Merge tag '9p-for-4.20' of git://github.com/martinetd/linux
[sfrench/cifs-2.6.git] / arch / powerpc / mm / pgtable-hash64.c
1 /*
2  * Copyright 2005, Paul Mackerras, IBM Corporation.
3  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
4  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #include <linux/sched.h>
13 #include <linux/mm_types.h>
14 #include <linux/mm.h>
15
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/sections.h>
19 #include <asm/mmu.h>
20 #include <asm/tlb.h>
21
22 #include "mmu_decl.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/thp.h>
26
27 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
28 #warning Limited user VSID range means pagetable space is wasted
29 #endif
30
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 /*
33  * vmemmap is the starting address of the virtual address space where
34  * struct pages are allocated for all possible PFNs present on the system
35  * including holes and bad memory (hence sparse). These virtual struct
36  * pages are stored in sequence in this virtual address space irrespective
37  * of the fact whether the corresponding PFN is valid or not. This achieves
38  * constant relationship between address of struct page and its PFN.
39  *
40  * During boot or memory hotplug operation when a new memory section is
41  * added, physical memory allocation (including hash table bolting) will
42  * be performed for the set of struct pages which are part of the memory
43  * section. This saves memory by not allocating struct pages for PFNs
44  * which are not valid.
45  *
46  *              ----------------------------------------------
47  *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
48  *              ----------------------------------------------
49  *
50  *         f000000000000000                  c000000000000000
51  * vmemmap +--------------+                  +--------------+
52  *  +      |  page struct | +--------------> |  page struct |
53  *  |      +--------------+                  +--------------+
54  *  |      |  page struct | +--------------> |  page struct |
55  *  |      +--------------+ |                +--------------+
56  *  |      |  page struct | +       +------> |  page struct |
57  *  |      +--------------+         |        +--------------+
58  *  |      |  page struct |         |   +--> |  page struct |
59  *  |      +--------------+         |   |    +--------------+
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct |         |   |
65  *  |      +--------------+         |   |
66  *  |      |  page struct |         |   |
67  *  |      +--------------+         |   |
68  *  |      |  page struct | +-------+   |
69  *  |      +--------------+             |
70  *  |      |  page struct | +-----------+
71  *  |      +--------------+
72  *  |      |  page struct | No mapping
73  *  |      +--------------+
74  *  |      |  page struct | No mapping
75  *  v      +--------------+
76  *
77  *              -----------------------------------------
78  *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
79  *              -----------------------------------------
80  *
81  * vmemmap +--------------+                 +---------------+
82  *  +      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |  page struct | +-------------> |      PFN      |
87  *  |      +--------------+                 +---------------+
88  *  |      |  page struct | +-------------> |      PFN      |
89  *  |      +--------------+                 +---------------+
90  *  |      |              |
91  *  |      +--------------+
92  *  |      |              |
93  *  |      +--------------+
94  *  |      |              |
95  *  |      +--------------+                 +---------------+
96  *  |      |  page struct | +-------------> |      PFN      |
97  *  |      +--------------+                 +---------------+
98  *  |      |              |
99  *  |      +--------------+
100  *  |      |              |
101  *  |      +--------------+                 +---------------+
102  *  |      |  page struct | +-------------> |      PFN      |
103  *  |      +--------------+                 +---------------+
104  *  |      |  page struct | +-------------> |      PFN      |
105  *  v      +--------------+                 +---------------+
106  */
107 /*
108  * On hash-based CPUs, the vmemmap is bolted in the hash table.
109  *
110  */
111 int __meminit hash__vmemmap_create_mapping(unsigned long start,
112                                        unsigned long page_size,
113                                        unsigned long phys)
114 {
115         int rc = htab_bolt_mapping(start, start + page_size, phys,
116                                    pgprot_val(PAGE_KERNEL),
117                                    mmu_vmemmap_psize, mmu_kernel_ssize);
118         if (rc < 0) {
119                 int rc2 = htab_remove_mapping(start, start + page_size,
120                                               mmu_vmemmap_psize,
121                                               mmu_kernel_ssize);
122                 BUG_ON(rc2 && (rc2 != -ENOENT));
123         }
124         return rc;
125 }
126
127 #ifdef CONFIG_MEMORY_HOTPLUG
128 void hash__vmemmap_remove_mapping(unsigned long start,
129                               unsigned long page_size)
130 {
131         int rc = htab_remove_mapping(start, start + page_size,
132                                      mmu_vmemmap_psize,
133                                      mmu_kernel_ssize);
134         BUG_ON((rc < 0) && (rc != -ENOENT));
135         WARN_ON(rc == -ENOENT);
136 }
137 #endif
138 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
139
140 /*
141  * map_kernel_page currently only called by __ioremap
142  * map_kernel_page adds an entry to the ioremap page table
143  * and adds an entry to the HPT, possibly bolting it
144  */
145 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
146 {
147         pgd_t *pgdp;
148         pud_t *pudp;
149         pmd_t *pmdp;
150         pte_t *ptep;
151
152         BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
153         if (slab_is_available()) {
154                 pgdp = pgd_offset_k(ea);
155                 pudp = pud_alloc(&init_mm, pgdp, ea);
156                 if (!pudp)
157                         return -ENOMEM;
158                 pmdp = pmd_alloc(&init_mm, pudp, ea);
159                 if (!pmdp)
160                         return -ENOMEM;
161                 ptep = pte_alloc_kernel(pmdp, ea);
162                 if (!ptep)
163                         return -ENOMEM;
164                 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
165         } else {
166                 /*
167                  * If the mm subsystem is not fully up, we cannot create a
168                  * linux page table entry for this mapping.  Simply bolt an
169                  * entry in the hardware page table.
170                  *
171                  */
172                 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
173                                       mmu_io_psize, mmu_kernel_ssize)) {
174                         printk(KERN_ERR "Failed to do bolted mapping IO "
175                                "memory at %016lx !\n", pa);
176                         return -ENOMEM;
177                 }
178         }
179
180         smp_wmb();
181         return 0;
182 }
183
184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
185
186 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
187                                     pmd_t *pmdp, unsigned long clr,
188                                     unsigned long set)
189 {
190         __be64 old_be, tmp;
191         unsigned long old;
192
193 #ifdef CONFIG_DEBUG_VM
194         WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
195         assert_spin_locked(pmd_lockptr(mm, pmdp));
196 #endif
197
198         __asm__ __volatile__(
199         "1:     ldarx   %0,0,%3\n\
200                 and.    %1,%0,%6\n\
201                 bne-    1b \n\
202                 andc    %1,%0,%4 \n\
203                 or      %1,%1,%7\n\
204                 stdcx.  %1,0,%3 \n\
205                 bne-    1b"
206         : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
207         : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
208           "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
209         : "cc" );
210
211         old = be64_to_cpu(old_be);
212
213         trace_hugepage_update(addr, old, clr, set);
214         if (old & H_PAGE_HASHPTE)
215                 hpte_do_hugepage_flush(mm, addr, pmdp, old);
216         return old;
217 }
218
219 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
220                             pmd_t *pmdp)
221 {
222         pmd_t pmd;
223
224         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
225         VM_BUG_ON(pmd_trans_huge(*pmdp));
226         VM_BUG_ON(pmd_devmap(*pmdp));
227
228         pmd = *pmdp;
229         pmd_clear(pmdp);
230         /*
231          * Wait for all pending hash_page to finish. This is needed
232          * in case of subpage collapse. When we collapse normal pages
233          * to hugepage, we first clear the pmd, then invalidate all
234          * the PTE entries. The assumption here is that any low level
235          * page fault will see a none pmd and take the slow path that
236          * will wait on mmap_sem. But we could very well be in a
237          * hash_page with local ptep pointer value. Such a hash page
238          * can result in adding new HPTE entries for normal subpages.
239          * That means we could be modifying the page content as we
240          * copy them to a huge page. So wait for parallel hash_page
241          * to finish before invalidating HPTE entries. We can do this
242          * by sending an IPI to all the cpus and executing a dummy
243          * function there.
244          */
245         serialize_against_pte_lookup(vma->vm_mm);
246         /*
247          * Now invalidate the hpte entries in the range
248          * covered by pmd. This make sure we take a
249          * fault and will find the pmd as none, which will
250          * result in a major fault which takes mmap_sem and
251          * hence wait for collapse to complete. Without this
252          * the __collapse_huge_page_copy can result in copying
253          * the old content.
254          */
255         flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
256         return pmd;
257 }
258
259 /*
260  * We want to put the pgtable in pmd and use pgtable for tracking
261  * the base page size hptes
262  */
263 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
264                                   pgtable_t pgtable)
265 {
266         pgtable_t *pgtable_slot;
267
268         assert_spin_locked(pmd_lockptr(mm, pmdp));
269         /*
270          * we store the pgtable in the second half of PMD
271          */
272         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
273         *pgtable_slot = pgtable;
274         /*
275          * expose the deposited pgtable to other cpus.
276          * before we set the hugepage PTE at pmd level
277          * hash fault code looks at the deposted pgtable
278          * to store hash index values.
279          */
280         smp_wmb();
281 }
282
283 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
284 {
285         pgtable_t pgtable;
286         pgtable_t *pgtable_slot;
287
288         assert_spin_locked(pmd_lockptr(mm, pmdp));
289
290         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
291         pgtable = *pgtable_slot;
292         /*
293          * Once we withdraw, mark the entry NULL.
294          */
295         *pgtable_slot = NULL;
296         /*
297          * We store HPTE information in the deposited PTE fragment.
298          * zero out the content on withdraw.
299          */
300         memset(pgtable, 0, PTE_FRAG_SIZE);
301         return pgtable;
302 }
303
304 /*
305  * A linux hugepage PMD was changed and the corresponding hash table entries
306  * neesd to be flushed.
307  */
308 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
309                             pmd_t *pmdp, unsigned long old_pmd)
310 {
311         int ssize;
312         unsigned int psize;
313         unsigned long vsid;
314         unsigned long flags = 0;
315
316         /* get the base page size,vsid and segment size */
317 #ifdef CONFIG_DEBUG_VM
318         psize = get_slice_psize(mm, addr);
319         BUG_ON(psize == MMU_PAGE_16M);
320 #endif
321         if (old_pmd & H_PAGE_COMBO)
322                 psize = MMU_PAGE_4K;
323         else
324                 psize = MMU_PAGE_64K;
325
326         if (!is_kernel_addr(addr)) {
327                 ssize = user_segment_size(addr);
328                 vsid = get_user_vsid(&mm->context, addr, ssize);
329                 WARN_ON(vsid == 0);
330         } else {
331                 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
332                 ssize = mmu_kernel_ssize;
333         }
334
335         if (mm_is_thread_local(mm))
336                 flags |= HPTE_LOCAL_UPDATE;
337
338         return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
339 }
340
341 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
342                                 unsigned long addr, pmd_t *pmdp)
343 {
344         pmd_t old_pmd;
345         pgtable_t pgtable;
346         unsigned long old;
347         pgtable_t *pgtable_slot;
348
349         old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
350         old_pmd = __pmd(old);
351         /*
352          * We have pmd == none and we are holding page_table_lock.
353          * So we can safely go and clear the pgtable hash
354          * index info.
355          */
356         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
357         pgtable = *pgtable_slot;
358         /*
359          * Let's zero out old valid and hash index details
360          * hash fault look at them.
361          */
362         memset(pgtable, 0, PTE_FRAG_SIZE);
363         /*
364          * Serialize against find_current_mm_pte variants which does lock-less
365          * lookup in page tables with local interrupts disabled. For huge pages
366          * it casts pmd_t to pte_t. Since format of pte_t is different from
367          * pmd_t we want to prevent transit from pmd pointing to page table
368          * to pmd pointing to huge page (and back) while interrupts are disabled.
369          * We clear pmd to possibly replace it with page table pointer in
370          * different code paths. So make sure we wait for the parallel
371          * find_curren_mm_pte to finish.
372          */
373         serialize_against_pte_lookup(mm);
374         return old_pmd;
375 }
376
377 int hash__has_transparent_hugepage(void)
378 {
379
380         if (!mmu_has_feature(MMU_FTR_16M_PAGE))
381                 return 0;
382         /*
383          * We support THP only if PMD_SIZE is 16MB.
384          */
385         if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
386                 return 0;
387         /*
388          * We need to make sure that we support 16MB hugepage in a segement
389          * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
390          * of 64K.
391          */
392         /*
393          * If we have 64K HPTE, we will be using that by default
394          */
395         if (mmu_psize_defs[MMU_PAGE_64K].shift &&
396             (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
397                 return 0;
398         /*
399          * Ok we only have 4K HPTE
400          */
401         if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
402                 return 0;
403
404         return 1;
405 }
406 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
407
408 #ifdef CONFIG_STRICT_KERNEL_RWX
409 static bool hash__change_memory_range(unsigned long start, unsigned long end,
410                                       unsigned long newpp)
411 {
412         unsigned long idx;
413         unsigned int step, shift;
414
415         shift = mmu_psize_defs[mmu_linear_psize].shift;
416         step = 1 << shift;
417
418         start = ALIGN_DOWN(start, step);
419         end = ALIGN(end, step); // aligns up
420
421         if (start >= end)
422                 return false;
423
424         pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
425                  start, end, newpp, step);
426
427         for (idx = start; idx < end; idx += step)
428                 /* Not sure if we can do much with the return value */
429                 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
430                                                         mmu_kernel_ssize);
431
432         return true;
433 }
434
435 void hash__mark_rodata_ro(void)
436 {
437         unsigned long start, end;
438
439         start = (unsigned long)_stext;
440         end = (unsigned long)__init_begin;
441
442         WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
443 }
444
445 void hash__mark_initmem_nx(void)
446 {
447         unsigned long start, end, pp;
448
449         start = (unsigned long)__init_begin;
450         end = (unsigned long)__init_end;
451
452         pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
453
454         WARN_ON(!hash__change_memory_range(start, end, pp));
455 }
456 #endif