Merge branch 'drm-fixes-5.2' of git://people.freedesktop.org/~agd5f/linux into drm...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright IBM Corp. 2007
5  *
6  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8  */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34
35 #include "timing.h"
36 #include "irq.h"
37 #include "../mm/mmu_decl.h"
38
39 #define CREATE_TRACE_POINTS
40 #include "trace.h"
41
42 struct kvmppc_ops *kvmppc_hv_ops;
43 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
44 struct kvmppc_ops *kvmppc_pr_ops;
45 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
46
47
48 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
49 {
50         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
51 }
52
53 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
54 {
55         return false;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60         return 1;
61 }
62
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74         int r;
75
76         WARN_ON(irqs_disabled());
77         hard_irq_disable();
78
79         while (true) {
80                 if (need_resched()) {
81                         local_irq_enable();
82                         cond_resched();
83                         hard_irq_disable();
84                         continue;
85                 }
86
87                 if (signal_pending(current)) {
88                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89                         vcpu->run->exit_reason = KVM_EXIT_INTR;
90                         r = -EINTR;
91                         break;
92                 }
93
94                 vcpu->mode = IN_GUEST_MODE;
95
96                 /*
97                  * Reading vcpu->requests must happen after setting vcpu->mode,
98                  * so we don't miss a request because the requester sees
99                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100                  * before next entering the guest (and thus doesn't IPI).
101                  * This also orders the write to mode from any reads
102                  * to the page tables done while the VCPU is running.
103                  * Please see the comment in kvm_flush_remote_tlbs.
104                  */
105                 smp_mb();
106
107                 if (kvm_request_pending(vcpu)) {
108                         /* Make sure we process requests preemptable */
109                         local_irq_enable();
110                         trace_kvm_check_requests(vcpu);
111                         r = kvmppc_core_check_requests(vcpu);
112                         hard_irq_disable();
113                         if (r > 0)
114                                 continue;
115                         break;
116                 }
117
118                 if (kvmppc_core_prepare_to_enter(vcpu)) {
119                         /* interrupts got enabled in between, so we
120                            are back at square 1 */
121                         continue;
122                 }
123
124                 guest_enter_irqoff();
125                 return 1;
126         }
127
128         /* return to host */
129         local_irq_enable();
130         return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138         int i;
139
140         shared->sprg0 = swab64(shared->sprg0);
141         shared->sprg1 = swab64(shared->sprg1);
142         shared->sprg2 = swab64(shared->sprg2);
143         shared->sprg3 = swab64(shared->sprg3);
144         shared->srr0 = swab64(shared->srr0);
145         shared->srr1 = swab64(shared->srr1);
146         shared->dar = swab64(shared->dar);
147         shared->msr = swab64(shared->msr);
148         shared->dsisr = swab32(shared->dsisr);
149         shared->int_pending = swab32(shared->int_pending);
150         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151                 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157         int nr = kvmppc_get_gpr(vcpu, 11);
158         int r;
159         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163         unsigned long r2 = 0;
164
165         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166                 /* 32 bit mode */
167                 param1 &= 0xffffffff;
168                 param2 &= 0xffffffff;
169                 param3 &= 0xffffffff;
170                 param4 &= 0xffffffff;
171         }
172
173         switch (nr) {
174         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175         {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177                 /* Book3S can be little endian, find it out here */
178                 int shared_big_endian = true;
179                 if (vcpu->arch.intr_msr & MSR_LE)
180                         shared_big_endian = false;
181                 if (shared_big_endian != vcpu->arch.shared_big_endian)
182                         kvmppc_swab_shared(vcpu);
183                 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187                         /*
188                          * Older versions of the Linux magic page code had
189                          * a bug where they would map their trampoline code
190                          * NX. If that's the case, remove !PR NX capability.
191                          */
192                         vcpu->arch.disable_kernel_nx = true;
193                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194                 }
195
196                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200                 /*
201                  * Make sure our 4k magic page is in the same window of a 64k
202                  * page within the guest and within the host's page.
203                  */
204                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205                     ((ulong)vcpu->arch.shared & 0xf000)) {
206                         void *old_shared = vcpu->arch.shared;
207                         ulong shared = (ulong)vcpu->arch.shared;
208                         void *new_shared;
209
210                         shared &= PAGE_MASK;
211                         shared |= vcpu->arch.magic_page_pa & 0xf000;
212                         new_shared = (void*)shared;
213                         memcpy(new_shared, old_shared, 0x1000);
214                         vcpu->arch.shared = new_shared;
215                 }
216 #endif
217
218                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220                 r = EV_SUCCESS;
221                 break;
222         }
223         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224                 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229                 /* Second return value is in r4 */
230                 break;
231         case EV_HCALL_TOKEN(EV_IDLE):
232                 r = EV_SUCCESS;
233                 kvm_vcpu_block(vcpu);
234                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
235                 break;
236         default:
237                 r = EV_UNIMPLEMENTED;
238                 break;
239         }
240
241         kvmppc_set_gpr(vcpu, 4, r2);
242
243         return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249         int r = false;
250
251         /* We have to know what CPU to virtualize */
252         if (!vcpu->arch.pvr)
253                 goto out;
254
255         /* PAPR only works with book3s_64 */
256         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257                 goto out;
258
259         /* HV KVM can only do PAPR mode for now */
260         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261                 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264         if (!cpu_has_feature(CPU_FTR_EMB_HV))
265                 goto out;
266 #endif
267
268         r = true;
269
270 out:
271         vcpu->arch.sane = r;
272         return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278         enum emulation_result er;
279         int r;
280
281         er = kvmppc_emulate_loadstore(vcpu);
282         switch (er) {
283         case EMULATE_DONE:
284                 /* Future optimization: only reload non-volatiles if they were
285                  * actually modified. */
286                 r = RESUME_GUEST_NV;
287                 break;
288         case EMULATE_AGAIN:
289                 r = RESUME_GUEST;
290                 break;
291         case EMULATE_DO_MMIO:
292                 run->exit_reason = KVM_EXIT_MMIO;
293                 /* We must reload nonvolatiles because "update" load/store
294                  * instructions modify register state. */
295                 /* Future optimization: only reload non-volatiles if they were
296                  * actually modified. */
297                 r = RESUME_HOST_NV;
298                 break;
299         case EMULATE_FAIL:
300         {
301                 u32 last_inst;
302
303                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304                 /* XXX Deliver Program interrupt to guest. */
305                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306                 r = RESUME_HOST;
307                 break;
308         }
309         default:
310                 WARN_ON(1);
311                 r = RESUME_GUEST;
312         }
313
314         return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319               bool data)
320 {
321         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322         struct kvmppc_pte pte;
323         int r = -EINVAL;
324
325         vcpu->stat.st++;
326
327         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
328                 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
329                                                             size);
330
331         if ((!r) || (r == -EAGAIN))
332                 return r;
333
334         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
335                          XLATE_WRITE, &pte);
336         if (r < 0)
337                 return r;
338
339         *eaddr = pte.raddr;
340
341         if (!pte.may_write)
342                 return -EPERM;
343
344         /* Magic page override */
345         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
346             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
347             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
348                 void *magic = vcpu->arch.shared;
349                 magic += pte.eaddr & 0xfff;
350                 memcpy(magic, ptr, size);
351                 return EMULATE_DONE;
352         }
353
354         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
355                 return EMULATE_DO_MMIO;
356
357         return EMULATE_DONE;
358 }
359 EXPORT_SYMBOL_GPL(kvmppc_st);
360
361 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
362                       bool data)
363 {
364         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
365         struct kvmppc_pte pte;
366         int rc = -EINVAL;
367
368         vcpu->stat.ld++;
369
370         if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
371                 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
372                                                               size);
373
374         if ((!rc) || (rc == -EAGAIN))
375                 return rc;
376
377         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
378                           XLATE_READ, &pte);
379         if (rc)
380                 return rc;
381
382         *eaddr = pte.raddr;
383
384         if (!pte.may_read)
385                 return -EPERM;
386
387         if (!data && !pte.may_execute)
388                 return -ENOEXEC;
389
390         /* Magic page override */
391         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
392             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
393             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
394                 void *magic = vcpu->arch.shared;
395                 magic += pte.eaddr & 0xfff;
396                 memcpy(ptr, magic, size);
397                 return EMULATE_DONE;
398         }
399
400         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
401                 return EMULATE_DO_MMIO;
402
403         return EMULATE_DONE;
404 }
405 EXPORT_SYMBOL_GPL(kvmppc_ld);
406
407 int kvm_arch_hardware_enable(void)
408 {
409         return 0;
410 }
411
412 int kvm_arch_hardware_setup(void)
413 {
414         return 0;
415 }
416
417 void kvm_arch_check_processor_compat(void *rtn)
418 {
419         *(int *)rtn = kvmppc_core_check_processor_compat();
420 }
421
422 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
423 {
424         struct kvmppc_ops *kvm_ops = NULL;
425         /*
426          * if we have both HV and PR enabled, default is HV
427          */
428         if (type == 0) {
429                 if (kvmppc_hv_ops)
430                         kvm_ops = kvmppc_hv_ops;
431                 else
432                         kvm_ops = kvmppc_pr_ops;
433                 if (!kvm_ops)
434                         goto err_out;
435         } else  if (type == KVM_VM_PPC_HV) {
436                 if (!kvmppc_hv_ops)
437                         goto err_out;
438                 kvm_ops = kvmppc_hv_ops;
439         } else if (type == KVM_VM_PPC_PR) {
440                 if (!kvmppc_pr_ops)
441                         goto err_out;
442                 kvm_ops = kvmppc_pr_ops;
443         } else
444                 goto err_out;
445
446         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
447                 return -ENOENT;
448
449         kvm->arch.kvm_ops = kvm_ops;
450         return kvmppc_core_init_vm(kvm);
451 err_out:
452         return -EINVAL;
453 }
454
455 bool kvm_arch_has_vcpu_debugfs(void)
456 {
457         return false;
458 }
459
460 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
461 {
462         return 0;
463 }
464
465 void kvm_arch_destroy_vm(struct kvm *kvm)
466 {
467         unsigned int i;
468         struct kvm_vcpu *vcpu;
469
470 #ifdef CONFIG_KVM_XICS
471         /*
472          * We call kick_all_cpus_sync() to ensure that all
473          * CPUs have executed any pending IPIs before we
474          * continue and free VCPUs structures below.
475          */
476         if (is_kvmppc_hv_enabled(kvm))
477                 kick_all_cpus_sync();
478 #endif
479
480         kvm_for_each_vcpu(i, vcpu, kvm)
481                 kvm_arch_vcpu_free(vcpu);
482
483         mutex_lock(&kvm->lock);
484         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
485                 kvm->vcpus[i] = NULL;
486
487         atomic_set(&kvm->online_vcpus, 0);
488
489         kvmppc_core_destroy_vm(kvm);
490
491         mutex_unlock(&kvm->lock);
492
493         /* drop the module reference */
494         module_put(kvm->arch.kvm_ops->owner);
495 }
496
497 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
498 {
499         int r;
500         /* Assume we're using HV mode when the HV module is loaded */
501         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
502
503         if (kvm) {
504                 /*
505                  * Hooray - we know which VM type we're running on. Depend on
506                  * that rather than the guess above.
507                  */
508                 hv_enabled = is_kvmppc_hv_enabled(kvm);
509         }
510
511         switch (ext) {
512 #ifdef CONFIG_BOOKE
513         case KVM_CAP_PPC_BOOKE_SREGS:
514         case KVM_CAP_PPC_BOOKE_WATCHDOG:
515         case KVM_CAP_PPC_EPR:
516 #else
517         case KVM_CAP_PPC_SEGSTATE:
518         case KVM_CAP_PPC_HIOR:
519         case KVM_CAP_PPC_PAPR:
520 #endif
521         case KVM_CAP_PPC_UNSET_IRQ:
522         case KVM_CAP_PPC_IRQ_LEVEL:
523         case KVM_CAP_ENABLE_CAP:
524         case KVM_CAP_ONE_REG:
525         case KVM_CAP_IOEVENTFD:
526         case KVM_CAP_DEVICE_CTRL:
527         case KVM_CAP_IMMEDIATE_EXIT:
528                 r = 1;
529                 break;
530         case KVM_CAP_PPC_PAIRED_SINGLES:
531         case KVM_CAP_PPC_OSI:
532         case KVM_CAP_PPC_GET_PVINFO:
533 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
534         case KVM_CAP_SW_TLB:
535 #endif
536                 /* We support this only for PR */
537                 r = !hv_enabled;
538                 break;
539 #ifdef CONFIG_KVM_MPIC
540         case KVM_CAP_IRQ_MPIC:
541                 r = 1;
542                 break;
543 #endif
544
545 #ifdef CONFIG_PPC_BOOK3S_64
546         case KVM_CAP_SPAPR_TCE:
547         case KVM_CAP_SPAPR_TCE_64:
548                 r = 1;
549                 break;
550         case KVM_CAP_SPAPR_TCE_VFIO:
551                 r = !!cpu_has_feature(CPU_FTR_HVMODE);
552                 break;
553         case KVM_CAP_PPC_RTAS:
554         case KVM_CAP_PPC_FIXUP_HCALL:
555         case KVM_CAP_PPC_ENABLE_HCALL:
556 #ifdef CONFIG_KVM_XICS
557         case KVM_CAP_IRQ_XICS:
558 #endif
559         case KVM_CAP_PPC_GET_CPU_CHAR:
560                 r = 1;
561                 break;
562 #ifdef CONFIG_KVM_XIVE
563         case KVM_CAP_PPC_IRQ_XIVE:
564                 /*
565                  * We need XIVE to be enabled on the platform (implies
566                  * a POWER9 processor) and the PowerNV platform, as
567                  * nested is not yet supported.
568                  */
569                 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE);
570                 break;
571 #endif
572
573         case KVM_CAP_PPC_ALLOC_HTAB:
574                 r = hv_enabled;
575                 break;
576 #endif /* CONFIG_PPC_BOOK3S_64 */
577 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
578         case KVM_CAP_PPC_SMT:
579                 r = 0;
580                 if (kvm) {
581                         if (kvm->arch.emul_smt_mode > 1)
582                                 r = kvm->arch.emul_smt_mode;
583                         else
584                                 r = kvm->arch.smt_mode;
585                 } else if (hv_enabled) {
586                         if (cpu_has_feature(CPU_FTR_ARCH_300))
587                                 r = 1;
588                         else
589                                 r = threads_per_subcore;
590                 }
591                 break;
592         case KVM_CAP_PPC_SMT_POSSIBLE:
593                 r = 1;
594                 if (hv_enabled) {
595                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
596                                 r = ((threads_per_subcore << 1) - 1);
597                         else
598                                 /* P9 can emulate dbells, so allow any mode */
599                                 r = 8 | 4 | 2 | 1;
600                 }
601                 break;
602         case KVM_CAP_PPC_RMA:
603                 r = 0;
604                 break;
605         case KVM_CAP_PPC_HWRNG:
606                 r = kvmppc_hwrng_present();
607                 break;
608         case KVM_CAP_PPC_MMU_RADIX:
609                 r = !!(hv_enabled && radix_enabled());
610                 break;
611         case KVM_CAP_PPC_MMU_HASH_V3:
612                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
613                        cpu_has_feature(CPU_FTR_HVMODE));
614                 break;
615         case KVM_CAP_PPC_NESTED_HV:
616                 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
617                        !kvmppc_hv_ops->enable_nested(NULL));
618                 break;
619 #endif
620         case KVM_CAP_SYNC_MMU:
621 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
622                 r = hv_enabled;
623 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
624                 r = 1;
625 #else
626                 r = 0;
627 #endif
628                 break;
629 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
630         case KVM_CAP_PPC_HTAB_FD:
631                 r = hv_enabled;
632                 break;
633 #endif
634         case KVM_CAP_NR_VCPUS:
635                 /*
636                  * Recommending a number of CPUs is somewhat arbitrary; we
637                  * return the number of present CPUs for -HV (since a host
638                  * will have secondary threads "offline"), and for other KVM
639                  * implementations just count online CPUs.
640                  */
641                 if (hv_enabled)
642                         r = num_present_cpus();
643                 else
644                         r = num_online_cpus();
645                 break;
646         case KVM_CAP_MAX_VCPUS:
647                 r = KVM_MAX_VCPUS;
648                 break;
649         case KVM_CAP_MAX_VCPU_ID:
650                 r = KVM_MAX_VCPU_ID;
651                 break;
652 #ifdef CONFIG_PPC_BOOK3S_64
653         case KVM_CAP_PPC_GET_SMMU_INFO:
654                 r = 1;
655                 break;
656         case KVM_CAP_SPAPR_MULTITCE:
657                 r = 1;
658                 break;
659         case KVM_CAP_SPAPR_RESIZE_HPT:
660                 r = !!hv_enabled;
661                 break;
662 #endif
663 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
664         case KVM_CAP_PPC_FWNMI:
665                 r = hv_enabled;
666                 break;
667 #endif
668 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
669         case KVM_CAP_PPC_HTM:
670                 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
671                      (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
672                 break;
673 #endif
674         default:
675                 r = 0;
676                 break;
677         }
678         return r;
679
680 }
681
682 long kvm_arch_dev_ioctl(struct file *filp,
683                         unsigned int ioctl, unsigned long arg)
684 {
685         return -EINVAL;
686 }
687
688 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
689                            struct kvm_memory_slot *dont)
690 {
691         kvmppc_core_free_memslot(kvm, free, dont);
692 }
693
694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
695                             unsigned long npages)
696 {
697         return kvmppc_core_create_memslot(kvm, slot, npages);
698 }
699
700 int kvm_arch_prepare_memory_region(struct kvm *kvm,
701                                    struct kvm_memory_slot *memslot,
702                                    const struct kvm_userspace_memory_region *mem,
703                                    enum kvm_mr_change change)
704 {
705         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
706 }
707
708 void kvm_arch_commit_memory_region(struct kvm *kvm,
709                                    const struct kvm_userspace_memory_region *mem,
710                                    const struct kvm_memory_slot *old,
711                                    const struct kvm_memory_slot *new,
712                                    enum kvm_mr_change change)
713 {
714         kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
715 }
716
717 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
718                                    struct kvm_memory_slot *slot)
719 {
720         kvmppc_core_flush_memslot(kvm, slot);
721 }
722
723 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
724 {
725         struct kvm_vcpu *vcpu;
726         vcpu = kvmppc_core_vcpu_create(kvm, id);
727         if (!IS_ERR(vcpu)) {
728                 vcpu->arch.wqp = &vcpu->wq;
729                 kvmppc_create_vcpu_debugfs(vcpu, id);
730         }
731         return vcpu;
732 }
733
734 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
735 {
736 }
737
738 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
739 {
740         /* Make sure we're not using the vcpu anymore */
741         hrtimer_cancel(&vcpu->arch.dec_timer);
742
743         kvmppc_remove_vcpu_debugfs(vcpu);
744
745         switch (vcpu->arch.irq_type) {
746         case KVMPPC_IRQ_MPIC:
747                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
748                 break;
749         case KVMPPC_IRQ_XICS:
750                 if (xics_on_xive())
751                         kvmppc_xive_cleanup_vcpu(vcpu);
752                 else
753                         kvmppc_xics_free_icp(vcpu);
754                 break;
755         case KVMPPC_IRQ_XIVE:
756                 kvmppc_xive_native_cleanup_vcpu(vcpu);
757                 break;
758         }
759
760         kvmppc_core_vcpu_free(vcpu);
761 }
762
763 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
764 {
765         kvm_arch_vcpu_free(vcpu);
766 }
767
768 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
769 {
770         return kvmppc_core_pending_dec(vcpu);
771 }
772
773 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
774 {
775         struct kvm_vcpu *vcpu;
776
777         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
778         kvmppc_decrementer_func(vcpu);
779
780         return HRTIMER_NORESTART;
781 }
782
783 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
784 {
785         int ret;
786
787         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
788         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
789         vcpu->arch.dec_expires = get_tb();
790
791 #ifdef CONFIG_KVM_EXIT_TIMING
792         mutex_init(&vcpu->arch.exit_timing_lock);
793 #endif
794         ret = kvmppc_subarch_vcpu_init(vcpu);
795         return ret;
796 }
797
798 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
799 {
800         kvmppc_mmu_destroy(vcpu);
801         kvmppc_subarch_vcpu_uninit(vcpu);
802 }
803
804 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
805 {
806 #ifdef CONFIG_BOOKE
807         /*
808          * vrsave (formerly usprg0) isn't used by Linux, but may
809          * be used by the guest.
810          *
811          * On non-booke this is associated with Altivec and
812          * is handled by code in book3s.c.
813          */
814         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
815 #endif
816         kvmppc_core_vcpu_load(vcpu, cpu);
817 }
818
819 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
820 {
821         kvmppc_core_vcpu_put(vcpu);
822 #ifdef CONFIG_BOOKE
823         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
824 #endif
825 }
826
827 /*
828  * irq_bypass_add_producer and irq_bypass_del_producer are only
829  * useful if the architecture supports PCI passthrough.
830  * irq_bypass_stop and irq_bypass_start are not needed and so
831  * kvm_ops are not defined for them.
832  */
833 bool kvm_arch_has_irq_bypass(void)
834 {
835         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
836                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
837 }
838
839 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
840                                      struct irq_bypass_producer *prod)
841 {
842         struct kvm_kernel_irqfd *irqfd =
843                 container_of(cons, struct kvm_kernel_irqfd, consumer);
844         struct kvm *kvm = irqfd->kvm;
845
846         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
847                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
848
849         return 0;
850 }
851
852 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
853                                       struct irq_bypass_producer *prod)
854 {
855         struct kvm_kernel_irqfd *irqfd =
856                 container_of(cons, struct kvm_kernel_irqfd, consumer);
857         struct kvm *kvm = irqfd->kvm;
858
859         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
860                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
861 }
862
863 #ifdef CONFIG_VSX
864 static inline int kvmppc_get_vsr_dword_offset(int index)
865 {
866         int offset;
867
868         if ((index != 0) && (index != 1))
869                 return -1;
870
871 #ifdef __BIG_ENDIAN
872         offset =  index;
873 #else
874         offset = 1 - index;
875 #endif
876
877         return offset;
878 }
879
880 static inline int kvmppc_get_vsr_word_offset(int index)
881 {
882         int offset;
883
884         if ((index > 3) || (index < 0))
885                 return -1;
886
887 #ifdef __BIG_ENDIAN
888         offset = index;
889 #else
890         offset = 3 - index;
891 #endif
892         return offset;
893 }
894
895 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
896         u64 gpr)
897 {
898         union kvmppc_one_reg val;
899         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
900         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
901
902         if (offset == -1)
903                 return;
904
905         if (index >= 32) {
906                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
907                 val.vsxval[offset] = gpr;
908                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
909         } else {
910                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
911         }
912 }
913
914 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
915         u64 gpr)
916 {
917         union kvmppc_one_reg val;
918         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
919
920         if (index >= 32) {
921                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
922                 val.vsxval[0] = gpr;
923                 val.vsxval[1] = gpr;
924                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
925         } else {
926                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
927                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
928         }
929 }
930
931 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
932         u32 gpr)
933 {
934         union kvmppc_one_reg val;
935         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
936
937         if (index >= 32) {
938                 val.vsx32val[0] = gpr;
939                 val.vsx32val[1] = gpr;
940                 val.vsx32val[2] = gpr;
941                 val.vsx32val[3] = gpr;
942                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
943         } else {
944                 val.vsx32val[0] = gpr;
945                 val.vsx32val[1] = gpr;
946                 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
947                 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
948         }
949 }
950
951 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
952         u32 gpr32)
953 {
954         union kvmppc_one_reg val;
955         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
956         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
957         int dword_offset, word_offset;
958
959         if (offset == -1)
960                 return;
961
962         if (index >= 32) {
963                 val.vval = VCPU_VSX_VR(vcpu, index - 32);
964                 val.vsx32val[offset] = gpr32;
965                 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
966         } else {
967                 dword_offset = offset / 2;
968                 word_offset = offset % 2;
969                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
970                 val.vsx32val[word_offset] = gpr32;
971                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
972         }
973 }
974 #endif /* CONFIG_VSX */
975
976 #ifdef CONFIG_ALTIVEC
977 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
978                 int index, int element_size)
979 {
980         int offset;
981         int elts = sizeof(vector128)/element_size;
982
983         if ((index < 0) || (index >= elts))
984                 return -1;
985
986         if (kvmppc_need_byteswap(vcpu))
987                 offset = elts - index - 1;
988         else
989                 offset = index;
990
991         return offset;
992 }
993
994 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
995                 int index)
996 {
997         return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
998 }
999
1000 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
1001                 int index)
1002 {
1003         return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
1004 }
1005
1006 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1007                 int index)
1008 {
1009         return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1010 }
1011
1012 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1013                 int index)
1014 {
1015         return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1016 }
1017
1018
1019 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1020         u64 gpr)
1021 {
1022         union kvmppc_one_reg val;
1023         int offset = kvmppc_get_vmx_dword_offset(vcpu,
1024                         vcpu->arch.mmio_vmx_offset);
1025         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1026
1027         if (offset == -1)
1028                 return;
1029
1030         val.vval = VCPU_VSX_VR(vcpu, index);
1031         val.vsxval[offset] = gpr;
1032         VCPU_VSX_VR(vcpu, index) = val.vval;
1033 }
1034
1035 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1036         u32 gpr32)
1037 {
1038         union kvmppc_one_reg val;
1039         int offset = kvmppc_get_vmx_word_offset(vcpu,
1040                         vcpu->arch.mmio_vmx_offset);
1041         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1042
1043         if (offset == -1)
1044                 return;
1045
1046         val.vval = VCPU_VSX_VR(vcpu, index);
1047         val.vsx32val[offset] = gpr32;
1048         VCPU_VSX_VR(vcpu, index) = val.vval;
1049 }
1050
1051 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1052         u16 gpr16)
1053 {
1054         union kvmppc_one_reg val;
1055         int offset = kvmppc_get_vmx_hword_offset(vcpu,
1056                         vcpu->arch.mmio_vmx_offset);
1057         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1058
1059         if (offset == -1)
1060                 return;
1061
1062         val.vval = VCPU_VSX_VR(vcpu, index);
1063         val.vsx16val[offset] = gpr16;
1064         VCPU_VSX_VR(vcpu, index) = val.vval;
1065 }
1066
1067 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1068         u8 gpr8)
1069 {
1070         union kvmppc_one_reg val;
1071         int offset = kvmppc_get_vmx_byte_offset(vcpu,
1072                         vcpu->arch.mmio_vmx_offset);
1073         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1074
1075         if (offset == -1)
1076                 return;
1077
1078         val.vval = VCPU_VSX_VR(vcpu, index);
1079         val.vsx8val[offset] = gpr8;
1080         VCPU_VSX_VR(vcpu, index) = val.vval;
1081 }
1082 #endif /* CONFIG_ALTIVEC */
1083
1084 #ifdef CONFIG_PPC_FPU
1085 static inline u64 sp_to_dp(u32 fprs)
1086 {
1087         u64 fprd;
1088
1089         preempt_disable();
1090         enable_kernel_fp();
1091         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1092              : "fr0");
1093         preempt_enable();
1094         return fprd;
1095 }
1096
1097 static inline u32 dp_to_sp(u64 fprd)
1098 {
1099         u32 fprs;
1100
1101         preempt_disable();
1102         enable_kernel_fp();
1103         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1104              : "fr0");
1105         preempt_enable();
1106         return fprs;
1107 }
1108
1109 #else
1110 #define sp_to_dp(x)     (x)
1111 #define dp_to_sp(x)     (x)
1112 #endif /* CONFIG_PPC_FPU */
1113
1114 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1115                                       struct kvm_run *run)
1116 {
1117         u64 uninitialized_var(gpr);
1118
1119         if (run->mmio.len > sizeof(gpr)) {
1120                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1121                 return;
1122         }
1123
1124         if (!vcpu->arch.mmio_host_swabbed) {
1125                 switch (run->mmio.len) {
1126                 case 8: gpr = *(u64 *)run->mmio.data; break;
1127                 case 4: gpr = *(u32 *)run->mmio.data; break;
1128                 case 2: gpr = *(u16 *)run->mmio.data; break;
1129                 case 1: gpr = *(u8 *)run->mmio.data; break;
1130                 }
1131         } else {
1132                 switch (run->mmio.len) {
1133                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1134                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1135                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1136                 case 1: gpr = *(u8 *)run->mmio.data; break;
1137                 }
1138         }
1139
1140         /* conversion between single and double precision */
1141         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1142                 gpr = sp_to_dp(gpr);
1143
1144         if (vcpu->arch.mmio_sign_extend) {
1145                 switch (run->mmio.len) {
1146 #ifdef CONFIG_PPC64
1147                 case 4:
1148                         gpr = (s64)(s32)gpr;
1149                         break;
1150 #endif
1151                 case 2:
1152                         gpr = (s64)(s16)gpr;
1153                         break;
1154                 case 1:
1155                         gpr = (s64)(s8)gpr;
1156                         break;
1157                 }
1158         }
1159
1160         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1161         case KVM_MMIO_REG_GPR:
1162                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1163                 break;
1164         case KVM_MMIO_REG_FPR:
1165                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1166                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1167
1168                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1169                 break;
1170 #ifdef CONFIG_PPC_BOOK3S
1171         case KVM_MMIO_REG_QPR:
1172                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1173                 break;
1174         case KVM_MMIO_REG_FQPR:
1175                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1176                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1177                 break;
1178 #endif
1179 #ifdef CONFIG_VSX
1180         case KVM_MMIO_REG_VSX:
1181                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1182                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1183
1184                 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1185                         kvmppc_set_vsr_dword(vcpu, gpr);
1186                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1187                         kvmppc_set_vsr_word(vcpu, gpr);
1188                 else if (vcpu->arch.mmio_copy_type ==
1189                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1190                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1191                 else if (vcpu->arch.mmio_copy_type ==
1192                                 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1193                         kvmppc_set_vsr_word_dump(vcpu, gpr);
1194                 break;
1195 #endif
1196 #ifdef CONFIG_ALTIVEC
1197         case KVM_MMIO_REG_VMX:
1198                 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1199                         vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1200
1201                 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1202                         kvmppc_set_vmx_dword(vcpu, gpr);
1203                 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1204                         kvmppc_set_vmx_word(vcpu, gpr);
1205                 else if (vcpu->arch.mmio_copy_type ==
1206                                 KVMPPC_VMX_COPY_HWORD)
1207                         kvmppc_set_vmx_hword(vcpu, gpr);
1208                 else if (vcpu->arch.mmio_copy_type ==
1209                                 KVMPPC_VMX_COPY_BYTE)
1210                         kvmppc_set_vmx_byte(vcpu, gpr);
1211                 break;
1212 #endif
1213 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1214         case KVM_MMIO_REG_NESTED_GPR:
1215                 if (kvmppc_need_byteswap(vcpu))
1216                         gpr = swab64(gpr);
1217                 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1218                                      sizeof(gpr));
1219                 break;
1220 #endif
1221         default:
1222                 BUG();
1223         }
1224 }
1225
1226 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1227                                 unsigned int rt, unsigned int bytes,
1228                                 int is_default_endian, int sign_extend)
1229 {
1230         int idx, ret;
1231         bool host_swabbed;
1232
1233         /* Pity C doesn't have a logical XOR operator */
1234         if (kvmppc_need_byteswap(vcpu)) {
1235                 host_swabbed = is_default_endian;
1236         } else {
1237                 host_swabbed = !is_default_endian;
1238         }
1239
1240         if (bytes > sizeof(run->mmio.data)) {
1241                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1242                        run->mmio.len);
1243         }
1244
1245         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1246         run->mmio.len = bytes;
1247         run->mmio.is_write = 0;
1248
1249         vcpu->arch.io_gpr = rt;
1250         vcpu->arch.mmio_host_swabbed = host_swabbed;
1251         vcpu->mmio_needed = 1;
1252         vcpu->mmio_is_write = 0;
1253         vcpu->arch.mmio_sign_extend = sign_extend;
1254
1255         idx = srcu_read_lock(&vcpu->kvm->srcu);
1256
1257         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1258                               bytes, &run->mmio.data);
1259
1260         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1261
1262         if (!ret) {
1263                 kvmppc_complete_mmio_load(vcpu, run);
1264                 vcpu->mmio_needed = 0;
1265                 return EMULATE_DONE;
1266         }
1267
1268         return EMULATE_DO_MMIO;
1269 }
1270
1271 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1272                        unsigned int rt, unsigned int bytes,
1273                        int is_default_endian)
1274 {
1275         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1276 }
1277 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1278
1279 /* Same as above, but sign extends */
1280 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1281                         unsigned int rt, unsigned int bytes,
1282                         int is_default_endian)
1283 {
1284         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1285 }
1286
1287 #ifdef CONFIG_VSX
1288 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1289                         unsigned int rt, unsigned int bytes,
1290                         int is_default_endian, int mmio_sign_extend)
1291 {
1292         enum emulation_result emulated = EMULATE_DONE;
1293
1294         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1295         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1296                 return EMULATE_FAIL;
1297
1298         while (vcpu->arch.mmio_vsx_copy_nums) {
1299                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1300                         is_default_endian, mmio_sign_extend);
1301
1302                 if (emulated != EMULATE_DONE)
1303                         break;
1304
1305                 vcpu->arch.paddr_accessed += run->mmio.len;
1306
1307                 vcpu->arch.mmio_vsx_copy_nums--;
1308                 vcpu->arch.mmio_vsx_offset++;
1309         }
1310         return emulated;
1311 }
1312 #endif /* CONFIG_VSX */
1313
1314 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1315                         u64 val, unsigned int bytes, int is_default_endian)
1316 {
1317         void *data = run->mmio.data;
1318         int idx, ret;
1319         bool host_swabbed;
1320
1321         /* Pity C doesn't have a logical XOR operator */
1322         if (kvmppc_need_byteswap(vcpu)) {
1323                 host_swabbed = is_default_endian;
1324         } else {
1325                 host_swabbed = !is_default_endian;
1326         }
1327
1328         if (bytes > sizeof(run->mmio.data)) {
1329                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1330                        run->mmio.len);
1331         }
1332
1333         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1334         run->mmio.len = bytes;
1335         run->mmio.is_write = 1;
1336         vcpu->mmio_needed = 1;
1337         vcpu->mmio_is_write = 1;
1338
1339         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1340                 val = dp_to_sp(val);
1341
1342         /* Store the value at the lowest bytes in 'data'. */
1343         if (!host_swabbed) {
1344                 switch (bytes) {
1345                 case 8: *(u64 *)data = val; break;
1346                 case 4: *(u32 *)data = val; break;
1347                 case 2: *(u16 *)data = val; break;
1348                 case 1: *(u8  *)data = val; break;
1349                 }
1350         } else {
1351                 switch (bytes) {
1352                 case 8: *(u64 *)data = swab64(val); break;
1353                 case 4: *(u32 *)data = swab32(val); break;
1354                 case 2: *(u16 *)data = swab16(val); break;
1355                 case 1: *(u8  *)data = val; break;
1356                 }
1357         }
1358
1359         idx = srcu_read_lock(&vcpu->kvm->srcu);
1360
1361         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1362                                bytes, &run->mmio.data);
1363
1364         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1365
1366         if (!ret) {
1367                 vcpu->mmio_needed = 0;
1368                 return EMULATE_DONE;
1369         }
1370
1371         return EMULATE_DO_MMIO;
1372 }
1373 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1374
1375 #ifdef CONFIG_VSX
1376 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1377 {
1378         u32 dword_offset, word_offset;
1379         union kvmppc_one_reg reg;
1380         int vsx_offset = 0;
1381         int copy_type = vcpu->arch.mmio_copy_type;
1382         int result = 0;
1383
1384         switch (copy_type) {
1385         case KVMPPC_VSX_COPY_DWORD:
1386                 vsx_offset =
1387                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1388
1389                 if (vsx_offset == -1) {
1390                         result = -1;
1391                         break;
1392                 }
1393
1394                 if (rs < 32) {
1395                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1396                 } else {
1397                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1398                         *val = reg.vsxval[vsx_offset];
1399                 }
1400                 break;
1401
1402         case KVMPPC_VSX_COPY_WORD:
1403                 vsx_offset =
1404                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1405
1406                 if (vsx_offset == -1) {
1407                         result = -1;
1408                         break;
1409                 }
1410
1411                 if (rs < 32) {
1412                         dword_offset = vsx_offset / 2;
1413                         word_offset = vsx_offset % 2;
1414                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1415                         *val = reg.vsx32val[word_offset];
1416                 } else {
1417                         reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1418                         *val = reg.vsx32val[vsx_offset];
1419                 }
1420                 break;
1421
1422         default:
1423                 result = -1;
1424                 break;
1425         }
1426
1427         return result;
1428 }
1429
1430 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1431                         int rs, unsigned int bytes, int is_default_endian)
1432 {
1433         u64 val;
1434         enum emulation_result emulated = EMULATE_DONE;
1435
1436         vcpu->arch.io_gpr = rs;
1437
1438         /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1439         if (vcpu->arch.mmio_vsx_copy_nums > 4)
1440                 return EMULATE_FAIL;
1441
1442         while (vcpu->arch.mmio_vsx_copy_nums) {
1443                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1444                         return EMULATE_FAIL;
1445
1446                 emulated = kvmppc_handle_store(run, vcpu,
1447                          val, bytes, is_default_endian);
1448
1449                 if (emulated != EMULATE_DONE)
1450                         break;
1451
1452                 vcpu->arch.paddr_accessed += run->mmio.len;
1453
1454                 vcpu->arch.mmio_vsx_copy_nums--;
1455                 vcpu->arch.mmio_vsx_offset++;
1456         }
1457
1458         return emulated;
1459 }
1460
1461 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1462                         struct kvm_run *run)
1463 {
1464         enum emulation_result emulated = EMULATE_FAIL;
1465         int r;
1466
1467         vcpu->arch.paddr_accessed += run->mmio.len;
1468
1469         if (!vcpu->mmio_is_write) {
1470                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1471                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1472         } else {
1473                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1474                          vcpu->arch.io_gpr, run->mmio.len, 1);
1475         }
1476
1477         switch (emulated) {
1478         case EMULATE_DO_MMIO:
1479                 run->exit_reason = KVM_EXIT_MMIO;
1480                 r = RESUME_HOST;
1481                 break;
1482         case EMULATE_FAIL:
1483                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1484                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1485                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1486                 r = RESUME_HOST;
1487                 break;
1488         default:
1489                 r = RESUME_GUEST;
1490                 break;
1491         }
1492         return r;
1493 }
1494 #endif /* CONFIG_VSX */
1495
1496 #ifdef CONFIG_ALTIVEC
1497 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1498                 unsigned int rt, unsigned int bytes, int is_default_endian)
1499 {
1500         enum emulation_result emulated = EMULATE_DONE;
1501
1502         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1503                 return EMULATE_FAIL;
1504
1505         while (vcpu->arch.mmio_vmx_copy_nums) {
1506                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1507                                 is_default_endian, 0);
1508
1509                 if (emulated != EMULATE_DONE)
1510                         break;
1511
1512                 vcpu->arch.paddr_accessed += run->mmio.len;
1513                 vcpu->arch.mmio_vmx_copy_nums--;
1514                 vcpu->arch.mmio_vmx_offset++;
1515         }
1516
1517         return emulated;
1518 }
1519
1520 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1521 {
1522         union kvmppc_one_reg reg;
1523         int vmx_offset = 0;
1524         int result = 0;
1525
1526         vmx_offset =
1527                 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1528
1529         if (vmx_offset == -1)
1530                 return -1;
1531
1532         reg.vval = VCPU_VSX_VR(vcpu, index);
1533         *val = reg.vsxval[vmx_offset];
1534
1535         return result;
1536 }
1537
1538 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1539 {
1540         union kvmppc_one_reg reg;
1541         int vmx_offset = 0;
1542         int result = 0;
1543
1544         vmx_offset =
1545                 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1546
1547         if (vmx_offset == -1)
1548                 return -1;
1549
1550         reg.vval = VCPU_VSX_VR(vcpu, index);
1551         *val = reg.vsx32val[vmx_offset];
1552
1553         return result;
1554 }
1555
1556 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1557 {
1558         union kvmppc_one_reg reg;
1559         int vmx_offset = 0;
1560         int result = 0;
1561
1562         vmx_offset =
1563                 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1564
1565         if (vmx_offset == -1)
1566                 return -1;
1567
1568         reg.vval = VCPU_VSX_VR(vcpu, index);
1569         *val = reg.vsx16val[vmx_offset];
1570
1571         return result;
1572 }
1573
1574 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1575 {
1576         union kvmppc_one_reg reg;
1577         int vmx_offset = 0;
1578         int result = 0;
1579
1580         vmx_offset =
1581                 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1582
1583         if (vmx_offset == -1)
1584                 return -1;
1585
1586         reg.vval = VCPU_VSX_VR(vcpu, index);
1587         *val = reg.vsx8val[vmx_offset];
1588
1589         return result;
1590 }
1591
1592 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1593                 unsigned int rs, unsigned int bytes, int is_default_endian)
1594 {
1595         u64 val = 0;
1596         unsigned int index = rs & KVM_MMIO_REG_MASK;
1597         enum emulation_result emulated = EMULATE_DONE;
1598
1599         if (vcpu->arch.mmio_vsx_copy_nums > 2)
1600                 return EMULATE_FAIL;
1601
1602         vcpu->arch.io_gpr = rs;
1603
1604         while (vcpu->arch.mmio_vmx_copy_nums) {
1605                 switch (vcpu->arch.mmio_copy_type) {
1606                 case KVMPPC_VMX_COPY_DWORD:
1607                         if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1608                                 return EMULATE_FAIL;
1609
1610                         break;
1611                 case KVMPPC_VMX_COPY_WORD:
1612                         if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1613                                 return EMULATE_FAIL;
1614                         break;
1615                 case KVMPPC_VMX_COPY_HWORD:
1616                         if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1617                                 return EMULATE_FAIL;
1618                         break;
1619                 case KVMPPC_VMX_COPY_BYTE:
1620                         if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1621                                 return EMULATE_FAIL;
1622                         break;
1623                 default:
1624                         return EMULATE_FAIL;
1625                 }
1626
1627                 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1628                                 is_default_endian);
1629                 if (emulated != EMULATE_DONE)
1630                         break;
1631
1632                 vcpu->arch.paddr_accessed += run->mmio.len;
1633                 vcpu->arch.mmio_vmx_copy_nums--;
1634                 vcpu->arch.mmio_vmx_offset++;
1635         }
1636
1637         return emulated;
1638 }
1639
1640 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1641                 struct kvm_run *run)
1642 {
1643         enum emulation_result emulated = EMULATE_FAIL;
1644         int r;
1645
1646         vcpu->arch.paddr_accessed += run->mmio.len;
1647
1648         if (!vcpu->mmio_is_write) {
1649                 emulated = kvmppc_handle_vmx_load(run, vcpu,
1650                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1651         } else {
1652                 emulated = kvmppc_handle_vmx_store(run, vcpu,
1653                                 vcpu->arch.io_gpr, run->mmio.len, 1);
1654         }
1655
1656         switch (emulated) {
1657         case EMULATE_DO_MMIO:
1658                 run->exit_reason = KVM_EXIT_MMIO;
1659                 r = RESUME_HOST;
1660                 break;
1661         case EMULATE_FAIL:
1662                 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1663                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1664                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1665                 r = RESUME_HOST;
1666                 break;
1667         default:
1668                 r = RESUME_GUEST;
1669                 break;
1670         }
1671         return r;
1672 }
1673 #endif /* CONFIG_ALTIVEC */
1674
1675 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1676 {
1677         int r = 0;
1678         union kvmppc_one_reg val;
1679         int size;
1680
1681         size = one_reg_size(reg->id);
1682         if (size > sizeof(val))
1683                 return -EINVAL;
1684
1685         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1686         if (r == -EINVAL) {
1687                 r = 0;
1688                 switch (reg->id) {
1689 #ifdef CONFIG_ALTIVEC
1690                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1691                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1692                                 r = -ENXIO;
1693                                 break;
1694                         }
1695                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1696                         break;
1697                 case KVM_REG_PPC_VSCR:
1698                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1699                                 r = -ENXIO;
1700                                 break;
1701                         }
1702                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1703                         break;
1704                 case KVM_REG_PPC_VRSAVE:
1705                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1706                         break;
1707 #endif /* CONFIG_ALTIVEC */
1708                 default:
1709                         r = -EINVAL;
1710                         break;
1711                 }
1712         }
1713
1714         if (r)
1715                 return r;
1716
1717         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1718                 r = -EFAULT;
1719
1720         return r;
1721 }
1722
1723 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1724 {
1725         int r;
1726         union kvmppc_one_reg val;
1727         int size;
1728
1729         size = one_reg_size(reg->id);
1730         if (size > sizeof(val))
1731                 return -EINVAL;
1732
1733         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1734                 return -EFAULT;
1735
1736         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1737         if (r == -EINVAL) {
1738                 r = 0;
1739                 switch (reg->id) {
1740 #ifdef CONFIG_ALTIVEC
1741                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1742                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1743                                 r = -ENXIO;
1744                                 break;
1745                         }
1746                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1747                         break;
1748                 case KVM_REG_PPC_VSCR:
1749                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1750                                 r = -ENXIO;
1751                                 break;
1752                         }
1753                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1754                         break;
1755                 case KVM_REG_PPC_VRSAVE:
1756                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1757                                 r = -ENXIO;
1758                                 break;
1759                         }
1760                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1761                         break;
1762 #endif /* CONFIG_ALTIVEC */
1763                 default:
1764                         r = -EINVAL;
1765                         break;
1766                 }
1767         }
1768
1769         return r;
1770 }
1771
1772 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1773 {
1774         int r;
1775
1776         vcpu_load(vcpu);
1777
1778         if (vcpu->mmio_needed) {
1779                 vcpu->mmio_needed = 0;
1780                 if (!vcpu->mmio_is_write)
1781                         kvmppc_complete_mmio_load(vcpu, run);
1782 #ifdef CONFIG_VSX
1783                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1784                         vcpu->arch.mmio_vsx_copy_nums--;
1785                         vcpu->arch.mmio_vsx_offset++;
1786                 }
1787
1788                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1789                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1790                         if (r == RESUME_HOST) {
1791                                 vcpu->mmio_needed = 1;
1792                                 goto out;
1793                         }
1794                 }
1795 #endif
1796 #ifdef CONFIG_ALTIVEC
1797                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798                         vcpu->arch.mmio_vmx_copy_nums--;
1799                         vcpu->arch.mmio_vmx_offset++;
1800                 }
1801
1802                 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1803                         r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1804                         if (r == RESUME_HOST) {
1805                                 vcpu->mmio_needed = 1;
1806                                 goto out;
1807                         }
1808                 }
1809 #endif
1810         } else if (vcpu->arch.osi_needed) {
1811                 u64 *gprs = run->osi.gprs;
1812                 int i;
1813
1814                 for (i = 0; i < 32; i++)
1815                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1816                 vcpu->arch.osi_needed = 0;
1817         } else if (vcpu->arch.hcall_needed) {
1818                 int i;
1819
1820                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1821                 for (i = 0; i < 9; ++i)
1822                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1823                 vcpu->arch.hcall_needed = 0;
1824 #ifdef CONFIG_BOOKE
1825         } else if (vcpu->arch.epr_needed) {
1826                 kvmppc_set_epr(vcpu, run->epr.epr);
1827                 vcpu->arch.epr_needed = 0;
1828 #endif
1829         }
1830
1831         kvm_sigset_activate(vcpu);
1832
1833         if (run->immediate_exit)
1834                 r = -EINTR;
1835         else
1836                 r = kvmppc_vcpu_run(run, vcpu);
1837
1838         kvm_sigset_deactivate(vcpu);
1839
1840 #ifdef CONFIG_ALTIVEC
1841 out:
1842 #endif
1843         vcpu_put(vcpu);
1844         return r;
1845 }
1846
1847 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1848 {
1849         if (irq->irq == KVM_INTERRUPT_UNSET) {
1850                 kvmppc_core_dequeue_external(vcpu);
1851                 return 0;
1852         }
1853
1854         kvmppc_core_queue_external(vcpu, irq);
1855
1856         kvm_vcpu_kick(vcpu);
1857
1858         return 0;
1859 }
1860
1861 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1862                                      struct kvm_enable_cap *cap)
1863 {
1864         int r;
1865
1866         if (cap->flags)
1867                 return -EINVAL;
1868
1869         switch (cap->cap) {
1870         case KVM_CAP_PPC_OSI:
1871                 r = 0;
1872                 vcpu->arch.osi_enabled = true;
1873                 break;
1874         case KVM_CAP_PPC_PAPR:
1875                 r = 0;
1876                 vcpu->arch.papr_enabled = true;
1877                 break;
1878         case KVM_CAP_PPC_EPR:
1879                 r = 0;
1880                 if (cap->args[0])
1881                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1882                 else
1883                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1884                 break;
1885 #ifdef CONFIG_BOOKE
1886         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1887                 r = 0;
1888                 vcpu->arch.watchdog_enabled = true;
1889                 break;
1890 #endif
1891 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1892         case KVM_CAP_SW_TLB: {
1893                 struct kvm_config_tlb cfg;
1894                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1895
1896                 r = -EFAULT;
1897                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1898                         break;
1899
1900                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1901                 break;
1902         }
1903 #endif
1904 #ifdef CONFIG_KVM_MPIC
1905         case KVM_CAP_IRQ_MPIC: {
1906                 struct fd f;
1907                 struct kvm_device *dev;
1908
1909                 r = -EBADF;
1910                 f = fdget(cap->args[0]);
1911                 if (!f.file)
1912                         break;
1913
1914                 r = -EPERM;
1915                 dev = kvm_device_from_filp(f.file);
1916                 if (dev)
1917                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1918
1919                 fdput(f);
1920                 break;
1921         }
1922 #endif
1923 #ifdef CONFIG_KVM_XICS
1924         case KVM_CAP_IRQ_XICS: {
1925                 struct fd f;
1926                 struct kvm_device *dev;
1927
1928                 r = -EBADF;
1929                 f = fdget(cap->args[0]);
1930                 if (!f.file)
1931                         break;
1932
1933                 r = -EPERM;
1934                 dev = kvm_device_from_filp(f.file);
1935                 if (dev) {
1936                         if (xics_on_xive())
1937                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1938                         else
1939                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1940                 }
1941
1942                 fdput(f);
1943                 break;
1944         }
1945 #endif /* CONFIG_KVM_XICS */
1946 #ifdef CONFIG_KVM_XIVE
1947         case KVM_CAP_PPC_IRQ_XIVE: {
1948                 struct fd f;
1949                 struct kvm_device *dev;
1950
1951                 r = -EBADF;
1952                 f = fdget(cap->args[0]);
1953                 if (!f.file)
1954                         break;
1955
1956                 r = -ENXIO;
1957                 if (!xive_enabled())
1958                         break;
1959
1960                 r = -EPERM;
1961                 dev = kvm_device_from_filp(f.file);
1962                 if (dev)
1963                         r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1964                                                             cap->args[1]);
1965
1966                 fdput(f);
1967                 break;
1968         }
1969 #endif /* CONFIG_KVM_XIVE */
1970 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1971         case KVM_CAP_PPC_FWNMI:
1972                 r = -EINVAL;
1973                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1974                         break;
1975                 r = 0;
1976                 vcpu->kvm->arch.fwnmi_enabled = true;
1977                 break;
1978 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1979         default:
1980                 r = -EINVAL;
1981                 break;
1982         }
1983
1984         if (!r)
1985                 r = kvmppc_sanity_check(vcpu);
1986
1987         return r;
1988 }
1989
1990 bool kvm_arch_intc_initialized(struct kvm *kvm)
1991 {
1992 #ifdef CONFIG_KVM_MPIC
1993         if (kvm->arch.mpic)
1994                 return true;
1995 #endif
1996 #ifdef CONFIG_KVM_XICS
1997         if (kvm->arch.xics || kvm->arch.xive)
1998                 return true;
1999 #endif
2000         return false;
2001 }
2002
2003 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2004                                     struct kvm_mp_state *mp_state)
2005 {
2006         return -EINVAL;
2007 }
2008
2009 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2010                                     struct kvm_mp_state *mp_state)
2011 {
2012         return -EINVAL;
2013 }
2014
2015 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2016                                unsigned int ioctl, unsigned long arg)
2017 {
2018         struct kvm_vcpu *vcpu = filp->private_data;
2019         void __user *argp = (void __user *)arg;
2020
2021         if (ioctl == KVM_INTERRUPT) {
2022                 struct kvm_interrupt irq;
2023                 if (copy_from_user(&irq, argp, sizeof(irq)))
2024                         return -EFAULT;
2025                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2026         }
2027         return -ENOIOCTLCMD;
2028 }
2029
2030 long kvm_arch_vcpu_ioctl(struct file *filp,
2031                          unsigned int ioctl, unsigned long arg)
2032 {
2033         struct kvm_vcpu *vcpu = filp->private_data;
2034         void __user *argp = (void __user *)arg;
2035         long r;
2036
2037         switch (ioctl) {
2038         case KVM_ENABLE_CAP:
2039         {
2040                 struct kvm_enable_cap cap;
2041                 r = -EFAULT;
2042                 vcpu_load(vcpu);
2043                 if (copy_from_user(&cap, argp, sizeof(cap)))
2044                         goto out;
2045                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2046                 vcpu_put(vcpu);
2047                 break;
2048         }
2049
2050         case KVM_SET_ONE_REG:
2051         case KVM_GET_ONE_REG:
2052         {
2053                 struct kvm_one_reg reg;
2054                 r = -EFAULT;
2055                 if (copy_from_user(&reg, argp, sizeof(reg)))
2056                         goto out;
2057                 if (ioctl == KVM_SET_ONE_REG)
2058                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2059                 else
2060                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2061                 break;
2062         }
2063
2064 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2065         case KVM_DIRTY_TLB: {
2066                 struct kvm_dirty_tlb dirty;
2067                 r = -EFAULT;
2068                 vcpu_load(vcpu);
2069                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2070                         goto out;
2071                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2072                 vcpu_put(vcpu);
2073                 break;
2074         }
2075 #endif
2076         default:
2077                 r = -EINVAL;
2078         }
2079
2080 out:
2081         return r;
2082 }
2083
2084 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2085 {
2086         return VM_FAULT_SIGBUS;
2087 }
2088
2089 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2090 {
2091         u32 inst_nop = 0x60000000;
2092 #ifdef CONFIG_KVM_BOOKE_HV
2093         u32 inst_sc1 = 0x44000022;
2094         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2095         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2096         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2097         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2098 #else
2099         u32 inst_lis = 0x3c000000;
2100         u32 inst_ori = 0x60000000;
2101         u32 inst_sc = 0x44000002;
2102         u32 inst_imm_mask = 0xffff;
2103
2104         /*
2105          * The hypercall to get into KVM from within guest context is as
2106          * follows:
2107          *
2108          *    lis r0, r0, KVM_SC_MAGIC_R0@h
2109          *    ori r0, KVM_SC_MAGIC_R0@l
2110          *    sc
2111          *    nop
2112          */
2113         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2114         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2115         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2116         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2117 #endif
2118
2119         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2120
2121         return 0;
2122 }
2123
2124 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2125                           bool line_status)
2126 {
2127         if (!irqchip_in_kernel(kvm))
2128                 return -ENXIO;
2129
2130         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2131                                         irq_event->irq, irq_event->level,
2132                                         line_status);
2133         return 0;
2134 }
2135
2136
2137 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2138                             struct kvm_enable_cap *cap)
2139 {
2140         int r;
2141
2142         if (cap->flags)
2143                 return -EINVAL;
2144
2145         switch (cap->cap) {
2146 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2147         case KVM_CAP_PPC_ENABLE_HCALL: {
2148                 unsigned long hcall = cap->args[0];
2149
2150                 r = -EINVAL;
2151                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2152                     cap->args[1] > 1)
2153                         break;
2154                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2155                         break;
2156                 if (cap->args[1])
2157                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2158                 else
2159                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2160                 r = 0;
2161                 break;
2162         }
2163         case KVM_CAP_PPC_SMT: {
2164                 unsigned long mode = cap->args[0];
2165                 unsigned long flags = cap->args[1];
2166
2167                 r = -EINVAL;
2168                 if (kvm->arch.kvm_ops->set_smt_mode)
2169                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2170                 break;
2171         }
2172
2173         case KVM_CAP_PPC_NESTED_HV:
2174                 r = -EINVAL;
2175                 if (!is_kvmppc_hv_enabled(kvm) ||
2176                     !kvm->arch.kvm_ops->enable_nested)
2177                         break;
2178                 r = kvm->arch.kvm_ops->enable_nested(kvm);
2179                 break;
2180 #endif
2181         default:
2182                 r = -EINVAL;
2183                 break;
2184         }
2185
2186         return r;
2187 }
2188
2189 #ifdef CONFIG_PPC_BOOK3S_64
2190 /*
2191  * These functions check whether the underlying hardware is safe
2192  * against attacks based on observing the effects of speculatively
2193  * executed instructions, and whether it supplies instructions for
2194  * use in workarounds.  The information comes from firmware, either
2195  * via the device tree on powernv platforms or from an hcall on
2196  * pseries platforms.
2197  */
2198 #ifdef CONFIG_PPC_PSERIES
2199 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2200 {
2201         struct h_cpu_char_result c;
2202         unsigned long rc;
2203
2204         if (!machine_is(pseries))
2205                 return -ENOTTY;
2206
2207         rc = plpar_get_cpu_characteristics(&c);
2208         if (rc == H_SUCCESS) {
2209                 cp->character = c.character;
2210                 cp->behaviour = c.behaviour;
2211                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2212                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2213                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2214                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2215                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2216                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2217                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2218                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2219                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2220                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2221                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2222                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2223                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2224         }
2225         return 0;
2226 }
2227 #else
2228 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2229 {
2230         return -ENOTTY;
2231 }
2232 #endif
2233
2234 static inline bool have_fw_feat(struct device_node *fw_features,
2235                                 const char *state, const char *name)
2236 {
2237         struct device_node *np;
2238         bool r = false;
2239
2240         np = of_get_child_by_name(fw_features, name);
2241         if (np) {
2242                 r = of_property_read_bool(np, state);
2243                 of_node_put(np);
2244         }
2245         return r;
2246 }
2247
2248 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2249 {
2250         struct device_node *np, *fw_features;
2251         int r;
2252
2253         memset(cp, 0, sizeof(*cp));
2254         r = pseries_get_cpu_char(cp);
2255         if (r != -ENOTTY)
2256                 return r;
2257
2258         np = of_find_node_by_name(NULL, "ibm,opal");
2259         if (np) {
2260                 fw_features = of_get_child_by_name(np, "fw-features");
2261                 of_node_put(np);
2262                 if (!fw_features)
2263                         return 0;
2264                 if (have_fw_feat(fw_features, "enabled",
2265                                  "inst-spec-barrier-ori31,31,0"))
2266                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2267                 if (have_fw_feat(fw_features, "enabled",
2268                                  "fw-bcctrl-serialized"))
2269                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2270                 if (have_fw_feat(fw_features, "enabled",
2271                                  "inst-l1d-flush-ori30,30,0"))
2272                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2273                 if (have_fw_feat(fw_features, "enabled",
2274                                  "inst-l1d-flush-trig2"))
2275                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2276                 if (have_fw_feat(fw_features, "enabled",
2277                                  "fw-l1d-thread-split"))
2278                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2279                 if (have_fw_feat(fw_features, "enabled",
2280                                  "fw-count-cache-disabled"))
2281                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2282                 if (have_fw_feat(fw_features, "enabled",
2283                                  "fw-count-cache-flush-bcctr2,0,0"))
2284                         cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2285                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2286                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2287                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2288                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2289                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2290                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2291                         KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2292
2293                 if (have_fw_feat(fw_features, "enabled",
2294                                  "speculation-policy-favor-security"))
2295                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2296                 if (!have_fw_feat(fw_features, "disabled",
2297                                   "needs-l1d-flush-msr-pr-0-to-1"))
2298                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2299                 if (!have_fw_feat(fw_features, "disabled",
2300                                   "needs-spec-barrier-for-bound-checks"))
2301                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2302                 if (have_fw_feat(fw_features, "enabled",
2303                                  "needs-count-cache-flush-on-context-switch"))
2304                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2305                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2306                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2307                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2308                         KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2309
2310                 of_node_put(fw_features);
2311         }
2312
2313         return 0;
2314 }
2315 #endif
2316
2317 long kvm_arch_vm_ioctl(struct file *filp,
2318                        unsigned int ioctl, unsigned long arg)
2319 {
2320         struct kvm *kvm __maybe_unused = filp->private_data;
2321         void __user *argp = (void __user *)arg;
2322         long r;
2323
2324         switch (ioctl) {
2325         case KVM_PPC_GET_PVINFO: {
2326                 struct kvm_ppc_pvinfo pvinfo;
2327                 memset(&pvinfo, 0, sizeof(pvinfo));
2328                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2329                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2330                         r = -EFAULT;
2331                         goto out;
2332                 }
2333
2334                 break;
2335         }
2336 #ifdef CONFIG_SPAPR_TCE_IOMMU
2337         case KVM_CREATE_SPAPR_TCE_64: {
2338                 struct kvm_create_spapr_tce_64 create_tce_64;
2339
2340                 r = -EFAULT;
2341                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2342                         goto out;
2343                 if (create_tce_64.flags) {
2344                         r = -EINVAL;
2345                         goto out;
2346                 }
2347                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2348                 goto out;
2349         }
2350         case KVM_CREATE_SPAPR_TCE: {
2351                 struct kvm_create_spapr_tce create_tce;
2352                 struct kvm_create_spapr_tce_64 create_tce_64;
2353
2354                 r = -EFAULT;
2355                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2356                         goto out;
2357
2358                 create_tce_64.liobn = create_tce.liobn;
2359                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2360                 create_tce_64.offset = 0;
2361                 create_tce_64.size = create_tce.window_size >>
2362                                 IOMMU_PAGE_SHIFT_4K;
2363                 create_tce_64.flags = 0;
2364                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2365                 goto out;
2366         }
2367 #endif
2368 #ifdef CONFIG_PPC_BOOK3S_64
2369         case KVM_PPC_GET_SMMU_INFO: {
2370                 struct kvm_ppc_smmu_info info;
2371                 struct kvm *kvm = filp->private_data;
2372
2373                 memset(&info, 0, sizeof(info));
2374                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2375                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2376                         r = -EFAULT;
2377                 break;
2378         }
2379         case KVM_PPC_RTAS_DEFINE_TOKEN: {
2380                 struct kvm *kvm = filp->private_data;
2381
2382                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2383                 break;
2384         }
2385         case KVM_PPC_CONFIGURE_V3_MMU: {
2386                 struct kvm *kvm = filp->private_data;
2387                 struct kvm_ppc_mmuv3_cfg cfg;
2388
2389                 r = -EINVAL;
2390                 if (!kvm->arch.kvm_ops->configure_mmu)
2391                         goto out;
2392                 r = -EFAULT;
2393                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2394                         goto out;
2395                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2396                 break;
2397         }
2398         case KVM_PPC_GET_RMMU_INFO: {
2399                 struct kvm *kvm = filp->private_data;
2400                 struct kvm_ppc_rmmu_info info;
2401
2402                 r = -EINVAL;
2403                 if (!kvm->arch.kvm_ops->get_rmmu_info)
2404                         goto out;
2405                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2406                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2407                         r = -EFAULT;
2408                 break;
2409         }
2410         case KVM_PPC_GET_CPU_CHAR: {
2411                 struct kvm_ppc_cpu_char cpuchar;
2412
2413                 r = kvmppc_get_cpu_char(&cpuchar);
2414                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2415                         r = -EFAULT;
2416                 break;
2417         }
2418         default: {
2419                 struct kvm *kvm = filp->private_data;
2420                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2421         }
2422 #else /* CONFIG_PPC_BOOK3S_64 */
2423         default:
2424                 r = -ENOTTY;
2425 #endif
2426         }
2427 out:
2428         return r;
2429 }
2430
2431 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2432 static unsigned long nr_lpids;
2433
2434 long kvmppc_alloc_lpid(void)
2435 {
2436         long lpid;
2437
2438         do {
2439                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2440                 if (lpid >= nr_lpids) {
2441                         pr_err("%s: No LPIDs free\n", __func__);
2442                         return -ENOMEM;
2443                 }
2444         } while (test_and_set_bit(lpid, lpid_inuse));
2445
2446         return lpid;
2447 }
2448 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2449
2450 void kvmppc_claim_lpid(long lpid)
2451 {
2452         set_bit(lpid, lpid_inuse);
2453 }
2454 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2455
2456 void kvmppc_free_lpid(long lpid)
2457 {
2458         clear_bit(lpid, lpid_inuse);
2459 }
2460 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2461
2462 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2463 {
2464         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2465         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2466 }
2467 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2468
2469 int kvm_arch_init(void *opaque)
2470 {
2471         return 0;
2472 }
2473
2474 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);