init(void)
401 {
402         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
403                                  "perf/powerpc/imc:online",
404                                  ppc_nest_imc_cpu_online,
405                                  ppc_nest_imc_cpu_offline);
406 }
407
408 static void nest_imc_counters_release(struct perf_event *event)
409 {
410         int rc, node_id;
411         struct imc_pmu_ref *ref;
412
413         if (event->cpu < 0)
414                 return;
415
416         node_id = cpu_to_node(event->cpu);
417
418         /*
419          * See if we need to disable the nest PMU.
420          * If no events are currently in use, then we have to take a
421          * mutex to ensure that we don't race with another task doing
422          * enable or disable the nest counters.
423          */
424         ref = get_nest_pmu_ref(event->cpu);
425         if (!ref)
426                 return;
427
428         /* Take the mutex lock for this node and then decrement the reference count */
429         mutex_lock(&ref->lock);
430         if (ref->refc == 0) {
431                 /*
432                  * The scenario where this is true is, when perf session is
433                  * started, followed by offlining of all cpus in a given node.
434                  *
435                  * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
436                  * function set the ref->count to zero, if the cpu which is
437                  * about to offline is the last cpu in a given node and make
438                  * an OPAL call to disable the engine in that node.
439                  *
440                  */
441                 mutex_unlock(&ref->lock);
442                 return;
443         }
444         ref->refc--;
445         if (ref->refc == 0) {
446                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
447                                             get_hard_smp_processor_id(event->cpu));
448                 if (rc) {
449                         mutex_unlock(&ref->lock);
450                         pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
451                         return;
452                 }
453         } else if (ref->refc < 0) {
454                 WARN(1, "nest-imc: Invalid event reference count\n");
455                 ref->refc = 0;
456         }
457         mutex_unlock(&ref->lock);
458 }
459
460 static int nest_imc_event_init(struct perf_event *event)
461 {
462         int chip_id, rc, node_id;
463         u32 l_config, config = event->attr.config;
464         struct imc_mem_info *pcni;
465         struct imc_pmu *pmu;
466         struct imc_pmu_ref *ref;
467         bool flag = false;
468
469         if (event->attr.type != event->pmu->type)
470                 return -ENOENT;
471
472         /* Sampling not supported */
473         if (event->hw.sample_period)
474                 return -EINVAL;
475
476         /* unsupported modes and filters */
477         if (event->attr.exclude_user   ||
478             event->attr.exclude_kernel ||
479             event->attr.exclude_hv     ||
480             event->attr.exclude_idle   ||
481             event->attr.exclude_host   ||
482             event->attr.exclude_guest)
483                 return -EINVAL;
484
485         if (event->cpu < 0)
486                 return -EINVAL;
487
488         pmu = imc_event_to_pmu(event);
489
490         /* Sanity check for config (event offset) */
491         if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
492                 return -EINVAL;
493
494         /*
495          * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
496          * Get the base memory addresss for this cpu.
497          */
498         chip_id = cpu_to_chip_id(event->cpu);
499         pcni = pmu->mem_info;
500         do {
501                 if (pcni->id == chip_id) {
502                         flag = true;
503                         break;
504                 }
505                 pcni++;
506         } while (pcni);
507
508         if (!flag)
509                 return -ENODEV;
510
511         /*
512          * Add the event offset to the base address.
513          */
514         l_config = config & IMC_EVENT_OFFSET_MASK;
515         event->hw.event_base = (u64)pcni->vbase + l_config;
516         node_id = cpu_to_node(event->cpu);
517
518         /*
519          * Get the imc_pmu_ref struct for this node.
520          * Take the mutex lock and then increment the count of nest pmu events
521          * inited.
522          */
523         ref = get_nest_pmu_ref(event->cpu);
524         if (!ref)
525                 return -EINVAL;
526
527         mutex_lock(&ref->lock);
528         if (ref->refc == 0) {
529                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
530                                              get_hard_smp_processor_id(event->cpu));
531                 if (rc) {
532                         mutex_unlock(&ref->lock);
533                         pr_err("nest-imc: Unable to start the counters for node %d\n",
534                                                                         node_id);
535                         return rc;
536                 }
537         }
538         ++ref->refc;
539         mutex_unlock(&ref->lock);
540
541         event->destroy = nest_imc_counters_release;
542         return 0;
543 }
544
545 /*
546  * core_imc_mem_init : Initializes memory for the current core.
547  *
548  * Uses alloc_pages_node() and uses the returned address as an argument to
549  * an opal call to configure the pdbar. The address sent as an argument is
550  * converted to physical address before the opal call is made. This is the
551  * base address at which the core imc counters are populated.
552  */
553 static int core_imc_mem_init(int cpu, int size)
554 {
555         int nid, rc = 0, core_id = (cpu / threads_per_core);
556         struct imc_mem_info *mem_info;
557
558         /*
559          * alloc_pages_node() will allocate memory for core in the
560          * local node only.
561          */
562         nid = cpu_to_node(cpu);
563         mem_info = &core_imc_pmu->mem_info[core_id];
564         mem_info->id = core_id;
565
566         /* We need only vbase for core counters */
567         mem_info->vbase = page_address(alloc_pages_node(nid,
568                                           GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
569                                           __GFP_NOWARN, get_order(size)));
570         if (!mem_info->vbase)
571                 return -ENOMEM;
572
573         /* Init the mutex */
574         core_imc_refc[core_id].id = core_id;
575         mutex_init(&core_imc_refc[core_id].lock);
576
577         rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
578                                 __pa((void *)mem_info->vbase),
579                                 get_hard_smp_processor_id(cpu));
580         if (rc) {
581                 free_pages((u64)mem_info->vbase, get_order(size));
582                 mem_info->vbase = NULL;
583         }
584
585         return rc;
586 }
587
588 static bool is_core_imc_mem_inited(int cpu)
589 {
590         struct imc_mem_info *mem_info;
591         int core_id = (cpu / threads_per_core);
592
593         mem_info = &core_imc_pmu->mem_info[core_id];
594         if (!mem_info->vbase)
595                 return false;
596
597         return true;
598 }
599
600 static int ppc_core_imc_cpu_online(unsigned int cpu)
601 {
602         const struct cpumask *l_cpumask;
603         static struct cpumask tmp_mask;
604         int ret = 0;
605
606         /* Get the cpumask for this core */
607         l_cpumask = cpu_sibling_mask(cpu);
608
609         /* If a cpu for this core is already set, then, don't do anything */
610         if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
611                 return 0;
612
613         if (!is_core_imc_mem_inited(cpu)) {
614                 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
615                 if (ret) {
616                         pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
617                         return ret;
618                 }
619         }
620
621         /* set the cpu in the mask */
622         cpumask_set_cpu(cpu, &core_imc_cpumask);
623         return 0;
624 }
625
626 static int ppc_core_imc_cpu_offline(unsigned int cpu)
627 {
628         unsigned int core_id;
629         int ncpu;
630         struct imc_pmu_ref *ref;
631
632         /*
633          * clear this cpu out of the mask, if not present in the mask,
634          * don't bother doing anything.
635          */
636         if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
637                 return 0;
638
639         /*
640          * Check whether core_imc is registered. We could end up here
641          * if the cpuhotplug callback registration fails. i.e, callback
642          * invokes the offline path for all sucessfully registered cpus.
643          * At this stage, core_imc pmu will not be registered and we
644          * should return here.
645          *
646          * We return with a zero since this is not an offline failure.
647          * And cpuhp_setup_state() returns the actual failure reason
648          * to the caller, which inturn will call the cleanup routine.
649          */
650         if (!core_imc_pmu->pmu.event_init)
651                 return 0;
652
653         /* Find any online cpu in that core except the current "cpu" */
654         ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
655
656         if (ncpu >= 0 && ncpu < nr_cpu_ids) {
657                 cpumask_set_cpu(ncpu, &core_imc_cpumask);
658                 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
659         } else {
660                 /*
661                  * If this is the last cpu in this core then, skip taking refernce
662                  * count mutex lock for this core and directly zero "refc" for
663                  * this core.
664                  */
665                 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
666                                        get_hard_smp_processor_id(cpu));
667                 core_id = cpu / threads_per_core;
668                 ref = &core_imc_refc[core_id];
669                 if (!ref)
670                         return -EINVAL;
671
672                 ref->refc = 0;
673         }
674         return 0;
675 }
676
677 static int core_imc_pmu_cpumask_init(void)
678 {
679         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
680                                  "perf/powerpc/imc_core:online",
681                                  ppc_core_imc_cpu_online,
682                                  ppc_core_imc_cpu_offline);
683 }
684
685 static void core_imc_counters_release(struct perf_event *event)
686 {
687         int rc, core_id;
688         struct imc_pmu_ref *ref;
689
690         if (event->cpu < 0)
691                 return;
692         /*
693          * See if we need to disable the IMC PMU.
694          * If no events are currently in use, then we have to take a
695          * mutex to ensure that we don't race with another task doing
696          * enable or disable the core counters.
697          */
698         core_id = event->cpu / threads_per_core;
699
700         /* Take the mutex lock and decrement the refernce count for this core */
701         ref = &core_imc_refc[core_id];
702         if (!ref)
703                 return;
704
705         mutex_lock(&ref->lock);
706         if (ref->refc == 0) {
707                 /*
708                  * The scenario where this is true is, when perf session is
709                  * started, followed by offlining of all cpus in a given core.
710                  *
711                  * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
712                  * function set the ref->count to zero, if the cpu which is
713                  * about to offline is the last cpu in a given core and make
714                  * an OPAL call to disable the engine in that core.
715                  *
716                  */
717                 mutex_unlock(&ref->lock);
718                 return;
719         }
720         ref->refc--;
721         if (ref->refc == 0) {
722                 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
723                                             get_hard_smp_processor_id(event->cpu));
724                 if (rc) {
725                         mutex_unlock(&ref->lock);
726                         pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
727                         return;
728                 }
729         } else if (ref->refc < 0) {
730                 WARN(1, "core-imc: Invalid event reference count\n");
731                 ref->refc = 0;
732         }
733         mutex_unlock(&ref->lock);
734 }
735
736 static int core_imc_event_init(struct perf_event *event)
737 {
738         int core_id, rc;
739         u64 config = event->attr.config;
740         struct imc_mem_info *pcmi;
741         struct imc_pmu *pmu;
742         struct imc_pmu_ref *ref;
743
744         if (event->attr.type != event->pmu->type)
745                 return -ENOENT;
746
747         /* Sampling not supported */
748         if (event->hw.sample_period)
749                 return -EINVAL;
750
751         /* unsupported modes and filters */
752         if (event->attr.exclude_user   ||
753             event->attr.exclude_kernel ||
754             event->attr.exclude_hv     ||
755             event->attr.exclude_idle   ||
756             event->attr.exclude_host   ||
757             event->attr.exclude_guest)
758                 return -EINVAL;
759
760         if (event->cpu < 0)
761                 return -EINVAL;
762
763         event->hw.idx = -1;
764         pmu = imc_event_to_pmu(event);
765
766         /* Sanity check for config (event offset) */
767         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
768                 return -EINVAL;
769
770         if (!is_core_imc_mem_inited(event->cpu))
771                 return -ENODEV;
772
773         core_id = event->cpu / threads_per_core;
774         pcmi = &core_imc_pmu->mem_info[core_id];
775         if ((!pcmi->vbase))
776                 return -ENODEV;
777
778         /* Get the core_imc mutex for this core */
779         ref = &core_imc_refc[core_id];
780         if (!ref)
781                 return -EINVAL;
782
783         /*
784          * Core pmu units are enabled only when it is used.
785          * See if this is triggered for the first time.
786          * If yes, take the mutex lock and enable the core counters.
787          * If not, just increment the count in core_imc_refc struct.
788          */
789         mutex_lock(&ref->lock);
790         if (ref->refc == 0) {
791                 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
792                                              get_hard_smp_processor_id(event->cpu));
793                 if (rc) {
794                         mutex_unlock(&ref->lock);
795                         pr_err("core-imc: Unable to start the counters for core %d\n",
796                                                                         core_id);
797                         return rc;
798                 }
799         }
800         ++ref->refc;
801         mutex_unlock(&ref->lock);
802
803         event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
804         event->destroy = core_imc_counters_release;
805         return 0;
806 }
807
808 /*
809  * Allocates a page of memory for each of the online cpus, and write the
810  * physical base address of that page to the LDBAR for that cpu.
811  *
812  * LDBAR Register Layout:
813  *
814  *  0          4         8         12        16        20        24        28
815  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
816  *   | |       [   ]    [                   Counter Address [8:50]
817  *   | * Mode    |
818  *   |           * PB Scope
819  *   * Enable/Disable
820  *
821  *  32        36        40        44        48        52        56        60
822  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
823  *           Counter Address [8:50]              ]
824  *
825  */
826 static int thread_imc_mem_alloc(int cpu_id, int size)
827 {
828         u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
829         int nid = cpu_to_node(cpu_id);
830
831         if (!local_mem) {
832                 /*
833                  * This case could happen only once at start, since we dont
834                  * free the memory in cpu offline path.
835                  */
836                 local_mem = page_address(alloc_pages_node(nid,
837                                   GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
838                                   __GFP_NOWARN, get_order(size)));
839                 if (!local_mem)
840                         return -ENOMEM;
841
842                 per_cpu(thread_imc_mem, cpu_id) = local_mem;
843         }
844
845         ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
846
847         mtspr(SPRN_LDBAR, ldbar_value);
848         return 0;
849 }
850
851 static int ppc_thread_imc_cpu_online(unsigned int cpu)
852 {
853         return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
854 }
855
856 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
857 {
858         mtspr(SPRN_LDBAR, 0);
859         return 0;
860 }
861
862 static int thread_imc_cpu_init(void)
863 {
864         return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
865                           "perf/powerpc/imc_thread:online",
866                           ppc_thread_imc_cpu_online,
867                           ppc_thread_imc_cpu_offline);
868 }
869
870 static int thread_imc_event_init(struct perf_event *event)
871 {
872         u32 config = event->attr.config;
873         struct task_struct *target;
874         struct imc_pmu *pmu;
875
876         if (event->attr.type != event->pmu->type)
877                 return -ENOENT;
878
879         /* Sampling not supported */
880         if (event->hw.sample_period)
881                 return -EINVAL;
882
883         event->hw.idx = -1;
884         pmu = imc_event_to_pmu(event);
885
886         /* Sanity check for config offset */
887         if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
888                 return -EINVAL;
889
890         target = event->hw.target;
891         if (!target)
892                 return -EINVAL;
893
894         event->pmu->task_ctx_nr = perf_sw_context;
895         return 0;
896 }
897
898 static bool is_thread_imc_pmu(struct perf_event *event)
899 {
900         if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
901                 return true;
902
903         return false;
904 }
905
906 static u64 * get_event_base_addr(struct perf_event *event)
907 {
908         u64 addr;
909
910         if (is_thread_imc_pmu(event)) {
911                 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
912                 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
913         }
914
915         return (u64 *)event->hw.event_base;
916 }
917
918 static void thread_imc_pmu_start_txn(struct pmu *pmu,
919                                      unsigned int txn_flags)
920 {
921         if (txn_flags & ~PERF_PMU_TXN_ADD)
922                 return;
923         perf_pmu_disable(pmu);
924 }
925
926 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
927 {
928         perf_pmu_enable(pmu);
929 }
930
931 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
932 {
933         perf_pmu_enable(pmu);
934         return 0;
935 }
936
937 static u64 imc_read_counter(struct perf_event *event)
938 {
939         u64 *addr, data;
940
941         /*
942          * In-Memory Collection (IMC) counters are free flowing counters.
943          * So we take a snapshot of the counter value on enable and save it
944          * to calculate the delta at later stage to present the event counter
945          * value.
946          */
947         addr = get_event_base_addr(event);
948         data = be64_to_cpu(READ_ONCE(*addr));
949         local64_set(&event->hw.prev_count, data);
950
951         return data;
952 }
953
954 static void imc_event_update(struct perf_event *event)
955 {
956         u64 counter_prev, counter_new, final_count;
957
958         counter_prev = local64_read(&event->hw.prev_count);
959         counter_new = imc_read_counter(event);
960         final_count = counter_new - counter_prev;
961
962         /* Update the delta to the event count */
963         local64_add(final_count, &event->count);
964 }
965
966 static void imc_event_start(struct perf_event *event, int flags)
967 {
968         /*
969          * In Memory Counters are free flowing counters. HW or the microcode
970          * keeps adding to the counter offset in memory. To get event
971          * counter value, we snapshot the value here and we calculate
972          * delta at later point.
973          */
974         imc_read_counter(event);
975 }
976
977 static void imc_event_stop(struct perf_event *event, int flags)
978 {
979         /*
980          * Take a snapshot and calculate the delta and update
981          * the event counter values.
982          */
983         imc_event_update(event);
984 }
985
986 static int imc_event_add(struct perf_event *event, int flags)
987 {
988         if (flags & PERF_EF_START)
989                 imc_event_start(event, flags);
990
991         return 0;
992 }
993
994 static int thread_imc_event_add(struct perf_event *event, int flags)
995 {
996         int core_id;
997         struct imc_pmu_ref *ref;
998
999         if (flags & PERF_EF_START)
1000                 imc_event_start(event, flags);
1001
1002         if (!is_core_imc_mem_inited(smp_processor_id()))
1003                 return -EINVAL;
1004
1005         core_id = smp_processor_id() / threads_per_core;
1006         /*
1007          * imc pmus are enabled only when it is used.
1008          * See if this is triggered for the first time.
1009          * If yes, take the mutex lock and enable the counters.
1010          * If not, just increment the count in ref count struct.
1011          */
1012         ref = &core_imc_refc[core_id];
1013         if (!ref)
1014                 return -EINVAL;
1015
1016         mutex_lock(&ref->lock);
1017         if (ref->refc == 0) {
1018                 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1019                     get_hard_smp_processor_id(smp_processor_id()))) {
1020                         mutex_unlock(&ref->lock);
1021                         pr_err("thread-imc: Unable to start the counter\
1022                                 for core %d\n", core_id);
1023                         return -EINVAL;
1024                 }
1025         }
1026         ++ref->refc;
1027         mutex_unlock(&ref->lock);
1028         return 0;
1029 }
1030
1031 static void thread_imc_event_del(struct perf_event *event, int flags)
1032 {
1033
1034         int core_id;
1035         struct imc_pmu_ref *ref;
1036
1037         /*
1038          * Take a snapshot and calculate the delta and update
1039          * the event counter values.
1040          */
1041         imc_event_update(event);
1042
1043         core_id = smp_processor_id() / threads_per_core;
1044         ref = &core_imc_refc[core_id];
1045
1046         mutex_lock(&ref->lock);
1047         ref->refc--;
1048         if (ref->refc == 0) {
1049                 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1050                     get_hard_smp_processor_id(smp_processor_id()))) {
1051                         mutex_unlock(&ref->lock);
1052                         pr_err("thread-imc: Unable to stop the counters\
1053                                 for core %d\n", core_id);
1054                         return;
1055                 }
1056         } else if (ref->refc < 0) {
1057                 ref->refc = 0;
1058         }
1059         mutex_unlock(&ref->lock);
1060 }
1061
1062 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1063 static int update_pmu_ops(struct imc_pmu *pmu)
1064 {
1065         pmu->pmu.task_ctx_nr = perf_invalid_context;
1066         pmu->pmu.add = imc_event_add;
1067         pmu->pmu.del = imc_event_stop;
1068         pmu->pmu.start = imc_event_start;
1069         pmu->pmu.stop = imc_event_stop;
1070         pmu->pmu.read = imc_event_update;
1071         pmu->pmu.attr_groups = pmu->attr_groups;
1072         pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1073
1074         switch (pmu->domain) {
1075         case IMC_DOMAIN_NEST:
1076                 pmu->pmu.event_init = nest_imc_event_init;
1077                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1078                 break;
1079         case IMC_DOMAIN_CORE:
1080                 pmu->pmu.event_init = core_imc_event_init;
1081                 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1082                 break;
1083         case IMC_DOMAIN_THREAD:
1084                 pmu->pmu.event_init = thread_imc_event_init;
1085                 pmu->pmu.add = thread_imc_event_add;
1086                 pmu->pmu.del = thread_imc_event_del;
1087                 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1088                 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1089                 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1090                 break;
1091         default:
1092                 break;
1093         }
1094
1095         return 0;
1096 }
1097
1098 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1099 static int init_nest_pmu_ref(void)
1100 {
1101         int nid, i, cpu;
1102
1103         nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1104                                                                 GFP_KERNEL);
1105
1106         if (!nest_imc_refc)
1107                 return -ENOMEM;
1108
1109         i = 0;
1110         for_each_node(nid) {
1111                 /*
1112                  * Mutex lock to avoid races while tracking the number of
1113                  * sessions using the chip's nest pmu units.
1114                  */
1115                 mutex_init(&nest_imc_refc[i].lock);
1116
1117                 /*
1118                  * Loop to init the "id" with the node_id. Variable "i" initialized to
1119                  * 0 and will be used as index to the array. "i" will not go off the
1120                  * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1121                  * nodes only.
1122                  */
1123                 nest_imc_refc[i++].id = nid;
1124         }
1125
1126         /*
1127          * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1128          * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1129          */
1130         for_each_possible_cpu(cpu) {
1131                 nid = cpu_to_node(cpu);
1132                 for (i = 0; i < num_possible_nodes(); i++) {
1133                         if (nest_imc_refc[i].id == nid) {
1134                                 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1135                                 break;
1136                         }
1137                 }
1138         }
1139         return 0;
1140 }
1141
1142 static void cleanup_all_core_imc_memory(void)
1143 {
1144         int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1145         struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1146         int size = core_imc_pmu->counter_mem_size;
1147
1148         /* mem_info will never be NULL */
1149         for (i = 0; i < nr_cores; i++) {
1150                 if (ptr[i].vbase)
1151                         free_pages((u64)ptr[i].vbase, get_order(size));
1152         }
1153
1154         kfree(ptr);
1155         kfree(core_imc_refc);
1156 }
1157
1158 static void thread_imc_ldbar_disable(void *dummy)
1159 {
1160         /*
1161          * By Zeroing LDBAR, we disable thread-imc
1162          * updates.
1163          */
1164         mtspr(SPRN_LDBAR, 0);
1165 }
1166
1167 void thread_imc_disable(void)
1168 {
1169         on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1170 }
1171
1172 static void cleanup_all_thread_imc_memory(void)
1173 {
1174         int i, order = get_order(thread_imc_mem_size);
1175
1176         for_each_online_cpu(i) {
1177                 if (per_cpu(thread_imc_mem, i))
1178                         free_pages((u64)per_cpu(thread_imc_mem, i), order);
1179
1180         }
1181 }
1182
1183 /* Function to free the attr_groups which are dynamically allocated */
1184 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1185 {
1186         if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1187                 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1188         kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1189 }
1190
1191 /*
1192  * Common function to unregister cpu hotplug callback and
1193  * free the memory.
1194  * TODO: Need to handle pmu unregistering, which will be
1195  * done in followup series.
1196  */
1197 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1198 {
1199         if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1200                 mutex_lock(&nest_init_lock);
1201                 if (nest_pmus == 1) {
1202                         cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1203                         kfree(nest_imc_refc);
1204                         kfree(per_nest_pmu_arr);
1205                         per_nest_pmu_arr = NULL;
1206                 }
1207
1208                 if (nest_pmus > 0)
1209                         nest_pmus--;
1210                 mutex_unlock(&nest_init_lock);
1211         }
1212
1213         /* Free core_imc memory */
1214         if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1215                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1216                 cleanup_all_core_imc_memory();
1217         }
1218
1219         /* Free thread_imc memory */
1220         if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1221                 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1222                 cleanup_all_thread_imc_memory();
1223         }
1224 }
1225
1226 /*
1227  * Function to unregister thread-imc if core-imc
1228  * is not registered.
1229  */
1230 void unregister_thread_imc(void)
1231 {
1232         imc_common_cpuhp_mem_free(thread_imc_pmu);
1233         imc_common_mem_free(thread_imc_pmu);
1234         perf_pmu_unregister(&thread_imc_pmu->pmu);
1235 }
1236
1237 /*
1238  * imc_mem_init : Function to support memory allocation for core imc.
1239  */
1240 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1241                                                                 int pmu_index)
1242 {
1243         const char *s;
1244         int nr_cores, cpu, res = -ENOMEM;
1245
1246         if (of_property_read_string(parent, "name", &s))
1247                 return -ENODEV;
1248
1249         switch (pmu_ptr->domain) {
1250         case IMC_DOMAIN_NEST:
1251                 /* Update the pmu name */
1252                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1253                 if (!pmu_ptr->pmu.name)
1254                         goto err;
1255
1256                 /* Needed for hotplug/migration */
1257                 if (!per_nest_pmu_arr) {
1258                         per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1259                                                 sizeof(struct imc_pmu *),
1260                                                 GFP_KERNEL);
1261                         if (!per_nest_pmu_arr)
1262                                 goto err;
1263                 }
1264                 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1265                 break;
1266         case IMC_DOMAIN_CORE:
1267                 /* Update the pmu name */
1268                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1269                 if (!pmu_ptr->pmu.name)
1270                         goto err;
1271
1272                 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1273                 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1274                                                                 GFP_KERNEL);
1275
1276                 if (!pmu_ptr->mem_info)
1277                         goto err;
1278
1279                 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1280                                                                 GFP_KERNEL);
1281
1282                 if (!core_imc_refc) {
1283                         kfree(pmu_ptr->mem_info);
1284                         goto err;
1285                 }
1286
1287                 core_imc_pmu = pmu_ptr;
1288                 break;
1289         case IMC_DOMAIN_THREAD:
1290                 /* Update the pmu name */
1291                 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1292                 if (!pmu_ptr->pmu.name)
1293                         goto err;
1294
1295                 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1296                 for_each_online_cpu(cpu) {
1297                         res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1298                         if (res) {
1299                                 cleanup_all_thread_imc_memory();
1300                                 goto err;
1301                         }
1302                 }
1303
1304                 thread_imc_pmu = pmu_ptr;
1305                 break;
1306         default:
1307                 return -EINVAL;
1308         }
1309
1310         return 0;
1311 err:
1312         return res;
1313 }
1314
1315 /*
1316  * init_imc_pmu : Setup and register the IMC pmu device.
1317  *
1318  * @parent:     Device tree unit node
1319  * @pmu_ptr:    memory allocated for this pmu
1320  * @pmu_idx:    Count of nest pmc registered
1321  *
1322  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1323  * Handles failure cases and accordingly frees memory.
1324  */
1325 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1326 {
1327         int ret;
1328
1329         ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1330         if (ret)
1331                 goto err_free_mem;
1332
1333         switch (pmu_ptr->domain) {
1334         case IMC_DOMAIN_NEST:
1335                 /*
1336                 * Nest imc pmu need only one cpu per chip, we initialize the
1337                 * cpumask for the first nest imc pmu and use the same for the
1338                 * rest. To handle the cpuhotplug callback unregister, we track
1339                 * the number of nest pmus in "nest_pmus".
1340                 */
1341                 mutex_lock(&nest_init_lock);
1342                 if (nest_pmus == 0) {
1343                         ret = init_nest_pmu_ref();
1344                         if (ret) {
1345                                 mutex_unlock(&nest_init_lock);
1346                                 kfree(per_nest_pmu_arr);
1347                                 per_nest_pmu_arr = NULL;
1348                                 goto err_free_mem;
1349                         }
1350                         /* Register for cpu hotplug notification. */
1351                         ret = nest_pmu_cpumask_init();
1352                         if (ret) {
1353                                 mutex_unlock(&nest_init_lock);
1354                                 kfree(nest_imc_refc);
1355                                 kfree(per_nest_pmu_arr);
1356                                 per_nest_pmu_arr = NULL;
1357                                 goto err_free_mem;
1358                         }
1359                 }
1360                 nest_pmus++;
1361                 mutex_unlock(&nest_init_lock);
1362                 break;
1363         case IMC_DOMAIN_CORE:
1364                 ret = core_imc_pmu_cpumask_init();
1365                 if (ret) {
1366                         cleanup_all_core_imc_memory();
1367                         goto err_free_mem;
1368                 }
1369
1370                 break;
1371         case IMC_DOMAIN_THREAD:
1372                 ret = thread_imc_cpu_init();
1373                 if (ret) {
1374                         cleanup_all_thread_imc_memory();
1375                         goto err_free_mem;
1376                 }
1377
1378                 break;
1379         default:
1380                 return  -EINVAL;        /* Unknown domain */
1381         }
1382
1383         ret = update_events_in_group(parent, pmu_ptr);
1384         if (ret)
1385                 goto err_free_cpuhp_mem;
1386
1387         ret = update_pmu_ops(pmu_ptr);
1388         if (ret)
1389                 goto err_free_cpuhp_mem;
1390
1391         ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1392         if (ret)
1393                 goto err_free_cpuhp_mem;
1394
1395         pr_debug("%s performance monitor hardware support registered\n",
1396                                                         pmu_ptr->pmu.name);
1397
1398         return 0;
1399
1400 err_free_cpuhp_mem:
1401         imc_common_cpuhp_mem_free(pmu_ptr);
1402 err_free_mem:
1403         imc_common_mem_free(pmu_ptr);
1404         return ret;
1405 }