Merge remote-tracking branches 'asoc/topic/es7134', 'asoc/topic/es8328', 'asoc/topic...
[sfrench/cifs-2.6.git] / arch / powerpc / mm / init_64.c
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <linux/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
67
68 #include "mmu_decl.h"
69
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
74
75 #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
76 #warning TASK_SIZE is smaller than it needs to be.
77 #endif
78 #endif /* CONFIG_PPC_STD_MMU_64 */
79
80 phys_addr_t memstart_addr = ~0;
81 EXPORT_SYMBOL_GPL(memstart_addr);
82 phys_addr_t kernstart_addr;
83 EXPORT_SYMBOL_GPL(kernstart_addr);
84
85 #ifdef CONFIG_SPARSEMEM_VMEMMAP
86 /*
87  * Given an address within the vmemmap, determine the pfn of the page that
88  * represents the start of the section it is within.  Note that we have to
89  * do this by hand as the proffered address may not be correctly aligned.
90  * Subtraction of non-aligned pointers produces undefined results.
91  */
92 static unsigned long __meminit vmemmap_section_start(unsigned long page)
93 {
94         unsigned long offset = page - ((unsigned long)(vmemmap));
95
96         /* Return the pfn of the start of the section. */
97         return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
98 }
99
100 /*
101  * Check if this vmemmap page is already initialised.  If any section
102  * which overlaps this vmemmap page is initialised then this page is
103  * initialised already.
104  */
105 static int __meminit vmemmap_populated(unsigned long start, int page_size)
106 {
107         unsigned long end = start + page_size;
108         start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
109
110         for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
111                 if (pfn_valid(page_to_pfn((struct page *)start)))
112                         return 1;
113
114         return 0;
115 }
116
117 struct vmemmap_backing *vmemmap_list;
118 static struct vmemmap_backing *next;
119 static int num_left;
120 static int num_freed;
121
122 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
123 {
124         struct vmemmap_backing *vmem_back;
125         /* get from freed entries first */
126         if (num_freed) {
127                 num_freed--;
128                 vmem_back = next;
129                 next = next->list;
130
131                 return vmem_back;
132         }
133
134         /* allocate a page when required and hand out chunks */
135         if (!num_left) {
136                 next = vmemmap_alloc_block(PAGE_SIZE, node);
137                 if (unlikely(!next)) {
138                         WARN_ON(1);
139                         return NULL;
140                 }
141                 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
142         }
143
144         num_left--;
145
146         return next++;
147 }
148
149 static __meminit void vmemmap_list_populate(unsigned long phys,
150                                             unsigned long start,
151                                             int node)
152 {
153         struct vmemmap_backing *vmem_back;
154
155         vmem_back = vmemmap_list_alloc(node);
156         if (unlikely(!vmem_back)) {
157                 WARN_ON(1);
158                 return;
159         }
160
161         vmem_back->phys = phys;
162         vmem_back->virt_addr = start;
163         vmem_back->list = vmemmap_list;
164
165         vmemmap_list = vmem_back;
166 }
167
168 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
169 {
170         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
171
172         /* Align to the page size of the linear mapping. */
173         start = _ALIGN_DOWN(start, page_size);
174
175         pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
176
177         for (; start < end; start += page_size) {
178                 void *p;
179                 int rc;
180
181                 if (vmemmap_populated(start, page_size))
182                         continue;
183
184                 p = vmemmap_alloc_block(page_size, node);
185                 if (!p)
186                         return -ENOMEM;
187
188                 vmemmap_list_populate(__pa(p), start, node);
189
190                 pr_debug("      * %016lx..%016lx allocated at %p\n",
191                          start, start + page_size, p);
192
193                 rc = vmemmap_create_mapping(start, page_size, __pa(p));
194                 if (rc < 0) {
195                         pr_warning(
196                                 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
197                                 rc);
198                         return -EFAULT;
199                 }
200         }
201
202         return 0;
203 }
204
205 #ifdef CONFIG_MEMORY_HOTPLUG
206 static unsigned long vmemmap_list_free(unsigned long start)
207 {
208         struct vmemmap_backing *vmem_back, *vmem_back_prev;
209
210         vmem_back_prev = vmem_back = vmemmap_list;
211
212         /* look for it with prev pointer recorded */
213         for (; vmem_back; vmem_back = vmem_back->list) {
214                 if (vmem_back->virt_addr == start)
215                         break;
216                 vmem_back_prev = vmem_back;
217         }
218
219         if (unlikely(!vmem_back)) {
220                 WARN_ON(1);
221                 return 0;
222         }
223
224         /* remove it from vmemmap_list */
225         if (vmem_back == vmemmap_list) /* remove head */
226                 vmemmap_list = vmem_back->list;
227         else
228                 vmem_back_prev->list = vmem_back->list;
229
230         /* next point to this freed entry */
231         vmem_back->list = next;
232         next = vmem_back;
233         num_freed++;
234
235         return vmem_back->phys;
236 }
237
238 void __ref vmemmap_free(unsigned long start, unsigned long end)
239 {
240         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
241
242         start = _ALIGN_DOWN(start, page_size);
243
244         pr_debug("vmemmap_free %lx...%lx\n", start, end);
245
246         for (; start < end; start += page_size) {
247                 unsigned long addr;
248
249                 /*
250                  * the section has already be marked as invalid, so
251                  * vmemmap_populated() true means some other sections still
252                  * in this page, so skip it.
253                  */
254                 if (vmemmap_populated(start, page_size))
255                         continue;
256
257                 addr = vmemmap_list_free(start);
258                 if (addr) {
259                         struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
260
261                         if (PageReserved(page)) {
262                                 /* allocated from bootmem */
263                                 if (page_size < PAGE_SIZE) {
264                                         /*
265                                          * this shouldn't happen, but if it is
266                                          * the case, leave the memory there
267                                          */
268                                         WARN_ON_ONCE(1);
269                                 } else {
270                                         unsigned int nr_pages =
271                                                 1 << get_order(page_size);
272                                         while (nr_pages--)
273                                                 free_reserved_page(page++);
274                                 }
275                         } else
276                                 free_pages((unsigned long)(__va(addr)),
277                                                         get_order(page_size));
278
279                         vmemmap_remove_mapping(start, page_size);
280                 }
281         }
282 }
283 #endif
284 void register_page_bootmem_memmap(unsigned long section_nr,
285                                   struct page *start_page, unsigned long size)
286 {
287 }
288
289 /*
290  * We do not have access to the sparsemem vmemmap, so we fallback to
291  * walking the list of sparsemem blocks which we already maintain for
292  * the sake of crashdump. In the long run, we might want to maintain
293  * a tree if performance of that linear walk becomes a problem.
294  *
295  * realmode_pfn_to_page functions can fail due to:
296  * 1) As real sparsemem blocks do not lay in RAM continously (they
297  * are in virtual address space which is not available in the real mode),
298  * the requested page struct can be split between blocks so get_page/put_page
299  * may fail.
300  * 2) When huge pages are used, the get_page/put_page API will fail
301  * in real mode as the linked addresses in the page struct are virtual
302  * too.
303  */
304 struct page *realmode_pfn_to_page(unsigned long pfn)
305 {
306         struct vmemmap_backing *vmem_back;
307         struct page *page;
308         unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
309         unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
310
311         for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
312                 if (pg_va < vmem_back->virt_addr)
313                         continue;
314
315                 /* After vmemmap_list entry free is possible, need check all */
316                 if ((pg_va + sizeof(struct page)) <=
317                                 (vmem_back->virt_addr + page_size)) {
318                         page = (struct page *) (vmem_back->phys + pg_va -
319                                 vmem_back->virt_addr);
320                         return page;
321                 }
322         }
323
324         /* Probably that page struct is split between real pages */
325         return NULL;
326 }
327 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
328
329 #elif defined(CONFIG_FLATMEM)
330
331 struct page *realmode_pfn_to_page(unsigned long pfn)
332 {
333         struct page *page = pfn_to_page(pfn);
334         return page;
335 }
336 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
337
338 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
339
340 #ifdef CONFIG_PPC_STD_MMU_64
341 static bool disable_radix;
342 static int __init parse_disable_radix(char *p)
343 {
344         disable_radix = true;
345         return 0;
346 }
347 early_param("disable_radix", parse_disable_radix);
348
349 /*
350  * If we're running under a hypervisor, we need to check the contents of
351  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
352  * radix.  If not, we clear the radix feature bit so we fall back to hash.
353  */
354 static void early_check_vec5(void)
355 {
356         unsigned long root, chosen;
357         int size;
358         const u8 *vec5;
359         u8 mmu_supported;
360
361         root = of_get_flat_dt_root();
362         chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
363         if (chosen == -FDT_ERR_NOTFOUND) {
364                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
365                 return;
366         }
367         vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
368         if (!vec5) {
369                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
370                 return;
371         }
372         if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
373                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
374                 return;
375         }
376
377         /* Check for supported configuration */
378         mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
379                         OV5_FEAT(OV5_MMU_SUPPORT);
380         if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
381                 /* Hypervisor only supports radix - check enabled && GTSE */
382                 if (!early_radix_enabled()) {
383                         pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
384                 }
385                 if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
386                                                 OV5_FEAT(OV5_RADIX_GTSE))) {
387                         pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
388                 }
389                 /* Do radix anyway - the hypervisor said we had to */
390                 cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
391         } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
392                 /* Hypervisor only supports hash - disable radix */
393                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
394         }
395 }
396
397 void __init mmu_early_init_devtree(void)
398 {
399         /* Disable radix mode based on kernel command line. */
400         if (disable_radix)
401                 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
402
403         /*
404          * Check /chosen/ibm,architecture-vec-5 if running as a guest.
405          * When running bare-metal, we can use radix if we like
406          * even though the ibm,architecture-vec-5 property created by
407          * skiboot doesn't have the necessary bits set.
408          */
409         if (!(mfmsr() & MSR_HV))
410                 early_check_vec5();
411
412         if (early_radix_enabled())
413                 radix__early_init_devtree();
414         else
415                 hash__early_init_devtree();
416 }
417 #endif /* CONFIG_PPC_STD_MMU_64 */