Merge branches 'fixes', 'misc' and 'spectre' into for-linus
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67         return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72         return 1;
73 }
74
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86         int r;
87
88         WARN_ON(irqs_disabled());
89         hard_irq_disable();
90
91         while (true) {
92                 if (need_resched()) {
93                         local_irq_enable();
94                         cond_resched();
95                         hard_irq_disable();
96                         continue;
97                 }
98
99                 if (signal_pending(current)) {
100                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
102                         r = -EINTR;
103                         break;
104                 }
105
106                 vcpu->mode = IN_GUEST_MODE;
107
108                 /*
109                  * Reading vcpu->requests must happen after setting vcpu->mode,
110                  * so we don't miss a request because the requester sees
111                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112                  * before next entering the guest (and thus doesn't IPI).
113                  * This also orders the write to mode from any reads
114                  * to the page tables done while the VCPU is running.
115                  * Please see the comment in kvm_flush_remote_tlbs.
116                  */
117                 smp_mb();
118
119                 if (kvm_request_pending(vcpu)) {
120                         /* Make sure we process requests preemptable */
121                         local_irq_enable();
122                         trace_kvm_check_requests(vcpu);
123                         r = kvmppc_core_check_requests(vcpu);
124                         hard_irq_disable();
125                         if (r > 0)
126                                 continue;
127                         break;
128                 }
129
130                 if (kvmppc_core_prepare_to_enter(vcpu)) {
131                         /* interrupts got enabled in between, so we
132                            are back at square 1 */
133                         continue;
134                 }
135
136                 guest_enter_irqoff();
137                 return 1;
138         }
139
140         /* return to host */
141         local_irq_enable();
142         return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150         int i;
151
152         shared->sprg0 = swab64(shared->sprg0);
153         shared->sprg1 = swab64(shared->sprg1);
154         shared->sprg2 = swab64(shared->sprg2);
155         shared->sprg3 = swab64(shared->sprg3);
156         shared->srr0 = swab64(shared->srr0);
157         shared->srr1 = swab64(shared->srr1);
158         shared->dar = swab64(shared->dar);
159         shared->msr = swab64(shared->msr);
160         shared->dsisr = swab32(shared->dsisr);
161         shared->int_pending = swab32(shared->int_pending);
162         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163                 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169         int nr = kvmppc_get_gpr(vcpu, 11);
170         int r;
171         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175         unsigned long r2 = 0;
176
177         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178                 /* 32 bit mode */
179                 param1 &= 0xffffffff;
180                 param2 &= 0xffffffff;
181                 param3 &= 0xffffffff;
182                 param4 &= 0xffffffff;
183         }
184
185         switch (nr) {
186         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187         {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189                 /* Book3S can be little endian, find it out here */
190                 int shared_big_endian = true;
191                 if (vcpu->arch.intr_msr & MSR_LE)
192                         shared_big_endian = false;
193                 if (shared_big_endian != vcpu->arch.shared_big_endian)
194                         kvmppc_swab_shared(vcpu);
195                 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199                         /*
200                          * Older versions of the Linux magic page code had
201                          * a bug where they would map their trampoline code
202                          * NX. If that's the case, remove !PR NX capability.
203                          */
204                         vcpu->arch.disable_kernel_nx = true;
205                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206                 }
207
208                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212                 /*
213                  * Make sure our 4k magic page is in the same window of a 64k
214                  * page within the guest and within the host's page.
215                  */
216                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217                     ((ulong)vcpu->arch.shared & 0xf000)) {
218                         void *old_shared = vcpu->arch.shared;
219                         ulong shared = (ulong)vcpu->arch.shared;
220                         void *new_shared;
221
222                         shared &= PAGE_MASK;
223                         shared |= vcpu->arch.magic_page_pa & 0xf000;
224                         new_shared = (void*)shared;
225                         memcpy(new_shared, old_shared, 0x1000);
226                         vcpu->arch.shared = new_shared;
227                 }
228 #endif
229
230                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232                 r = EV_SUCCESS;
233                 break;
234         }
235         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236                 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241                 /* Second return value is in r4 */
242                 break;
243         case EV_HCALL_TOKEN(EV_IDLE):
244                 r = EV_SUCCESS;
245                 kvm_vcpu_block(vcpu);
246                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247                 break;
248         default:
249                 r = EV_UNIMPLEMENTED;
250                 break;
251         }
252
253         kvmppc_set_gpr(vcpu, 4, r2);
254
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261         int r = false;
262
263         /* We have to know what CPU to virtualize */
264         if (!vcpu->arch.pvr)
265                 goto out;
266
267         /* PAPR only works with book3s_64 */
268         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269                 goto out;
270
271         /* HV KVM can only do PAPR mode for now */
272         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273                 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276         if (!cpu_has_feature(CPU_FTR_EMB_HV))
277                 goto out;
278 #endif
279
280         r = true;
281
282 out:
283         vcpu->arch.sane = r;
284         return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290         enum emulation_result er;
291         int r;
292
293         er = kvmppc_emulate_loadstore(vcpu);
294         switch (er) {
295         case EMULATE_DONE:
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_GUEST_NV;
299                 break;
300         case EMULATE_AGAIN:
301                 r = RESUME_GUEST;
302                 break;
303         case EMULATE_DO_MMIO:
304                 run->exit_reason = KVM_EXIT_MMIO;
305                 /* We must reload nonvolatiles because "update" load/store
306                  * instructions modify register state. */
307                 /* Future optimization: only reload non-volatiles if they were
308                  * actually modified. */
309                 r = RESUME_HOST_NV;
310                 break;
311         case EMULATE_FAIL:
312         {
313                 u32 last_inst;
314
315                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316                 /* XXX Deliver Program interrupt to guest. */
317                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318                 r = RESUME_HOST;
319                 break;
320         }
321         default:
322                 WARN_ON(1);
323                 r = RESUME_GUEST;
324         }
325
326         return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331               bool data)
332 {
333         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334         struct kvmppc_pte pte;
335         int r;
336
337         vcpu->stat.st++;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc;
372
373         vcpu->stat.ld++;
374
375         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376                           XLATE_READ, &pte);
377         if (rc)
378                 return rc;
379
380         *eaddr = pte.raddr;
381
382         if (!pte.may_read)
383                 return -EPERM;
384
385         if (!data && !pte.may_execute)
386                 return -ENOEXEC;
387
388         /* Magic page override */
389         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392                 void *magic = vcpu->arch.shared;
393                 magic += pte.eaddr & 0xfff;
394                 memcpy(ptr, magic, size);
395                 return EMULATE_DONE;
396         }
397
398         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399                 return EMULATE_DO_MMIO;
400
401         return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407         return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412         return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417         *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422         struct kvmppc_ops *kvm_ops = NULL;
423         /*
424          * if we have both HV and PR enabled, default is HV
425          */
426         if (type == 0) {
427                 if (kvmppc_hv_ops)
428                         kvm_ops = kvmppc_hv_ops;
429                 else
430                         kvm_ops = kvmppc_pr_ops;
431                 if (!kvm_ops)
432                         goto err_out;
433         } else  if (type == KVM_VM_PPC_HV) {
434                 if (!kvmppc_hv_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_hv_ops;
437         } else if (type == KVM_VM_PPC_PR) {
438                 if (!kvmppc_pr_ops)
439                         goto err_out;
440                 kvm_ops = kvmppc_pr_ops;
441         } else
442                 goto err_out;
443
444         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445                 return -ENOENT;
446
447         kvm->arch.kvm_ops = kvm_ops;
448         return kvmppc_core_init_vm(kvm);
449 err_out:
450         return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455         return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465         unsigned int i;
466         struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469         /*
470          * We call kick_all_cpus_sync() to ensure that all
471          * CPUs have executed any pending IPIs before we
472          * continue and free VCPUs structures below.
473          */
474         if (is_kvmppc_hv_enabled(kvm))
475                 kick_all_cpus_sync();
476 #endif
477
478         kvm_for_each_vcpu(i, vcpu, kvm)
479                 kvm_arch_vcpu_free(vcpu);
480
481         mutex_lock(&kvm->lock);
482         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483                 kvm->vcpus[i] = NULL;
484
485         atomic_set(&kvm->online_vcpus, 0);
486
487         kvmppc_core_destroy_vm(kvm);
488
489         mutex_unlock(&kvm->lock);
490
491         /* drop the module reference */
492         module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497         int r;
498         /* Assume we're using HV mode when the HV module is loaded */
499         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501         if (kvm) {
502                 /*
503                  * Hooray - we know which VM type we're running on. Depend on
504                  * that rather than the guess above.
505                  */
506                 hv_enabled = is_kvmppc_hv_enabled(kvm);
507         }
508
509         switch (ext) {
510 #ifdef CONFIG_BOOKE
511         case KVM_CAP_PPC_BOOKE_SREGS:
512         case KVM_CAP_PPC_BOOKE_WATCHDOG:
513         case KVM_CAP_PPC_EPR:
514 #else
515         case KVM_CAP_PPC_SEGSTATE:
516         case KVM_CAP_PPC_HIOR:
517         case KVM_CAP_PPC_PAPR:
518 #endif
519         case KVM_CAP_PPC_UNSET_IRQ:
520         case KVM_CAP_PPC_IRQ_LEVEL:
521         case KVM_CAP_ENABLE_CAP:
522         case KVM_CAP_ENABLE_CAP_VM:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527                 r = 1;
528                 break;
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 /* fallthrough */
548         case KVM_CAP_SPAPR_TCE_VFIO:
549         case KVM_CAP_PPC_RTAS:
550         case KVM_CAP_PPC_FIXUP_HCALL:
551         case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553         case KVM_CAP_IRQ_XICS:
554 #endif
555         case KVM_CAP_PPC_GET_CPU_CHAR:
556                 r = 1;
557                 break;
558
559         case KVM_CAP_PPC_ALLOC_HTAB:
560                 r = hv_enabled;
561                 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564         case KVM_CAP_PPC_SMT:
565                 r = 0;
566                 if (kvm) {
567                         if (kvm->arch.emul_smt_mode > 1)
568                                 r = kvm->arch.emul_smt_mode;
569                         else
570                                 r = kvm->arch.smt_mode;
571                 } else if (hv_enabled) {
572                         if (cpu_has_feature(CPU_FTR_ARCH_300))
573                                 r = 1;
574                         else
575                                 r = threads_per_subcore;
576                 }
577                 break;
578         case KVM_CAP_PPC_SMT_POSSIBLE:
579                 r = 1;
580                 if (hv_enabled) {
581                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = ((threads_per_subcore << 1) - 1);
583                         else
584                                 /* P9 can emulate dbells, so allow any mode */
585                                 r = 8 | 4 | 2 | 1;
586                 }
587                 break;
588         case KVM_CAP_PPC_RMA:
589                 r = 0;
590                 break;
591         case KVM_CAP_PPC_HWRNG:
592                 r = kvmppc_hwrng_present();
593                 break;
594         case KVM_CAP_PPC_MMU_RADIX:
595                 r = !!(hv_enabled && radix_enabled());
596                 break;
597         case KVM_CAP_PPC_MMU_HASH_V3:
598                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599                 break;
600 #endif
601         case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603                 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605                 r = 1;
606 #else
607                 r = 0;
608 #endif
609                 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611         case KVM_CAP_PPC_HTAB_FD:
612                 r = hv_enabled;
613                 break;
614 #endif
615         case KVM_CAP_NR_VCPUS:
616                 /*
617                  * Recommending a number of CPUs is somewhat arbitrary; we
618                  * return the number of present CPUs for -HV (since a host
619                  * will have secondary threads "offline"), and for other KVM
620                  * implementations just count online CPUs.
621                  */
622                 if (hv_enabled)
623                         r = num_present_cpus();
624                 else
625                         r = num_online_cpus();
626                 break;
627         case KVM_CAP_NR_MEMSLOTS:
628                 r = KVM_USER_MEM_SLOTS;
629                 break;
630         case KVM_CAP_MAX_VCPUS:
631                 r = KVM_MAX_VCPUS;
632                 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634         case KVM_CAP_PPC_GET_SMMU_INFO:
635                 r = 1;
636                 break;
637         case KVM_CAP_SPAPR_MULTITCE:
638                 r = 1;
639                 break;
640         case KVM_CAP_SPAPR_RESIZE_HPT:
641                 r = !!hv_enabled;
642                 break;
643 #endif
644 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
645         case KVM_CAP_PPC_FWNMI:
646                 r = hv_enabled;
647                 break;
648 #endif
649 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
650         case KVM_CAP_PPC_HTM:
651                 r = hv_enabled &&
652                     (!!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
653                      cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
654                 break;
655 #endif
656         default:
657                 r = 0;
658                 break;
659         }
660         return r;
661
662 }
663
664 long kvm_arch_dev_ioctl(struct file *filp,
665                         unsigned int ioctl, unsigned long arg)
666 {
667         return -EINVAL;
668 }
669
670 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
671                            struct kvm_memory_slot *dont)
672 {
673         kvmppc_core_free_memslot(kvm, free, dont);
674 }
675
676 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
677                             unsigned long npages)
678 {
679         return kvmppc_core_create_memslot(kvm, slot, npages);
680 }
681
682 int kvm_arch_prepare_memory_region(struct kvm *kvm,
683                                    struct kvm_memory_slot *memslot,
684                                    const struct kvm_userspace_memory_region *mem,
685                                    enum kvm_mr_change change)
686 {
687         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
688 }
689
690 void kvm_arch_commit_memory_region(struct kvm *kvm,
691                                    const struct kvm_userspace_memory_region *mem,
692                                    const struct kvm_memory_slot *old,
693                                    const struct kvm_memory_slot *new,
694                                    enum kvm_mr_change change)
695 {
696         kvmppc_core_commit_memory_region(kvm, mem, old, new);
697 }
698
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700                                    struct kvm_memory_slot *slot)
701 {
702         kvmppc_core_flush_memslot(kvm, slot);
703 }
704
705 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
706 {
707         struct kvm_vcpu *vcpu;
708         vcpu = kvmppc_core_vcpu_create(kvm, id);
709         if (!IS_ERR(vcpu)) {
710                 vcpu->arch.wqp = &vcpu->wq;
711                 kvmppc_create_vcpu_debugfs(vcpu, id);
712         }
713         return vcpu;
714 }
715
716 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
717 {
718 }
719
720 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
721 {
722         /* Make sure we're not using the vcpu anymore */
723         hrtimer_cancel(&vcpu->arch.dec_timer);
724
725         kvmppc_remove_vcpu_debugfs(vcpu);
726
727         switch (vcpu->arch.irq_type) {
728         case KVMPPC_IRQ_MPIC:
729                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
730                 break;
731         case KVMPPC_IRQ_XICS:
732                 if (xive_enabled())
733                         kvmppc_xive_cleanup_vcpu(vcpu);
734                 else
735                         kvmppc_xics_free_icp(vcpu);
736                 break;
737         }
738
739         kvmppc_core_vcpu_free(vcpu);
740 }
741
742 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
743 {
744         kvm_arch_vcpu_free(vcpu);
745 }
746
747 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
748 {
749         return kvmppc_core_pending_dec(vcpu);
750 }
751
752 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
753 {
754         struct kvm_vcpu *vcpu;
755
756         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
757         kvmppc_decrementer_func(vcpu);
758
759         return HRTIMER_NORESTART;
760 }
761
762 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
763 {
764         int ret;
765
766         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
767         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
768         vcpu->arch.dec_expires = get_tb();
769
770 #ifdef CONFIG_KVM_EXIT_TIMING
771         mutex_init(&vcpu->arch.exit_timing_lock);
772 #endif
773         ret = kvmppc_subarch_vcpu_init(vcpu);
774         return ret;
775 }
776
777 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
778 {
779         kvmppc_mmu_destroy(vcpu);
780         kvmppc_subarch_vcpu_uninit(vcpu);
781 }
782
783 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
784 {
785 #ifdef CONFIG_BOOKE
786         /*
787          * vrsave (formerly usprg0) isn't used by Linux, but may
788          * be used by the guest.
789          *
790          * On non-booke this is associated with Altivec and
791          * is handled by code in book3s.c.
792          */
793         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
794 #endif
795         kvmppc_core_vcpu_load(vcpu, cpu);
796 }
797
798 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
799 {
800         kvmppc_core_vcpu_put(vcpu);
801 #ifdef CONFIG_BOOKE
802         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
803 #endif
804 }
805
806 /*
807  * irq_bypass_add_producer and irq_bypass_del_producer are only
808  * useful if the architecture supports PCI passthrough.
809  * irq_bypass_stop and irq_bypass_start are not needed and so
810  * kvm_ops are not defined for them.
811  */
812 bool kvm_arch_has_irq_bypass(void)
813 {
814         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
815                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
816 }
817
818 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
819                                      struct irq_bypass_producer *prod)
820 {
821         struct kvm_kernel_irqfd *irqfd =
822                 container_of(cons, struct kvm_kernel_irqfd, consumer);
823         struct kvm *kvm = irqfd->kvm;
824
825         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
826                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
827
828         return 0;
829 }
830
831 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
832                                       struct irq_bypass_producer *prod)
833 {
834         struct kvm_kernel_irqfd *irqfd =
835                 container_of(cons, struct kvm_kernel_irqfd, consumer);
836         struct kvm *kvm = irqfd->kvm;
837
838         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
839                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
840 }
841
842 #ifdef CONFIG_VSX
843 static inline int kvmppc_get_vsr_dword_offset(int index)
844 {
845         int offset;
846
847         if ((index != 0) && (index != 1))
848                 return -1;
849
850 #ifdef __BIG_ENDIAN
851         offset =  index;
852 #else
853         offset = 1 - index;
854 #endif
855
856         return offset;
857 }
858
859 static inline int kvmppc_get_vsr_word_offset(int index)
860 {
861         int offset;
862
863         if ((index > 3) || (index < 0))
864                 return -1;
865
866 #ifdef __BIG_ENDIAN
867         offset = index;
868 #else
869         offset = 3 - index;
870 #endif
871         return offset;
872 }
873
874 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
875         u64 gpr)
876 {
877         union kvmppc_one_reg val;
878         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
879         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
880
881         if (offset == -1)
882                 return;
883
884         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
885                 val.vval = VCPU_VSX_VR(vcpu, index);
886                 val.vsxval[offset] = gpr;
887                 VCPU_VSX_VR(vcpu, index) = val.vval;
888         } else {
889                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
890         }
891 }
892
893 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
894         u64 gpr)
895 {
896         union kvmppc_one_reg val;
897         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
898
899         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
900                 val.vval = VCPU_VSX_VR(vcpu, index);
901                 val.vsxval[0] = gpr;
902                 val.vsxval[1] = gpr;
903                 VCPU_VSX_VR(vcpu, index) = val.vval;
904         } else {
905                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
906                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
907         }
908 }
909
910 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
911         u32 gpr32)
912 {
913         union kvmppc_one_reg val;
914         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
915         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
916         int dword_offset, word_offset;
917
918         if (offset == -1)
919                 return;
920
921         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
922                 val.vval = VCPU_VSX_VR(vcpu, index);
923                 val.vsx32val[offset] = gpr32;
924                 VCPU_VSX_VR(vcpu, index) = val.vval;
925         } else {
926                 dword_offset = offset / 2;
927                 word_offset = offset % 2;
928                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
929                 val.vsx32val[word_offset] = gpr32;
930                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
931         }
932 }
933 #endif /* CONFIG_VSX */
934
935 #ifdef CONFIG_ALTIVEC
936 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
937                 u64 gpr)
938 {
939         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
940         u32 hi, lo;
941         u32 di;
942
943 #ifdef __BIG_ENDIAN
944         hi = gpr >> 32;
945         lo = gpr & 0xffffffff;
946 #else
947         lo = gpr >> 32;
948         hi = gpr & 0xffffffff;
949 #endif
950
951         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
952         if (di > 1)
953                 return;
954
955         if (vcpu->arch.mmio_host_swabbed)
956                 di = 1 - di;
957
958         VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
959         VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
960 }
961 #endif /* CONFIG_ALTIVEC */
962
963 #ifdef CONFIG_PPC_FPU
964 static inline u64 sp_to_dp(u32 fprs)
965 {
966         u64 fprd;
967
968         preempt_disable();
969         enable_kernel_fp();
970         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
971              : "fr0");
972         preempt_enable();
973         return fprd;
974 }
975
976 static inline u32 dp_to_sp(u64 fprd)
977 {
978         u32 fprs;
979
980         preempt_disable();
981         enable_kernel_fp();
982         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
983              : "fr0");
984         preempt_enable();
985         return fprs;
986 }
987
988 #else
989 #define sp_to_dp(x)     (x)
990 #define dp_to_sp(x)     (x)
991 #endif /* CONFIG_PPC_FPU */
992
993 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
994                                       struct kvm_run *run)
995 {
996         u64 uninitialized_var(gpr);
997
998         if (run->mmio.len > sizeof(gpr)) {
999                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1000                 return;
1001         }
1002
1003         if (!vcpu->arch.mmio_host_swabbed) {
1004                 switch (run->mmio.len) {
1005                 case 8: gpr = *(u64 *)run->mmio.data; break;
1006                 case 4: gpr = *(u32 *)run->mmio.data; break;
1007                 case 2: gpr = *(u16 *)run->mmio.data; break;
1008                 case 1: gpr = *(u8 *)run->mmio.data; break;
1009                 }
1010         } else {
1011                 switch (run->mmio.len) {
1012                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1013                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1014                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1015                 case 1: gpr = *(u8 *)run->mmio.data; break;
1016                 }
1017         }
1018
1019         /* conversion between single and double precision */
1020         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1021                 gpr = sp_to_dp(gpr);
1022
1023         if (vcpu->arch.mmio_sign_extend) {
1024                 switch (run->mmio.len) {
1025 #ifdef CONFIG_PPC64
1026                 case 4:
1027                         gpr = (s64)(s32)gpr;
1028                         break;
1029 #endif
1030                 case 2:
1031                         gpr = (s64)(s16)gpr;
1032                         break;
1033                 case 1:
1034                         gpr = (s64)(s8)gpr;
1035                         break;
1036                 }
1037         }
1038
1039         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1040         case KVM_MMIO_REG_GPR:
1041                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1042                 break;
1043         case KVM_MMIO_REG_FPR:
1044                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1045                 break;
1046 #ifdef CONFIG_PPC_BOOK3S
1047         case KVM_MMIO_REG_QPR:
1048                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1049                 break;
1050         case KVM_MMIO_REG_FQPR:
1051                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1052                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1053                 break;
1054 #endif
1055 #ifdef CONFIG_VSX
1056         case KVM_MMIO_REG_VSX:
1057                 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1058                         kvmppc_set_vsr_dword(vcpu, gpr);
1059                 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1060                         kvmppc_set_vsr_word(vcpu, gpr);
1061                 else if (vcpu->arch.mmio_vsx_copy_type ==
1062                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1063                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1064                 break;
1065 #endif
1066 #ifdef CONFIG_ALTIVEC
1067         case KVM_MMIO_REG_VMX:
1068                 kvmppc_set_vmx_dword(vcpu, gpr);
1069                 break;
1070 #endif
1071         default:
1072                 BUG();
1073         }
1074 }
1075
1076 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1077                                 unsigned int rt, unsigned int bytes,
1078                                 int is_default_endian, int sign_extend)
1079 {
1080         int idx, ret;
1081         bool host_swabbed;
1082
1083         /* Pity C doesn't have a logical XOR operator */
1084         if (kvmppc_need_byteswap(vcpu)) {
1085                 host_swabbed = is_default_endian;
1086         } else {
1087                 host_swabbed = !is_default_endian;
1088         }
1089
1090         if (bytes > sizeof(run->mmio.data)) {
1091                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1092                        run->mmio.len);
1093         }
1094
1095         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1096         run->mmio.len = bytes;
1097         run->mmio.is_write = 0;
1098
1099         vcpu->arch.io_gpr = rt;
1100         vcpu->arch.mmio_host_swabbed = host_swabbed;
1101         vcpu->mmio_needed = 1;
1102         vcpu->mmio_is_write = 0;
1103         vcpu->arch.mmio_sign_extend = sign_extend;
1104
1105         idx = srcu_read_lock(&vcpu->kvm->srcu);
1106
1107         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1108                               bytes, &run->mmio.data);
1109
1110         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1111
1112         if (!ret) {
1113                 kvmppc_complete_mmio_load(vcpu, run);
1114                 vcpu->mmio_needed = 0;
1115                 return EMULATE_DONE;
1116         }
1117
1118         return EMULATE_DO_MMIO;
1119 }
1120
1121 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1122                        unsigned int rt, unsigned int bytes,
1123                        int is_default_endian)
1124 {
1125         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1126 }
1127 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1128
1129 /* Same as above, but sign extends */
1130 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131                         unsigned int rt, unsigned int bytes,
1132                         int is_default_endian)
1133 {
1134         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1135 }
1136
1137 #ifdef CONFIG_VSX
1138 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1139                         unsigned int rt, unsigned int bytes,
1140                         int is_default_endian, int mmio_sign_extend)
1141 {
1142         enum emulation_result emulated = EMULATE_DONE;
1143
1144         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1145         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1146                 return EMULATE_FAIL;
1147
1148         while (vcpu->arch.mmio_vsx_copy_nums) {
1149                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1150                         is_default_endian, mmio_sign_extend);
1151
1152                 if (emulated != EMULATE_DONE)
1153                         break;
1154
1155                 vcpu->arch.paddr_accessed += run->mmio.len;
1156
1157                 vcpu->arch.mmio_vsx_copy_nums--;
1158                 vcpu->arch.mmio_vsx_offset++;
1159         }
1160         return emulated;
1161 }
1162 #endif /* CONFIG_VSX */
1163
1164 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1165                         u64 val, unsigned int bytes, int is_default_endian)
1166 {
1167         void *data = run->mmio.data;
1168         int idx, ret;
1169         bool host_swabbed;
1170
1171         /* Pity C doesn't have a logical XOR operator */
1172         if (kvmppc_need_byteswap(vcpu)) {
1173                 host_swabbed = is_default_endian;
1174         } else {
1175                 host_swabbed = !is_default_endian;
1176         }
1177
1178         if (bytes > sizeof(run->mmio.data)) {
1179                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1180                        run->mmio.len);
1181         }
1182
1183         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1184         run->mmio.len = bytes;
1185         run->mmio.is_write = 1;
1186         vcpu->mmio_needed = 1;
1187         vcpu->mmio_is_write = 1;
1188
1189         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1190                 val = dp_to_sp(val);
1191
1192         /* Store the value at the lowest bytes in 'data'. */
1193         if (!host_swabbed) {
1194                 switch (bytes) {
1195                 case 8: *(u64 *)data = val; break;
1196                 case 4: *(u32 *)data = val; break;
1197                 case 2: *(u16 *)data = val; break;
1198                 case 1: *(u8  *)data = val; break;
1199                 }
1200         } else {
1201                 switch (bytes) {
1202                 case 8: *(u64 *)data = swab64(val); break;
1203                 case 4: *(u32 *)data = swab32(val); break;
1204                 case 2: *(u16 *)data = swab16(val); break;
1205                 case 1: *(u8  *)data = val; break;
1206                 }
1207         }
1208
1209         idx = srcu_read_lock(&vcpu->kvm->srcu);
1210
1211         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1212                                bytes, &run->mmio.data);
1213
1214         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1215
1216         if (!ret) {
1217                 vcpu->mmio_needed = 0;
1218                 return EMULATE_DONE;
1219         }
1220
1221         return EMULATE_DO_MMIO;
1222 }
1223 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1224
1225 #ifdef CONFIG_VSX
1226 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1227 {
1228         u32 dword_offset, word_offset;
1229         union kvmppc_one_reg reg;
1230         int vsx_offset = 0;
1231         int copy_type = vcpu->arch.mmio_vsx_copy_type;
1232         int result = 0;
1233
1234         switch (copy_type) {
1235         case KVMPPC_VSX_COPY_DWORD:
1236                 vsx_offset =
1237                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1238
1239                 if (vsx_offset == -1) {
1240                         result = -1;
1241                         break;
1242                 }
1243
1244                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1245                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1246                 } else {
1247                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1248                         *val = reg.vsxval[vsx_offset];
1249                 }
1250                 break;
1251
1252         case KVMPPC_VSX_COPY_WORD:
1253                 vsx_offset =
1254                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1255
1256                 if (vsx_offset == -1) {
1257                         result = -1;
1258                         break;
1259                 }
1260
1261                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1262                         dword_offset = vsx_offset / 2;
1263                         word_offset = vsx_offset % 2;
1264                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1265                         *val = reg.vsx32val[word_offset];
1266                 } else {
1267                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1268                         *val = reg.vsx32val[vsx_offset];
1269                 }
1270                 break;
1271
1272         default:
1273                 result = -1;
1274                 break;
1275         }
1276
1277         return result;
1278 }
1279
1280 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1281                         int rs, unsigned int bytes, int is_default_endian)
1282 {
1283         u64 val;
1284         enum emulation_result emulated = EMULATE_DONE;
1285
1286         vcpu->arch.io_gpr = rs;
1287
1288         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1289         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1290                 return EMULATE_FAIL;
1291
1292         while (vcpu->arch.mmio_vsx_copy_nums) {
1293                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1294                         return EMULATE_FAIL;
1295
1296                 emulated = kvmppc_handle_store(run, vcpu,
1297                          val, bytes, is_default_endian);
1298
1299                 if (emulated != EMULATE_DONE)
1300                         break;
1301
1302                 vcpu->arch.paddr_accessed += run->mmio.len;
1303
1304                 vcpu->arch.mmio_vsx_copy_nums--;
1305                 vcpu->arch.mmio_vsx_offset++;
1306         }
1307
1308         return emulated;
1309 }
1310
1311 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1312                         struct kvm_run *run)
1313 {
1314         enum emulation_result emulated = EMULATE_FAIL;
1315         int r;
1316
1317         vcpu->arch.paddr_accessed += run->mmio.len;
1318
1319         if (!vcpu->mmio_is_write) {
1320                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1321                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1322         } else {
1323                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1324                          vcpu->arch.io_gpr, run->mmio.len, 1);
1325         }
1326
1327         switch (emulated) {
1328         case EMULATE_DO_MMIO:
1329                 run->exit_reason = KVM_EXIT_MMIO;
1330                 r = RESUME_HOST;
1331                 break;
1332         case EMULATE_FAIL:
1333                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1334                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1335                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1336                 r = RESUME_HOST;
1337                 break;
1338         default:
1339                 r = RESUME_GUEST;
1340                 break;
1341         }
1342         return r;
1343 }
1344 #endif /* CONFIG_VSX */
1345
1346 #ifdef CONFIG_ALTIVEC
1347 /* handle quadword load access in two halves */
1348 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1349                 unsigned int rt, int is_default_endian)
1350 {
1351         enum emulation_result emulated = EMULATE_DONE;
1352
1353         while (vcpu->arch.mmio_vmx_copy_nums) {
1354                 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1355                                 is_default_endian, 0);
1356
1357                 if (emulated != EMULATE_DONE)
1358                         break;
1359
1360                 vcpu->arch.paddr_accessed += run->mmio.len;
1361                 vcpu->arch.mmio_vmx_copy_nums--;
1362         }
1363
1364         return emulated;
1365 }
1366
1367 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1368 {
1369         vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1370         u32 di;
1371         u64 w0, w1;
1372
1373         di = 2 - vcpu->arch.mmio_vmx_copy_nums;         /* doubleword index */
1374         if (di > 1)
1375                 return -1;
1376
1377         if (vcpu->arch.mmio_host_swabbed)
1378                 di = 1 - di;
1379
1380         w0 = vrs.u[di * 2];
1381         w1 = vrs.u[di * 2 + 1];
1382
1383 #ifdef __BIG_ENDIAN
1384         *val = (w0 << 32) | w1;
1385 #else
1386         *val = (w1 << 32) | w0;
1387 #endif
1388         return 0;
1389 }
1390
1391 /* handle quadword store in two halves */
1392 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1393                 unsigned int rs, int is_default_endian)
1394 {
1395         u64 val = 0;
1396         enum emulation_result emulated = EMULATE_DONE;
1397
1398         vcpu->arch.io_gpr = rs;
1399
1400         while (vcpu->arch.mmio_vmx_copy_nums) {
1401                 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1402                         return EMULATE_FAIL;
1403
1404                 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1405                                 is_default_endian);
1406                 if (emulated != EMULATE_DONE)
1407                         break;
1408
1409                 vcpu->arch.paddr_accessed += run->mmio.len;
1410                 vcpu->arch.mmio_vmx_copy_nums--;
1411         }
1412
1413         return emulated;
1414 }
1415
1416 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1417                 struct kvm_run *run)
1418 {
1419         enum emulation_result emulated = EMULATE_FAIL;
1420         int r;
1421
1422         vcpu->arch.paddr_accessed += run->mmio.len;
1423
1424         if (!vcpu->mmio_is_write) {
1425                 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1426                                 vcpu->arch.io_gpr, 1);
1427         } else {
1428                 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1429                                 vcpu->arch.io_gpr, 1);
1430         }
1431
1432         switch (emulated) {
1433         case EMULATE_DO_MMIO:
1434                 run->exit_reason = KVM_EXIT_MMIO;
1435                 r = RESUME_HOST;
1436                 break;
1437         case EMULATE_FAIL:
1438                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1439                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1440                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1441                 r = RESUME_HOST;
1442                 break;
1443         default:
1444                 r = RESUME_GUEST;
1445                 break;
1446         }
1447         return r;
1448 }
1449 #endif /* CONFIG_ALTIVEC */
1450
1451 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1452 {
1453         int r = 0;
1454         union kvmppc_one_reg val;
1455         int size;
1456
1457         size = one_reg_size(reg->id);
1458         if (size > sizeof(val))
1459                 return -EINVAL;
1460
1461         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1462         if (r == -EINVAL) {
1463                 r = 0;
1464                 switch (reg->id) {
1465 #ifdef CONFIG_ALTIVEC
1466                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1467                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1468                                 r = -ENXIO;
1469                                 break;
1470                         }
1471                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1472                         break;
1473                 case KVM_REG_PPC_VSCR:
1474                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1475                                 r = -ENXIO;
1476                                 break;
1477                         }
1478                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1479                         break;
1480                 case KVM_REG_PPC_VRSAVE:
1481                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1482                         break;
1483 #endif /* CONFIG_ALTIVEC */
1484                 default:
1485                         r = -EINVAL;
1486                         break;
1487                 }
1488         }
1489
1490         if (r)
1491                 return r;
1492
1493         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1494                 r = -EFAULT;
1495
1496         return r;
1497 }
1498
1499 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1500 {
1501         int r;
1502         union kvmppc_one_reg val;
1503         int size;
1504
1505         size = one_reg_size(reg->id);
1506         if (size > sizeof(val))
1507                 return -EINVAL;
1508
1509         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1510                 return -EFAULT;
1511
1512         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1513         if (r == -EINVAL) {
1514                 r = 0;
1515                 switch (reg->id) {
1516 #ifdef CONFIG_ALTIVEC
1517                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1518                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1519                                 r = -ENXIO;
1520                                 break;
1521                         }
1522                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1523                         break;
1524                 case KVM_REG_PPC_VSCR:
1525                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1526                                 r = -ENXIO;
1527                                 break;
1528                         }
1529                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1530                         break;
1531                 case KVM_REG_PPC_VRSAVE:
1532                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1533                                 r = -ENXIO;
1534                                 break;
1535                         }
1536                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1537                         break;
1538 #endif /* CONFIG_ALTIVEC */
1539                 default:
1540                         r = -EINVAL;
1541                         break;
1542                 }
1543         }
1544
1545         return r;
1546 }
1547
1548 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1549 {
1550         int r;
1551
1552         vcpu_load(vcpu);
1553
1554         if (vcpu->mmio_needed) {
1555                 vcpu->mmio_needed = 0;
1556                 if (!vcpu->mmio_is_write)
1557                         kvmppc_complete_mmio_load(vcpu, run);
1558 #ifdef CONFIG_VSX
1559                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1560                         vcpu->arch.mmio_vsx_copy_nums--;
1561                         vcpu->arch.mmio_vsx_offset++;
1562                 }
1563
1564                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1565                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1566                         if (r == RESUME_HOST) {
1567                                 vcpu->mmio_needed = 1;
1568                                 goto out;
1569                         }
1570                 }
1571 #endif
1572 #ifdef CONFIG_ALTIVEC
1573                 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1574                         vcpu->arch.mmio_vmx_copy_nums--;
1575
1576                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1577                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1578                         if (r == RESUME_HOST) {
1579                                 vcpu->mmio_needed = 1;
1580                                 goto out;
1581                         }
1582                 }
1583 #endif
1584         } else if (vcpu->arch.osi_needed) {
1585                 u64 *gprs = run->osi.gprs;
1586                 int i;
1587
1588                 for (i = 0; i < 32; i++)
1589                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1590                 vcpu->arch.osi_needed = 0;
1591         } else if (vcpu->arch.hcall_needed) {
1592                 int i;
1593
1594                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1595                 for (i = 0; i < 9; ++i)
1596                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1597                 vcpu->arch.hcall_needed = 0;
1598 #ifdef CONFIG_BOOKE
1599         } else if (vcpu->arch.epr_needed) {
1600                 kvmppc_set_epr(vcpu, run->epr.epr);
1601                 vcpu->arch.epr_needed = 0;
1602 #endif
1603         }
1604
1605         kvm_sigset_activate(vcpu);
1606
1607         if (run->immediate_exit)
1608                 r = -EINTR;
1609         else
1610                 r = kvmppc_vcpu_run(run, vcpu);
1611
1612         kvm_sigset_deactivate(vcpu);
1613
1614 #ifdef CONFIG_ALTIVEC
1615 out:
1616 #endif
1617         vcpu_put(vcpu);
1618         return r;
1619 }
1620
1621 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1622 {
1623         if (irq->irq == KVM_INTERRUPT_UNSET) {
1624                 kvmppc_core_dequeue_external(vcpu);
1625                 return 0;
1626         }
1627
1628         kvmppc_core_queue_external(vcpu, irq);
1629
1630         kvm_vcpu_kick(vcpu);
1631
1632         return 0;
1633 }
1634
1635 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1636                                      struct kvm_enable_cap *cap)
1637 {
1638         int r;
1639
1640         if (cap->flags)
1641                 return -EINVAL;
1642
1643         switch (cap->cap) {
1644         case KVM_CAP_PPC_OSI:
1645                 r = 0;
1646                 vcpu->arch.osi_enabled = true;
1647                 break;
1648         case KVM_CAP_PPC_PAPR:
1649                 r = 0;
1650                 vcpu->arch.papr_enabled = true;
1651                 break;
1652         case KVM_CAP_PPC_EPR:
1653                 r = 0;
1654                 if (cap->args[0])
1655                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1656                 else
1657                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1658                 break;
1659 #ifdef CONFIG_BOOKE
1660         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1661                 r = 0;
1662                 vcpu->arch.watchdog_enabled = true;
1663                 break;
1664 #endif
1665 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1666         case KVM_CAP_SW_TLB: {
1667                 struct kvm_config_tlb cfg;
1668                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1669
1670                 r = -EFAULT;
1671                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1672                         break;
1673
1674                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1675                 break;
1676         }
1677 #endif
1678 #ifdef CONFIG_KVM_MPIC
1679         case KVM_CAP_IRQ_MPIC: {
1680                 struct fd f;
1681                 struct kvm_device *dev;
1682
1683                 r = -EBADF;
1684                 f = fdget(cap->args[0]);
1685                 if (!f.file)
1686                         break;
1687
1688                 r = -EPERM;
1689                 dev = kvm_device_from_filp(f.file);
1690                 if (dev)
1691                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1692
1693                 fdput(f);
1694                 break;
1695         }
1696 #endif
1697 #ifdef CONFIG_KVM_XICS
1698         case KVM_CAP_IRQ_XICS: {
1699                 struct fd f;
1700                 struct kvm_device *dev;
1701
1702                 r = -EBADF;
1703                 f = fdget(cap->args[0]);
1704                 if (!f.file)
1705                         break;
1706
1707                 r = -EPERM;
1708                 dev = kvm_device_from_filp(f.file);
1709                 if (dev) {
1710                         if (xive_enabled())
1711                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1712                         else
1713                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1714                 }
1715
1716                 fdput(f);
1717                 break;
1718         }
1719 #endif /* CONFIG_KVM_XICS */
1720 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1721         case KVM_CAP_PPC_FWNMI:
1722                 r = -EINVAL;
1723                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1724                         break;
1725                 r = 0;
1726                 vcpu->kvm->arch.fwnmi_enabled = true;
1727                 break;
1728 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1729         default:
1730                 r = -EINVAL;
1731                 break;
1732         }
1733
1734         if (!r)
1735                 r = kvmppc_sanity_check(vcpu);
1736
1737         return r;
1738 }
1739
1740 bool kvm_arch_intc_initialized(struct kvm *kvm)
1741 {
1742 #ifdef CONFIG_KVM_MPIC
1743         if (kvm->arch.mpic)
1744                 return true;
1745 #endif
1746 #ifdef CONFIG_KVM_XICS
1747         if (kvm->arch.xics || kvm->arch.xive)
1748                 return true;
1749 #endif
1750         return false;
1751 }
1752
1753 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1754                                     struct kvm_mp_state *mp_state)
1755 {
1756         return -EINVAL;
1757 }
1758
1759 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1760                                     struct kvm_mp_state *mp_state)
1761 {
1762         return -EINVAL;
1763 }
1764
1765 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1766                                unsigned int ioctl, unsigned long arg)
1767 {
1768         struct kvm_vcpu *vcpu = filp->private_data;
1769         void __user *argp = (void __user *)arg;
1770
1771         if (ioctl == KVM_INTERRUPT) {
1772                 struct kvm_interrupt irq;
1773                 if (copy_from_user(&irq, argp, sizeof(irq)))
1774                         return -EFAULT;
1775                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1776         }
1777         return -ENOIOCTLCMD;
1778 }
1779
1780 long kvm_arch_vcpu_ioctl(struct file *filp,
1781                          unsigned int ioctl, unsigned long arg)
1782 {
1783         struct kvm_vcpu *vcpu = filp->private_data;
1784         void __user *argp = (void __user *)arg;
1785         long r;
1786
1787         vcpu_load(vcpu);
1788
1789         switch (ioctl) {
1790         case KVM_ENABLE_CAP:
1791         {
1792                 struct kvm_enable_cap cap;
1793                 r = -EFAULT;
1794                 if (copy_from_user(&cap, argp, sizeof(cap)))
1795                         goto out;
1796                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1797                 break;
1798         }
1799
1800         case KVM_SET_ONE_REG:
1801         case KVM_GET_ONE_REG:
1802         {
1803                 struct kvm_one_reg reg;
1804                 r = -EFAULT;
1805                 if (copy_from_user(&reg, argp, sizeof(reg)))
1806                         goto out;
1807                 if (ioctl == KVM_SET_ONE_REG)
1808                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1809                 else
1810                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1811                 break;
1812         }
1813
1814 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1815         case KVM_DIRTY_TLB: {
1816                 struct kvm_dirty_tlb dirty;
1817                 r = -EFAULT;
1818                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1819                         goto out;
1820                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1821                 break;
1822         }
1823 #endif
1824         default:
1825                 r = -EINVAL;
1826         }
1827
1828 out:
1829         vcpu_put(vcpu);
1830         return r;
1831 }
1832
1833 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1834 {
1835         return VM_FAULT_SIGBUS;
1836 }
1837
1838 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1839 {
1840         u32 inst_nop = 0x60000000;
1841 #ifdef CONFIG_KVM_BOOKE_HV
1842         u32 inst_sc1 = 0x44000022;
1843         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1844         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1845         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1846         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1847 #else
1848         u32 inst_lis = 0x3c000000;
1849         u32 inst_ori = 0x60000000;
1850         u32 inst_sc = 0x44000002;
1851         u32 inst_imm_mask = 0xffff;
1852
1853         /*
1854          * The hypercall to get into KVM from within guest context is as
1855          * follows:
1856          *
1857          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1858          *    ori r0, KVM_SC_MAGIC_R0@l
1859          *    sc
1860          *    nop
1861          */
1862         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1863         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1864         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1865         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1866 #endif
1867
1868         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1869
1870         return 0;
1871 }
1872
1873 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1874                           bool line_status)
1875 {
1876         if (!irqchip_in_kernel(kvm))
1877                 return -ENXIO;
1878
1879         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1880                                         irq_event->irq, irq_event->level,
1881                                         line_status);
1882         return 0;
1883 }
1884
1885
1886 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1887                                    struct kvm_enable_cap *cap)
1888 {
1889         int r;
1890
1891         if (cap->flags)
1892                 return -EINVAL;
1893
1894         switch (cap->cap) {
1895 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1896         case KVM_CAP_PPC_ENABLE_HCALL: {
1897                 unsigned long hcall = cap->args[0];
1898
1899                 r = -EINVAL;
1900                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1901                     cap->args[1] > 1)
1902                         break;
1903                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1904                         break;
1905                 if (cap->args[1])
1906                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1907                 else
1908                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1909                 r = 0;
1910                 break;
1911         }
1912         case KVM_CAP_PPC_SMT: {
1913                 unsigned long mode = cap->args[0];
1914                 unsigned long flags = cap->args[1];
1915
1916                 r = -EINVAL;
1917                 if (kvm->arch.kvm_ops->set_smt_mode)
1918                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1919                 break;
1920         }
1921 #endif
1922         default:
1923                 r = -EINVAL;
1924                 break;
1925         }
1926
1927         return r;
1928 }
1929
1930 #ifdef CONFIG_PPC_BOOK3S_64
1931 /*
1932  * These functions check whether the underlying hardware is safe
1933  * against attacks based on observing the effects of speculatively
1934  * executed instructions, and whether it supplies instructions for
1935  * use in workarounds.  The information comes from firmware, either
1936  * via the device tree on powernv platforms or from an hcall on
1937  * pseries platforms.
1938  */
1939 #ifdef CONFIG_PPC_PSERIES
1940 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1941 {
1942         struct h_cpu_char_result c;
1943         unsigned long rc;
1944
1945         if (!machine_is(pseries))
1946                 return -ENOTTY;
1947
1948         rc = plpar_get_cpu_characteristics(&c);
1949         if (rc == H_SUCCESS) {
1950                 cp->character = c.character;
1951                 cp->behaviour = c.behaviour;
1952                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1953                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1954                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1955                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1956                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1957                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1958                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1959                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1960                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1961                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1962                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1963         }
1964         return 0;
1965 }
1966 #else
1967 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1968 {
1969         return -ENOTTY;
1970 }
1971 #endif
1972
1973 static inline bool have_fw_feat(struct device_node *fw_features,
1974                                 const char *state, const char *name)
1975 {
1976         struct device_node *np;
1977         bool r = false;
1978
1979         np = of_get_child_by_name(fw_features, name);
1980         if (np) {
1981                 r = of_property_read_bool(np, state);
1982                 of_node_put(np);
1983         }
1984         return r;
1985 }
1986
1987 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1988 {
1989         struct device_node *np, *fw_features;
1990         int r;
1991
1992         memset(cp, 0, sizeof(*cp));
1993         r = pseries_get_cpu_char(cp);
1994         if (r != -ENOTTY)
1995                 return r;
1996
1997         np = of_find_node_by_name(NULL, "ibm,opal");
1998         if (np) {
1999                 fw_features = of_get_child_by_name(np, "fw-features");
2000                 of_node_put(np);
2001                 if (!fw_features)
2002                         return 0;
2003                 if (have_fw_feat(fw_features, "enabled",
2004                                  "inst-spec-barrier-ori31,31,0"))
2005                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2006                 if (have_fw_feat(fw_features, "enabled",
2007                                  "fw-bcctrl-serialized"))
2008                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2009                 if (have_fw_feat(fw_features, "enabled",
2010                                  "inst-l1d-flush-ori30,30,0"))
2011                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2012                 if (have_fw_feat(fw_features, "enabled",
2013                                  "inst-l1d-flush-trig2"))
2014                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2015                 if (have_fw_feat(fw_features, "enabled",
2016                                  "fw-l1d-thread-split"))
2017                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2018                 if (have_fw_feat(fw_features, "enabled",
2019                                  "fw-count-cache-disabled"))
2020                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2021                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2022                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2023                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2024                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2025                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2026                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2027
2028                 if (have_fw_feat(fw_features, "enabled",
2029                                  "speculation-policy-favor-security"))
2030                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2031                 if (!have_fw_feat(fw_features, "disabled",
2032                                   "needs-l1d-flush-msr-pr-0-to-1"))
2033                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2034                 if (!have_fw_feat(fw_features, "disabled",
2035                                   "needs-spec-barrier-for-bound-checks"))
2036                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2037                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2038                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2039                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2040
2041                 of_node_put(fw_features);
2042         }
2043
2044         return 0;
2045 }
2046 #endif
2047
2048 long kvm_arch_vm_ioctl(struct file *filp,
2049                        unsigned int ioctl, unsigned long arg)
2050 {
2051         struct kvm *kvm __maybe_unused = filp->private_data;
2052         void __user *argp = (void __user *)arg;
2053         long r;
2054
2055         switch (ioctl) {
2056         case KVM_PPC_GET_PVINFO: {
2057                 struct kvm_ppc_pvinfo pvinfo;
2058                 memset(&pvinfo, 0, sizeof(pvinfo));
2059                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2060                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2061                         r = -EFAULT;
2062                         goto out;
2063                 }
2064
2065                 break;
2066         }
2067         case KVM_ENABLE_CAP:
2068         {
2069                 struct kvm_enable_cap cap;
2070                 r = -EFAULT;
2071                 if (copy_from_user(&cap, argp, sizeof(cap)))
2072                         goto out;
2073                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2074                 break;
2075         }
2076 #ifdef CONFIG_SPAPR_TCE_IOMMU
2077         case KVM_CREATE_SPAPR_TCE_64: {
2078                 struct kvm_create_spapr_tce_64 create_tce_64;
2079
2080                 r = -EFAULT;
2081                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2082                         goto out;
2083                 if (create_tce_64.flags) {
2084                         r = -EINVAL;
2085                         goto out;
2086                 }
2087                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2088                 goto out;
2089         }
2090         case KVM_CREATE_SPAPR_TCE: {
2091                 struct kvm_create_spapr_tce create_tce;
2092                 struct kvm_create_spapr_tce_64 create_tce_64;
2093
2094                 r = -EFAULT;
2095                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2096                         goto out;
2097
2098                 create_tce_64.liobn = create_tce.liobn;
2099                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2100                 create_tce_64.offset = 0;
2101                 create_tce_64.size = create_tce.window_size >>
2102                                 IOMMU_PAGE_SHIFT_4K;
2103                 create_tce_64.flags = 0;
2104                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2105                 goto out;
2106         }
2107 #endif
2108 #ifdef CONFIG_PPC_BOOK3S_64
2109         case KVM_PPC_GET_SMMU_INFO: {
2110                 struct kvm_ppc_smmu_info info;
2111                 struct kvm *kvm = filp->private_data;
2112
2113                 memset(&info, 0, sizeof(info));
2114                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2115                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2116                         r = -EFAULT;
2117                 break;
2118         }
2119         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2120                 struct kvm *kvm = filp->private_data;
2121
2122                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2123                 break;
2124         }
2125         case KVM_PPC_CONFIGURE_V3_MMU: {
2126                 struct kvm *kvm = filp->private_data;
2127                 struct kvm_ppc_mmuv3_cfg cfg;
2128
2129                 r = -EINVAL;
2130                 if (!kvm->arch.kvm_ops->configure_mmu)
2131                         goto out;
2132                 r = -EFAULT;
2133                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2134                         goto out;
2135                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2136                 break;
2137         }
2138         case KVM_PPC_GET_RMMU_INFO: {
2139                 struct kvm *kvm = filp->private_data;
2140                 struct kvm_ppc_rmmu_info info;
2141
2142                 r = -EINVAL;
2143                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2144                         goto out;
2145                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2146                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2147                         r = -EFAULT;
2148                 break;
2149         }
2150         case KVM_PPC_GET_CPU_CHAR: {
2151                 struct kvm_ppc_cpu_char cpuchar;
2152
2153                 r = kvmppc_get_cpu_char(&cpuchar);
2154                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2155                         r = -EFAULT;
2156                 break;
2157         }
2158         default: {
2159                 struct kvm *kvm = filp->private_data;
2160                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2161         }
2162 #else /* CONFIG_PPC_BOOK3S_64 */
2163         default:
2164                 r = -ENOTTY;
2165 #endif
2166         }
2167 out:
2168         return r;
2169 }
2170
2171 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2172 static unsigned long nr_lpids;
2173
2174 long kvmppc_alloc_lpid(void)
2175 {
2176         long lpid;
2177
2178         do {
2179                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2180                 if (lpid >= nr_lpids) {
2181                         pr_err("%s: No LPIDs free\n", __func__);
2182                         return -ENOMEM;
2183                 }
2184         } while (test_and_set_bit(lpid, lpid_inuse));
2185
2186         return lpid;
2187 }
2188 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2189
2190 void kvmppc_claim_lpid(long lpid)
2191 {
2192         set_bit(lpid, lpid_inuse);
2193 }
2194 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2195
2196 void kvmppc_free_lpid(long lpid)
2197 {
2198         clear_bit(lpid, lpid_inuse);
2199 }
2200 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2201
2202 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2203 {
2204         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2205         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2206 }
2207 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2208
2209 int kvm_arch_init(void *opaque)
2210 {
2211         return 0;
2212 }
2213
2214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);