tick: broadcast-hrtimer: Fix a race in bc_set_next
[sfrench/cifs-2.6.git] / arch / powerpc / mm / book3s64 / hash_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2005, Paul Mackerras, IBM Corporation.
4  * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #include <linux/sched.h>
9 #include <linux/mm_types.h>
10 #include <linux/mm.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14 #include <asm/sections.h>
15 #include <asm/mmu.h>
16 #include <asm/tlb.h>
17
18 #include <mm/mmu_decl.h>
19
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/thp.h>
22
23 #if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
24 #warning Limited user VSID range means pagetable space is wasted
25 #endif
26
27 #ifdef CONFIG_SPARSEMEM_VMEMMAP
28 /*
29  * vmemmap is the starting address of the virtual address space where
30  * struct pages are allocated for all possible PFNs present on the system
31  * including holes and bad memory (hence sparse). These virtual struct
32  * pages are stored in sequence in this virtual address space irrespective
33  * of the fact whether the corresponding PFN is valid or not. This achieves
34  * constant relationship between address of struct page and its PFN.
35  *
36  * During boot or memory hotplug operation when a new memory section is
37  * added, physical memory allocation (including hash table bolting) will
38  * be performed for the set of struct pages which are part of the memory
39  * section. This saves memory by not allocating struct pages for PFNs
40  * which are not valid.
41  *
42  *              ----------------------------------------------
43  *              | PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
44  *              ----------------------------------------------
45  *
46  *         f000000000000000                  c000000000000000
47  * vmemmap +--------------+                  +--------------+
48  *  +      |  page struct | +--------------> |  page struct |
49  *  |      +--------------+                  +--------------+
50  *  |      |  page struct | +--------------> |  page struct |
51  *  |      +--------------+ |                +--------------+
52  *  |      |  page struct | +       +------> |  page struct |
53  *  |      +--------------+         |        +--------------+
54  *  |      |  page struct |         |   +--> |  page struct |
55  *  |      +--------------+         |   |    +--------------+
56  *  |      |  page struct |         |   |
57  *  |      +--------------+         |   |
58  *  |      |  page struct |         |   |
59  *  |      +--------------+         |   |
60  *  |      |  page struct |         |   |
61  *  |      +--------------+         |   |
62  *  |      |  page struct |         |   |
63  *  |      +--------------+         |   |
64  *  |      |  page struct | +-------+   |
65  *  |      +--------------+             |
66  *  |      |  page struct | +-----------+
67  *  |      +--------------+
68  *  |      |  page struct | No mapping
69  *  |      +--------------+
70  *  |      |  page struct | No mapping
71  *  v      +--------------+
72  *
73  *              -----------------------------------------
74  *              | RELATION BETWEEN STRUCT PAGES AND PFNS|
75  *              -----------------------------------------
76  *
77  * vmemmap +--------------+                 +---------------+
78  *  +      |  page struct | +-------------> |      PFN      |
79  *  |      +--------------+                 +---------------+
80  *  |      |  page struct | +-------------> |      PFN      |
81  *  |      +--------------+                 +---------------+
82  *  |      |  page struct | +-------------> |      PFN      |
83  *  |      +--------------+                 +---------------+
84  *  |      |  page struct | +-------------> |      PFN      |
85  *  |      +--------------+                 +---------------+
86  *  |      |              |
87  *  |      +--------------+
88  *  |      |              |
89  *  |      +--------------+
90  *  |      |              |
91  *  |      +--------------+                 +---------------+
92  *  |      |  page struct | +-------------> |      PFN      |
93  *  |      +--------------+                 +---------------+
94  *  |      |              |
95  *  |      +--------------+
96  *  |      |              |
97  *  |      +--------------+                 +---------------+
98  *  |      |  page struct | +-------------> |      PFN      |
99  *  |      +--------------+                 +---------------+
100  *  |      |  page struct | +-------------> |      PFN      |
101  *  v      +--------------+                 +---------------+
102  */
103 /*
104  * On hash-based CPUs, the vmemmap is bolted in the hash table.
105  *
106  */
107 int __meminit hash__vmemmap_create_mapping(unsigned long start,
108                                        unsigned long page_size,
109                                        unsigned long phys)
110 {
111         int rc;
112
113         if ((start + page_size) >= H_VMEMMAP_END) {
114                 pr_warn("Outside the supported range\n");
115                 return -1;
116         }
117
118         rc = htab_bolt_mapping(start, start + page_size, phys,
119                                pgprot_val(PAGE_KERNEL),
120                                mmu_vmemmap_psize, mmu_kernel_ssize);
121         if (rc < 0) {
122                 int rc2 = htab_remove_mapping(start, start + page_size,
123                                               mmu_vmemmap_psize,
124                                               mmu_kernel_ssize);
125                 BUG_ON(rc2 && (rc2 != -ENOENT));
126         }
127         return rc;
128 }
129
130 #ifdef CONFIG_MEMORY_HOTPLUG
131 void hash__vmemmap_remove_mapping(unsigned long start,
132                               unsigned long page_size)
133 {
134         int rc = htab_remove_mapping(start, start + page_size,
135                                      mmu_vmemmap_psize,
136                                      mmu_kernel_ssize);
137         BUG_ON((rc < 0) && (rc != -ENOENT));
138         WARN_ON(rc == -ENOENT);
139 }
140 #endif
141 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
142
143 /*
144  * map_kernel_page currently only called by __ioremap
145  * map_kernel_page adds an entry to the ioremap page table
146  * and adds an entry to the HPT, possibly bolting it
147  */
148 int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
149 {
150         pgd_t *pgdp;
151         pud_t *pudp;
152         pmd_t *pmdp;
153         pte_t *ptep;
154
155         BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
156         if (slab_is_available()) {
157                 pgdp = pgd_offset_k(ea);
158                 pudp = pud_alloc(&init_mm, pgdp, ea);
159                 if (!pudp)
160                         return -ENOMEM;
161                 pmdp = pmd_alloc(&init_mm, pudp, ea);
162                 if (!pmdp)
163                         return -ENOMEM;
164                 ptep = pte_alloc_kernel(pmdp, ea);
165                 if (!ptep)
166                         return -ENOMEM;
167                 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
168         } else {
169                 /*
170                  * If the mm subsystem is not fully up, we cannot create a
171                  * linux page table entry for this mapping.  Simply bolt an
172                  * entry in the hardware page table.
173                  *
174                  */
175                 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
176                                       mmu_io_psize, mmu_kernel_ssize)) {
177                         printk(KERN_ERR "Failed to do bolted mapping IO "
178                                "memory at %016lx !\n", pa);
179                         return -ENOMEM;
180                 }
181         }
182
183         smp_wmb();
184         return 0;
185 }
186
187 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
188
189 unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
190                                     pmd_t *pmdp, unsigned long clr,
191                                     unsigned long set)
192 {
193         __be64 old_be, tmp;
194         unsigned long old;
195
196 #ifdef CONFIG_DEBUG_VM
197         WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
198         assert_spin_locked(pmd_lockptr(mm, pmdp));
199 #endif
200
201         __asm__ __volatile__(
202         "1:     ldarx   %0,0,%3\n\
203                 and.    %1,%0,%6\n\
204                 bne-    1b \n\
205                 andc    %1,%0,%4 \n\
206                 or      %1,%1,%7\n\
207                 stdcx.  %1,0,%3 \n\
208                 bne-    1b"
209         : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
210         : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
211           "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
212         : "cc" );
213
214         old = be64_to_cpu(old_be);
215
216         trace_hugepage_update(addr, old, clr, set);
217         if (old & H_PAGE_HASHPTE)
218                 hpte_do_hugepage_flush(mm, addr, pmdp, old);
219         return old;
220 }
221
222 pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
223                             pmd_t *pmdp)
224 {
225         pmd_t pmd;
226
227         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
228         VM_BUG_ON(pmd_trans_huge(*pmdp));
229         VM_BUG_ON(pmd_devmap(*pmdp));
230
231         pmd = *pmdp;
232         pmd_clear(pmdp);
233         /*
234          * Wait for all pending hash_page to finish. This is needed
235          * in case of subpage collapse. When we collapse normal pages
236          * to hugepage, we first clear the pmd, then invalidate all
237          * the PTE entries. The assumption here is that any low level
238          * page fault will see a none pmd and take the slow path that
239          * will wait on mmap_sem. But we could very well be in a
240          * hash_page with local ptep pointer value. Such a hash page
241          * can result in adding new HPTE entries for normal subpages.
242          * That means we could be modifying the page content as we
243          * copy them to a huge page. So wait for parallel hash_page
244          * to finish before invalidating HPTE entries. We can do this
245          * by sending an IPI to all the cpus and executing a dummy
246          * function there.
247          */
248         serialize_against_pte_lookup(vma->vm_mm);
249         /*
250          * Now invalidate the hpte entries in the range
251          * covered by pmd. This make sure we take a
252          * fault and will find the pmd as none, which will
253          * result in a major fault which takes mmap_sem and
254          * hence wait for collapse to complete. Without this
255          * the __collapse_huge_page_copy can result in copying
256          * the old content.
257          */
258         flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
259         return pmd;
260 }
261
262 /*
263  * We want to put the pgtable in pmd and use pgtable for tracking
264  * the base page size hptes
265  */
266 void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
267                                   pgtable_t pgtable)
268 {
269         pgtable_t *pgtable_slot;
270
271         assert_spin_locked(pmd_lockptr(mm, pmdp));
272         /*
273          * we store the pgtable in the second half of PMD
274          */
275         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
276         *pgtable_slot = pgtable;
277         /*
278          * expose the deposited pgtable to other cpus.
279          * before we set the hugepage PTE at pmd level
280          * hash fault code looks at the deposted pgtable
281          * to store hash index values.
282          */
283         smp_wmb();
284 }
285
286 pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
287 {
288         pgtable_t pgtable;
289         pgtable_t *pgtable_slot;
290
291         assert_spin_locked(pmd_lockptr(mm, pmdp));
292
293         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
294         pgtable = *pgtable_slot;
295         /*
296          * Once we withdraw, mark the entry NULL.
297          */
298         *pgtable_slot = NULL;
299         /*
300          * We store HPTE information in the deposited PTE fragment.
301          * zero out the content on withdraw.
302          */
303         memset(pgtable, 0, PTE_FRAG_SIZE);
304         return pgtable;
305 }
306
307 /*
308  * A linux hugepage PMD was changed and the corresponding hash table entries
309  * neesd to be flushed.
310  */
311 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
312                             pmd_t *pmdp, unsigned long old_pmd)
313 {
314         int ssize;
315         unsigned int psize;
316         unsigned long vsid;
317         unsigned long flags = 0;
318
319         /* get the base page size,vsid and segment size */
320 #ifdef CONFIG_DEBUG_VM
321         psize = get_slice_psize(mm, addr);
322         BUG_ON(psize == MMU_PAGE_16M);
323 #endif
324         if (old_pmd & H_PAGE_COMBO)
325                 psize = MMU_PAGE_4K;
326         else
327                 psize = MMU_PAGE_64K;
328
329         if (!is_kernel_addr(addr)) {
330                 ssize = user_segment_size(addr);
331                 vsid = get_user_vsid(&mm->context, addr, ssize);
332                 WARN_ON(vsid == 0);
333         } else {
334                 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
335                 ssize = mmu_kernel_ssize;
336         }
337
338         if (mm_is_thread_local(mm))
339                 flags |= HPTE_LOCAL_UPDATE;
340
341         return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
342 }
343
344 pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
345                                 unsigned long addr, pmd_t *pmdp)
346 {
347         pmd_t old_pmd;
348         pgtable_t pgtable;
349         unsigned long old;
350         pgtable_t *pgtable_slot;
351
352         old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
353         old_pmd = __pmd(old);
354         /*
355          * We have pmd == none and we are holding page_table_lock.
356          * So we can safely go and clear the pgtable hash
357          * index info.
358          */
359         pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
360         pgtable = *pgtable_slot;
361         /*
362          * Let's zero out old valid and hash index details
363          * hash fault look at them.
364          */
365         memset(pgtable, 0, PTE_FRAG_SIZE);
366         /*
367          * Serialize against find_current_mm_pte variants which does lock-less
368          * lookup in page tables with local interrupts disabled. For huge pages
369          * it casts pmd_t to pte_t. Since format of pte_t is different from
370          * pmd_t we want to prevent transit from pmd pointing to page table
371          * to pmd pointing to huge page (and back) while interrupts are disabled.
372          * We clear pmd to possibly replace it with page table pointer in
373          * different code paths. So make sure we wait for the parallel
374          * find_curren_mm_pte to finish.
375          */
376         serialize_against_pte_lookup(mm);
377         return old_pmd;
378 }
379
380 int hash__has_transparent_hugepage(void)
381 {
382
383         if (!mmu_has_feature(MMU_FTR_16M_PAGE))
384                 return 0;
385         /*
386          * We support THP only if PMD_SIZE is 16MB.
387          */
388         if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
389                 return 0;
390         /*
391          * We need to make sure that we support 16MB hugepage in a segement
392          * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
393          * of 64K.
394          */
395         /*
396          * If we have 64K HPTE, we will be using that by default
397          */
398         if (mmu_psize_defs[MMU_PAGE_64K].shift &&
399             (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
400                 return 0;
401         /*
402          * Ok we only have 4K HPTE
403          */
404         if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
405                 return 0;
406
407         return 1;
408 }
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
410
411 #ifdef CONFIG_STRICT_KERNEL_RWX
412 static bool hash__change_memory_range(unsigned long start, unsigned long end,
413                                       unsigned long newpp)
414 {
415         unsigned long idx;
416         unsigned int step, shift;
417
418         shift = mmu_psize_defs[mmu_linear_psize].shift;
419         step = 1 << shift;
420
421         start = ALIGN_DOWN(start, step);
422         end = ALIGN(end, step); // aligns up
423
424         if (start >= end)
425                 return false;
426
427         pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
428                  start, end, newpp, step);
429
430         for (idx = start; idx < end; idx += step)
431                 /* Not sure if we can do much with the return value */
432                 mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
433                                                         mmu_kernel_ssize);
434
435         return true;
436 }
437
438 void hash__mark_rodata_ro(void)
439 {
440         unsigned long start, end;
441
442         start = (unsigned long)_stext;
443         end = (unsigned long)__init_begin;
444
445         WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
446 }
447
448 void hash__mark_initmem_nx(void)
449 {
450         unsigned long start, end, pp;
451
452         start = (unsigned long)__init_begin;
453         end = (unsigned long)__init_end;
454
455         pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
456
457         WARN_ON(!hash__change_memory_range(start, end, pp));
458 }
459 #endif