Merge master.kernel.org:/home/rmk/linux-2.6-arm
[sfrench/cifs-2.6.git] / arch / powerpc / mm / mem.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50
51 #include "mmu_decl.h"
52
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE 0       /* XXX for now */
55 #define CPU_FTR_NOEXECUTE       0
56 #endif
57
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61
62 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63                          unsigned long access, unsigned long trap);
64
65 /*
66  * This is called by /dev/mem to know if a given address has to
67  * be mapped non-cacheable or not
68  */
69 int page_is_ram(unsigned long pfn)
70 {
71         unsigned long paddr = (pfn << PAGE_SHIFT);
72
73 #ifndef CONFIG_PPC64    /* XXX for now */
74         return paddr < __pa(high_memory);
75 #else
76         int i;
77         for (i=0; i < lmb.memory.cnt; i++) {
78                 unsigned long base;
79
80                 base = lmb.memory.region[i].base;
81
82                 if ((paddr >= base) &&
83                         (paddr < (base + lmb.memory.region[i].size))) {
84                         return 1;
85                 }
86         }
87
88         return 0;
89 #endif
90 }
91 EXPORT_SYMBOL(page_is_ram);
92
93 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
94                               unsigned long size, pgprot_t vma_prot)
95 {
96         if (ppc_md.phys_mem_access_prot)
97                 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98
99         if (!page_is_ram(pfn))
100                 vma_prot = __pgprot(pgprot_val(vma_prot)
101                                     | _PAGE_GUARDED | _PAGE_NO_CACHE);
102         return vma_prot;
103 }
104 EXPORT_SYMBOL(phys_mem_access_prot);
105
106 #ifdef CONFIG_MEMORY_HOTPLUG
107
108 void online_page(struct page *page)
109 {
110         ClearPageReserved(page);
111         init_page_count(page);
112         __free_page(page);
113         totalram_pages++;
114         num_physpages++;
115 }
116
117 int __devinit add_memory(u64 start, u64 size)
118 {
119         struct pglist_data *pgdata;
120         struct zone *zone;
121         int nid;
122         unsigned long start_pfn = start >> PAGE_SHIFT;
123         unsigned long nr_pages = size >> PAGE_SHIFT;
124
125         nid = hot_add_scn_to_nid(start);
126         pgdata = NODE_DATA(nid);
127
128         start = __va(start);
129         create_section_mapping(start, start + size);
130
131         /* this should work for most non-highmem platforms */
132         zone = pgdata->node_zones;
133
134         return __add_pages(zone, start_pfn, nr_pages);
135
136         return 0;
137 }
138
139 /*
140  * First pass at this code will check to determine if the remove
141  * request is within the RMO.  Do not allow removal within the RMO.
142  */
143 int __devinit remove_memory(u64 start, u64 size)
144 {
145         struct zone *zone;
146         unsigned long start_pfn, end_pfn, nr_pages;
147
148         start_pfn = start >> PAGE_SHIFT;
149         nr_pages = size >> PAGE_SHIFT;
150         end_pfn = start_pfn + nr_pages;
151
152         printk("%s(): Attempting to remove memoy in range "
153                         "%lx to %lx\n", __func__, start, start+size);
154         /*
155          * check for range within RMO
156          */
157         zone = page_zone(pfn_to_page(start_pfn));
158
159         printk("%s(): memory will be removed from "
160                         "the %s zone\n", __func__, zone->name);
161
162         /*
163          * not handling removing memory ranges that
164          * overlap multiple zones yet
165          */
166         if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
167                 goto overlap;
168
169         /* make sure it is NOT in RMO */
170         if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
171                 printk("%s(): range to be removed must NOT be in RMO!\n",
172                         __func__);
173                 goto in_rmo;
174         }
175
176         return __remove_pages(zone, start_pfn, nr_pages);
177
178 overlap:
179         printk("%s(): memory range to be removed overlaps "
180                 "multiple zones!!!\n", __func__);
181 in_rmo:
182         return -1;
183 }
184 #endif /* CONFIG_MEMORY_HOTPLUG */
185
186 void show_mem(void)
187 {
188         unsigned long total = 0, reserved = 0;
189         unsigned long shared = 0, cached = 0;
190         unsigned long highmem = 0;
191         struct page *page;
192         pg_data_t *pgdat;
193         unsigned long i;
194
195         printk("Mem-info:\n");
196         show_free_areas();
197         printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
198         for_each_pgdat(pgdat) {
199                 unsigned long flags;
200                 pgdat_resize_lock(pgdat, &flags);
201                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
202                         if (!pfn_valid(pgdat->node_start_pfn + i))
203                                 continue;
204                         page = pgdat_page_nr(pgdat, i);
205                         total++;
206                         if (PageHighMem(page))
207                                 highmem++;
208                         if (PageReserved(page))
209                                 reserved++;
210                         else if (PageSwapCache(page))
211                                 cached++;
212                         else if (page_count(page))
213                                 shared += page_count(page) - 1;
214                 }
215                 pgdat_resize_unlock(pgdat, &flags);
216         }
217         printk("%ld pages of RAM\n", total);
218 #ifdef CONFIG_HIGHMEM
219         printk("%ld pages of HIGHMEM\n", highmem);
220 #endif
221         printk("%ld reserved pages\n", reserved);
222         printk("%ld pages shared\n", shared);
223         printk("%ld pages swap cached\n", cached);
224 }
225
226 /*
227  * Initialize the bootmem system and give it all the memory we
228  * have available.  If we are using highmem, we only put the
229  * lowmem into the bootmem system.
230  */
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 void __init do_init_bootmem(void)
233 {
234         unsigned long i;
235         unsigned long start, bootmap_pages;
236         unsigned long total_pages;
237         int boot_mapsize;
238
239         max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
240 #ifdef CONFIG_HIGHMEM
241         total_pages = total_lowmem >> PAGE_SHIFT;
242 #endif
243
244         /*
245          * Find an area to use for the bootmem bitmap.  Calculate the size of
246          * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
247          * Add 1 additional page in case the address isn't page-aligned.
248          */
249         bootmap_pages = bootmem_bootmap_pages(total_pages);
250
251         start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
252         BUG_ON(!start);
253
254         boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
255
256         /* Add all physical memory to the bootmem map, mark each area
257          * present.
258          */
259         for (i = 0; i < lmb.memory.cnt; i++) {
260                 unsigned long base = lmb.memory.region[i].base;
261                 unsigned long size = lmb_size_bytes(&lmb.memory, i);
262 #ifdef CONFIG_HIGHMEM
263                 if (base >= total_lowmem)
264                         continue;
265                 if (base + size > total_lowmem)
266                         size = total_lowmem - base;
267 #endif
268                 free_bootmem(base, size);
269         }
270
271         /* reserve the sections we're already using */
272         for (i = 0; i < lmb.reserved.cnt; i++)
273                 reserve_bootmem(lmb.reserved.region[i].base,
274                                 lmb_size_bytes(&lmb.reserved, i));
275
276         /* XXX need to clip this if using highmem? */
277         for (i = 0; i < lmb.memory.cnt; i++)
278                 memory_present(0, lmb_start_pfn(&lmb.memory, i),
279                                lmb_end_pfn(&lmb.memory, i));
280         init_bootmem_done = 1;
281 }
282
283 /*
284  * paging_init() sets up the page tables - in fact we've already done this.
285  */
286 void __init paging_init(void)
287 {
288         unsigned long zones_size[MAX_NR_ZONES];
289         unsigned long zholes_size[MAX_NR_ZONES];
290         unsigned long total_ram = lmb_phys_mem_size();
291         unsigned long top_of_ram = lmb_end_of_DRAM();
292
293 #ifdef CONFIG_HIGHMEM
294         map_page(PKMAP_BASE, 0, 0);     /* XXX gross */
295         pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
296                         (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
297         map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
298         kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
299                         (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
300         kmap_prot = PAGE_KERNEL;
301 #endif /* CONFIG_HIGHMEM */
302
303         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
304                top_of_ram, total_ram);
305         printk(KERN_INFO "Memory hole size: %ldMB\n",
306                (top_of_ram - total_ram) >> 20);
307         /*
308          * All pages are DMA-able so we put them all in the DMA zone.
309          */
310         memset(zones_size, 0, sizeof(zones_size));
311         memset(zholes_size, 0, sizeof(zholes_size));
312
313         zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
314         zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
315
316 #ifdef CONFIG_HIGHMEM
317         zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
318         zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
319         zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
320 #else
321         zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
322         zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
323 #endif /* CONFIG_HIGHMEM */
324
325         free_area_init_node(0, NODE_DATA(0), zones_size,
326                             __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
327 }
328 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
329
330 void __init mem_init(void)
331 {
332 #ifdef CONFIG_NEED_MULTIPLE_NODES
333         int nid;
334 #endif
335         pg_data_t *pgdat;
336         unsigned long i;
337         struct page *page;
338         unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
339
340         num_physpages = lmb.memory.size >> PAGE_SHIFT;
341         high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
342
343 #ifdef CONFIG_NEED_MULTIPLE_NODES
344         for_each_online_node(nid) {
345                 if (NODE_DATA(nid)->node_spanned_pages != 0) {
346                         printk("freeing bootmem node %x\n", nid);
347                         totalram_pages +=
348                                 free_all_bootmem_node(NODE_DATA(nid));
349                 }
350         }
351 #else
352         max_mapnr = max_pfn;
353         totalram_pages += free_all_bootmem();
354 #endif
355         for_each_pgdat(pgdat) {
356                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
357                         if (!pfn_valid(pgdat->node_start_pfn + i))
358                                 continue;
359                         page = pgdat_page_nr(pgdat, i);
360                         if (PageReserved(page))
361                                 reservedpages++;
362                 }
363         }
364
365         codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
366         datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
367         initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
368         bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
369
370 #ifdef CONFIG_HIGHMEM
371         {
372                 unsigned long pfn, highmem_mapnr;
373
374                 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
375                 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
376                         struct page *page = pfn_to_page(pfn);
377
378                         ClearPageReserved(page);
379                         init_page_count(page);
380                         __free_page(page);
381                         totalhigh_pages++;
382                 }
383                 totalram_pages += totalhigh_pages;
384                 printk(KERN_INFO "High memory: %luk\n",
385                        totalhigh_pages << (PAGE_SHIFT-10));
386         }
387 #endif /* CONFIG_HIGHMEM */
388
389         printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
390                "%luk reserved, %luk data, %luk bss, %luk init)\n",
391                 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
392                 num_physpages << (PAGE_SHIFT-10),
393                 codesize >> 10,
394                 reservedpages << (PAGE_SHIFT-10),
395                 datasize >> 10,
396                 bsssize >> 10,
397                 initsize >> 10);
398
399         mem_init_done = 1;
400
401         /* Initialize the vDSO */
402         vdso_init();
403 }
404
405 /*
406  * This is called when a page has been modified by the kernel.
407  * It just marks the page as not i-cache clean.  We do the i-cache
408  * flush later when the page is given to a user process, if necessary.
409  */
410 void flush_dcache_page(struct page *page)
411 {
412         if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
413                 return;
414         /* avoid an atomic op if possible */
415         if (test_bit(PG_arch_1, &page->flags))
416                 clear_bit(PG_arch_1, &page->flags);
417 }
418 EXPORT_SYMBOL(flush_dcache_page);
419
420 void flush_dcache_icache_page(struct page *page)
421 {
422 #ifdef CONFIG_BOOKE
423         void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
424         __flush_dcache_icache(start);
425         kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
426 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
427         /* On 8xx there is no need to kmap since highmem is not supported */
428         __flush_dcache_icache(page_address(page)); 
429 #else
430         __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
431 #endif
432
433 }
434 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
435 {
436         clear_page(page);
437
438         /*
439          * We shouldnt have to do this, but some versions of glibc
440          * require it (ld.so assumes zero filled pages are icache clean)
441          * - Anton
442          */
443         flush_dcache_page(pg);
444 }
445 EXPORT_SYMBOL(clear_user_page);
446
447 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
448                     struct page *pg)
449 {
450         copy_page(vto, vfrom);
451
452         /*
453          * We should be able to use the following optimisation, however
454          * there are two problems.
455          * Firstly a bug in some versions of binutils meant PLT sections
456          * were not marked executable.
457          * Secondly the first word in the GOT section is blrl, used
458          * to establish the GOT address. Until recently the GOT was
459          * not marked executable.
460          * - Anton
461          */
462 #if 0
463         if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
464                 return;
465 #endif
466
467         flush_dcache_page(pg);
468 }
469
470 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
471                              unsigned long addr, int len)
472 {
473         unsigned long maddr;
474
475         maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
476         flush_icache_range(maddr, maddr + len);
477         kunmap(page);
478 }
479 EXPORT_SYMBOL(flush_icache_user_range);
480
481 /*
482  * This is called at the end of handling a user page fault, when the
483  * fault has been handled by updating a PTE in the linux page tables.
484  * We use it to preload an HPTE into the hash table corresponding to
485  * the updated linux PTE.
486  * 
487  * This must always be called with the pte lock held.
488  */
489 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
490                       pte_t pte)
491 {
492 #ifdef CONFIG_PPC_STD_MMU
493         unsigned long access = 0, trap;
494 #endif
495         unsigned long pfn = pte_pfn(pte);
496
497         /* handle i-cache coherency */
498         if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
499             !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
500             pfn_valid(pfn)) {
501                 struct page *page = pfn_to_page(pfn);
502                 if (!PageReserved(page)
503                     && !test_bit(PG_arch_1, &page->flags)) {
504                         if (vma->vm_mm == current->active_mm) {
505 #ifdef CONFIG_8xx
506                         /* On 8xx, cache control instructions (particularly 
507                          * "dcbst" from flush_dcache_icache) fault as write 
508                          * operation if there is an unpopulated TLB entry 
509                          * for the address in question. To workaround that, 
510                          * we invalidate the TLB here, thus avoiding dcbst 
511                          * misbehaviour.
512                          */
513                                 _tlbie(address);
514 #endif
515                                 __flush_dcache_icache((void *) address);
516                         } else
517                                 flush_dcache_icache_page(page);
518                         set_bit(PG_arch_1, &page->flags);
519                 }
520         }
521
522 #ifdef CONFIG_PPC_STD_MMU
523         /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
524         if (!pte_young(pte) || address >= TASK_SIZE)
525                 return;
526
527         /* We try to figure out if we are coming from an instruction
528          * access fault and pass that down to __hash_page so we avoid
529          * double-faulting on execution of fresh text. We have to test
530          * for regs NULL since init will get here first thing at boot
531          *
532          * We also avoid filling the hash if not coming from a fault
533          */
534         if (current->thread.regs == NULL)
535                 return;
536         trap = TRAP(current->thread.regs);
537         if (trap == 0x400)
538                 access |= _PAGE_EXEC;
539         else if (trap != 0x300)
540                 return;
541         hash_preload(vma->vm_mm, address, access, trap);
542 #endif /* CONFIG_PPC_STD_MMU */
543 }