Merge branch 'for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42 #ifdef CONFIG_PPC_PSERIES
43 #include <asm/hvcall.h>
44 #include <asm/plpar_wrappers.h>
45 #endif
46
47 #include "timing.h"
48 #include "irq.h"
49 #include "../mm/mmu_decl.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 struct kvmppc_ops *kvmppc_hv_ops;
55 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
56 struct kvmppc_ops *kvmppc_pr_ops;
57 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
58
59
60 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
61 {
62         return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
63 }
64
65 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
66 {
67         return false;
68 }
69
70 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
71 {
72         return 1;
73 }
74
75 /*
76  * Common checks before entering the guest world.  Call with interrupts
77  * disabled.
78  *
79  * returns:
80  *
81  * == 1 if we're ready to go into guest state
82  * <= 0 if we need to go back to the host with return value
83  */
84 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
85 {
86         int r;
87
88         WARN_ON(irqs_disabled());
89         hard_irq_disable();
90
91         while (true) {
92                 if (need_resched()) {
93                         local_irq_enable();
94                         cond_resched();
95                         hard_irq_disable();
96                         continue;
97                 }
98
99                 if (signal_pending(current)) {
100                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
102                         r = -EINTR;
103                         break;
104                 }
105
106                 vcpu->mode = IN_GUEST_MODE;
107
108                 /*
109                  * Reading vcpu->requests must happen after setting vcpu->mode,
110                  * so we don't miss a request because the requester sees
111                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
112                  * before next entering the guest (and thus doesn't IPI).
113                  * This also orders the write to mode from any reads
114                  * to the page tables done while the VCPU is running.
115                  * Please see the comment in kvm_flush_remote_tlbs.
116                  */
117                 smp_mb();
118
119                 if (kvm_request_pending(vcpu)) {
120                         /* Make sure we process requests preemptable */
121                         local_irq_enable();
122                         trace_kvm_check_requests(vcpu);
123                         r = kvmppc_core_check_requests(vcpu);
124                         hard_irq_disable();
125                         if (r > 0)
126                                 continue;
127                         break;
128                 }
129
130                 if (kvmppc_core_prepare_to_enter(vcpu)) {
131                         /* interrupts got enabled in between, so we
132                            are back at square 1 */
133                         continue;
134                 }
135
136                 guest_enter_irqoff();
137                 return 1;
138         }
139
140         /* return to host */
141         local_irq_enable();
142         return r;
143 }
144 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
145
146 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
147 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
148 {
149         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
150         int i;
151
152         shared->sprg0 = swab64(shared->sprg0);
153         shared->sprg1 = swab64(shared->sprg1);
154         shared->sprg2 = swab64(shared->sprg2);
155         shared->sprg3 = swab64(shared->sprg3);
156         shared->srr0 = swab64(shared->srr0);
157         shared->srr1 = swab64(shared->srr1);
158         shared->dar = swab64(shared->dar);
159         shared->msr = swab64(shared->msr);
160         shared->dsisr = swab32(shared->dsisr);
161         shared->int_pending = swab32(shared->int_pending);
162         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
163                 shared->sr[i] = swab32(shared->sr[i]);
164 }
165 #endif
166
167 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
168 {
169         int nr = kvmppc_get_gpr(vcpu, 11);
170         int r;
171         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
172         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
173         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
174         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
175         unsigned long r2 = 0;
176
177         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
178                 /* 32 bit mode */
179                 param1 &= 0xffffffff;
180                 param2 &= 0xffffffff;
181                 param3 &= 0xffffffff;
182                 param4 &= 0xffffffff;
183         }
184
185         switch (nr) {
186         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
187         {
188 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
189                 /* Book3S can be little endian, find it out here */
190                 int shared_big_endian = true;
191                 if (vcpu->arch.intr_msr & MSR_LE)
192                         shared_big_endian = false;
193                 if (shared_big_endian != vcpu->arch.shared_big_endian)
194                         kvmppc_swab_shared(vcpu);
195                 vcpu->arch.shared_big_endian = shared_big_endian;
196 #endif
197
198                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
199                         /*
200                          * Older versions of the Linux magic page code had
201                          * a bug where they would map their trampoline code
202                          * NX. If that's the case, remove !PR NX capability.
203                          */
204                         vcpu->arch.disable_kernel_nx = true;
205                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
206                 }
207
208                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
209                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
210
211 #ifdef CONFIG_PPC_64K_PAGES
212                 /*
213                  * Make sure our 4k magic page is in the same window of a 64k
214                  * page within the guest and within the host's page.
215                  */
216                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
217                     ((ulong)vcpu->arch.shared & 0xf000)) {
218                         void *old_shared = vcpu->arch.shared;
219                         ulong shared = (ulong)vcpu->arch.shared;
220                         void *new_shared;
221
222                         shared &= PAGE_MASK;
223                         shared |= vcpu->arch.magic_page_pa & 0xf000;
224                         new_shared = (void*)shared;
225                         memcpy(new_shared, old_shared, 0x1000);
226                         vcpu->arch.shared = new_shared;
227                 }
228 #endif
229
230                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
231
232                 r = EV_SUCCESS;
233                 break;
234         }
235         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
236                 r = EV_SUCCESS;
237 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
238                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
239 #endif
240
241                 /* Second return value is in r4 */
242                 break;
243         case EV_HCALL_TOKEN(EV_IDLE):
244                 r = EV_SUCCESS;
245                 kvm_vcpu_block(vcpu);
246                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
247                 break;
248         default:
249                 r = EV_UNIMPLEMENTED;
250                 break;
251         }
252
253         kvmppc_set_gpr(vcpu, 4, r2);
254
255         return r;
256 }
257 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
258
259 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
260 {
261         int r = false;
262
263         /* We have to know what CPU to virtualize */
264         if (!vcpu->arch.pvr)
265                 goto out;
266
267         /* PAPR only works with book3s_64 */
268         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
269                 goto out;
270
271         /* HV KVM can only do PAPR mode for now */
272         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
273                 goto out;
274
275 #ifdef CONFIG_KVM_BOOKE_HV
276         if (!cpu_has_feature(CPU_FTR_EMB_HV))
277                 goto out;
278 #endif
279
280         r = true;
281
282 out:
283         vcpu->arch.sane = r;
284         return r ? 0 : -EINVAL;
285 }
286 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
287
288 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
289 {
290         enum emulation_result er;
291         int r;
292
293         er = kvmppc_emulate_loadstore(vcpu);
294         switch (er) {
295         case EMULATE_DONE:
296                 /* Future optimization: only reload non-volatiles if they were
297                  * actually modified. */
298                 r = RESUME_GUEST_NV;
299                 break;
300         case EMULATE_AGAIN:
301                 r = RESUME_GUEST;
302                 break;
303         case EMULATE_DO_MMIO:
304                 run->exit_reason = KVM_EXIT_MMIO;
305                 /* We must reload nonvolatiles because "update" load/store
306                  * instructions modify register state. */
307                 /* Future optimization: only reload non-volatiles if they were
308                  * actually modified. */
309                 r = RESUME_HOST_NV;
310                 break;
311         case EMULATE_FAIL:
312         {
313                 u32 last_inst;
314
315                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
316                 /* XXX Deliver Program interrupt to guest. */
317                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
318                 r = RESUME_HOST;
319                 break;
320         }
321         default:
322                 WARN_ON(1);
323                 r = RESUME_GUEST;
324         }
325
326         return r;
327 }
328 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
329
330 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
331               bool data)
332 {
333         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
334         struct kvmppc_pte pte;
335         int r;
336
337         vcpu->stat.st++;
338
339         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
340                          XLATE_WRITE, &pte);
341         if (r < 0)
342                 return r;
343
344         *eaddr = pte.raddr;
345
346         if (!pte.may_write)
347                 return -EPERM;
348
349         /* Magic page override */
350         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
351             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
352             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
353                 void *magic = vcpu->arch.shared;
354                 magic += pte.eaddr & 0xfff;
355                 memcpy(magic, ptr, size);
356                 return EMULATE_DONE;
357         }
358
359         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
360                 return EMULATE_DO_MMIO;
361
362         return EMULATE_DONE;
363 }
364 EXPORT_SYMBOL_GPL(kvmppc_st);
365
366 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
367                       bool data)
368 {
369         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
370         struct kvmppc_pte pte;
371         int rc;
372
373         vcpu->stat.ld++;
374
375         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
376                           XLATE_READ, &pte);
377         if (rc)
378                 return rc;
379
380         *eaddr = pte.raddr;
381
382         if (!pte.may_read)
383                 return -EPERM;
384
385         if (!data && !pte.may_execute)
386                 return -ENOEXEC;
387
388         /* Magic page override */
389         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
390             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
391             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
392                 void *magic = vcpu->arch.shared;
393                 magic += pte.eaddr & 0xfff;
394                 memcpy(ptr, magic, size);
395                 return EMULATE_DONE;
396         }
397
398         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
399                 return EMULATE_DO_MMIO;
400
401         return EMULATE_DONE;
402 }
403 EXPORT_SYMBOL_GPL(kvmppc_ld);
404
405 int kvm_arch_hardware_enable(void)
406 {
407         return 0;
408 }
409
410 int kvm_arch_hardware_setup(void)
411 {
412         return 0;
413 }
414
415 void kvm_arch_check_processor_compat(void *rtn)
416 {
417         *(int *)rtn = kvmppc_core_check_processor_compat();
418 }
419
420 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
421 {
422         struct kvmppc_ops *kvm_ops = NULL;
423         /*
424          * if we have both HV and PR enabled, default is HV
425          */
426         if (type == 0) {
427                 if (kvmppc_hv_ops)
428                         kvm_ops = kvmppc_hv_ops;
429                 else
430                         kvm_ops = kvmppc_pr_ops;
431                 if (!kvm_ops)
432                         goto err_out;
433         } else  if (type == KVM_VM_PPC_HV) {
434                 if (!kvmppc_hv_ops)
435                         goto err_out;
436                 kvm_ops = kvmppc_hv_ops;
437         } else if (type == KVM_VM_PPC_PR) {
438                 if (!kvmppc_pr_ops)
439                         goto err_out;
440                 kvm_ops = kvmppc_pr_ops;
441         } else
442                 goto err_out;
443
444         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
445                 return -ENOENT;
446
447         kvm->arch.kvm_ops = kvm_ops;
448         return kvmppc_core_init_vm(kvm);
449 err_out:
450         return -EINVAL;
451 }
452
453 bool kvm_arch_has_vcpu_debugfs(void)
454 {
455         return false;
456 }
457
458 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
459 {
460         return 0;
461 }
462
463 void kvm_arch_destroy_vm(struct kvm *kvm)
464 {
465         unsigned int i;
466         struct kvm_vcpu *vcpu;
467
468 #ifdef CONFIG_KVM_XICS
469         /*
470          * We call kick_all_cpus_sync() to ensure that all
471          * CPUs have executed any pending IPIs before we
472          * continue and free VCPUs structures below.
473          */
474         if (is_kvmppc_hv_enabled(kvm))
475                 kick_all_cpus_sync();
476 #endif
477
478         kvm_for_each_vcpu(i, vcpu, kvm)
479                 kvm_arch_vcpu_free(vcpu);
480
481         mutex_lock(&kvm->lock);
482         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
483                 kvm->vcpus[i] = NULL;
484
485         atomic_set(&kvm->online_vcpus, 0);
486
487         kvmppc_core_destroy_vm(kvm);
488
489         mutex_unlock(&kvm->lock);
490
491         /* drop the module reference */
492         module_put(kvm->arch.kvm_ops->owner);
493 }
494
495 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
496 {
497         int r;
498         /* Assume we're using HV mode when the HV module is loaded */
499         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
500
501         if (kvm) {
502                 /*
503                  * Hooray - we know which VM type we're running on. Depend on
504                  * that rather than the guess above.
505                  */
506                 hv_enabled = is_kvmppc_hv_enabled(kvm);
507         }
508
509         switch (ext) {
510 #ifdef CONFIG_BOOKE
511         case KVM_CAP_PPC_BOOKE_SREGS:
512         case KVM_CAP_PPC_BOOKE_WATCHDOG:
513         case KVM_CAP_PPC_EPR:
514 #else
515         case KVM_CAP_PPC_SEGSTATE:
516         case KVM_CAP_PPC_HIOR:
517         case KVM_CAP_PPC_PAPR:
518 #endif
519         case KVM_CAP_PPC_UNSET_IRQ:
520         case KVM_CAP_PPC_IRQ_LEVEL:
521         case KVM_CAP_ENABLE_CAP:
522         case KVM_CAP_ENABLE_CAP_VM:
523         case KVM_CAP_ONE_REG:
524         case KVM_CAP_IOEVENTFD:
525         case KVM_CAP_DEVICE_CTRL:
526         case KVM_CAP_IMMEDIATE_EXIT:
527                 r = 1;
528                 break;
529         case KVM_CAP_PPC_PAIRED_SINGLES:
530         case KVM_CAP_PPC_OSI:
531         case KVM_CAP_PPC_GET_PVINFO:
532 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
533         case KVM_CAP_SW_TLB:
534 #endif
535                 /* We support this only for PR */
536                 r = !hv_enabled;
537                 break;
538 #ifdef CONFIG_KVM_MPIC
539         case KVM_CAP_IRQ_MPIC:
540                 r = 1;
541                 break;
542 #endif
543
544 #ifdef CONFIG_PPC_BOOK3S_64
545         case KVM_CAP_SPAPR_TCE:
546         case KVM_CAP_SPAPR_TCE_64:
547                 /* fallthrough */
548         case KVM_CAP_SPAPR_TCE_VFIO:
549         case KVM_CAP_PPC_RTAS:
550         case KVM_CAP_PPC_FIXUP_HCALL:
551         case KVM_CAP_PPC_ENABLE_HCALL:
552 #ifdef CONFIG_KVM_XICS
553         case KVM_CAP_IRQ_XICS:
554 #endif
555         case KVM_CAP_PPC_GET_CPU_CHAR:
556                 r = 1;
557                 break;
558
559         case KVM_CAP_PPC_ALLOC_HTAB:
560                 r = hv_enabled;
561                 break;
562 #endif /* CONFIG_PPC_BOOK3S_64 */
563 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
564         case KVM_CAP_PPC_SMT:
565                 r = 0;
566                 if (kvm) {
567                         if (kvm->arch.emul_smt_mode > 1)
568                                 r = kvm->arch.emul_smt_mode;
569                         else
570                                 r = kvm->arch.smt_mode;
571                 } else if (hv_enabled) {
572                         if (cpu_has_feature(CPU_FTR_ARCH_300))
573                                 r = 1;
574                         else
575                                 r = threads_per_subcore;
576                 }
577                 break;
578         case KVM_CAP_PPC_SMT_POSSIBLE:
579                 r = 1;
580                 if (hv_enabled) {
581                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
582                                 r = ((threads_per_subcore << 1) - 1);
583                         else
584                                 /* P9 can emulate dbells, so allow any mode */
585                                 r = 8 | 4 | 2 | 1;
586                 }
587                 break;
588         case KVM_CAP_PPC_RMA:
589                 r = 0;
590                 break;
591         case KVM_CAP_PPC_HWRNG:
592                 r = kvmppc_hwrng_present();
593                 break;
594         case KVM_CAP_PPC_MMU_RADIX:
595                 r = !!(hv_enabled && radix_enabled());
596                 break;
597         case KVM_CAP_PPC_MMU_HASH_V3:
598                 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
599                 break;
600 #endif
601         case KVM_CAP_SYNC_MMU:
602 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
603                 r = hv_enabled;
604 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
605                 r = 1;
606 #else
607                 r = 0;
608 #endif
609                 break;
610 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
611         case KVM_CAP_PPC_HTAB_FD:
612                 r = hv_enabled;
613                 break;
614 #endif
615         case KVM_CAP_NR_VCPUS:
616                 /*
617                  * Recommending a number of CPUs is somewhat arbitrary; we
618                  * return the number of present CPUs for -HV (since a host
619                  * will have secondary threads "offline"), and for other KVM
620                  * implementations just count online CPUs.
621                  */
622                 if (hv_enabled)
623                         r = num_present_cpus();
624                 else
625                         r = num_online_cpus();
626                 break;
627         case KVM_CAP_NR_MEMSLOTS:
628                 r = KVM_USER_MEM_SLOTS;
629                 break;
630         case KVM_CAP_MAX_VCPUS:
631                 r = KVM_MAX_VCPUS;
632                 break;
633 #ifdef CONFIG_PPC_BOOK3S_64
634         case KVM_CAP_PPC_GET_SMMU_INFO:
635                 r = 1;
636                 break;
637         case KVM_CAP_SPAPR_MULTITCE:
638                 r = 1;
639                 break;
640         case KVM_CAP_SPAPR_RESIZE_HPT:
641                 /* Disable this on POWER9 until code handles new HPTE format */
642                 r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300);
643                 break;
644 #endif
645 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
646         case KVM_CAP_PPC_FWNMI:
647                 r = hv_enabled;
648                 break;
649 #endif
650         case KVM_CAP_PPC_HTM:
651                 r = hv_enabled &&
652                     (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
653                 break;
654         default:
655                 r = 0;
656                 break;
657         }
658         return r;
659
660 }
661
662 long kvm_arch_dev_ioctl(struct file *filp,
663                         unsigned int ioctl, unsigned long arg)
664 {
665         return -EINVAL;
666 }
667
668 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
669                            struct kvm_memory_slot *dont)
670 {
671         kvmppc_core_free_memslot(kvm, free, dont);
672 }
673
674 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
675                             unsigned long npages)
676 {
677         return kvmppc_core_create_memslot(kvm, slot, npages);
678 }
679
680 int kvm_arch_prepare_memory_region(struct kvm *kvm,
681                                    struct kvm_memory_slot *memslot,
682                                    const struct kvm_userspace_memory_region *mem,
683                                    enum kvm_mr_change change)
684 {
685         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
686 }
687
688 void kvm_arch_commit_memory_region(struct kvm *kvm,
689                                    const struct kvm_userspace_memory_region *mem,
690                                    const struct kvm_memory_slot *old,
691                                    const struct kvm_memory_slot *new,
692                                    enum kvm_mr_change change)
693 {
694         kvmppc_core_commit_memory_region(kvm, mem, old, new);
695 }
696
697 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
698                                    struct kvm_memory_slot *slot)
699 {
700         kvmppc_core_flush_memslot(kvm, slot);
701 }
702
703 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
704 {
705         struct kvm_vcpu *vcpu;
706         vcpu = kvmppc_core_vcpu_create(kvm, id);
707         if (!IS_ERR(vcpu)) {
708                 vcpu->arch.wqp = &vcpu->wq;
709                 kvmppc_create_vcpu_debugfs(vcpu, id);
710         }
711         return vcpu;
712 }
713
714 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
715 {
716 }
717
718 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
719 {
720         /* Make sure we're not using the vcpu anymore */
721         hrtimer_cancel(&vcpu->arch.dec_timer);
722
723         kvmppc_remove_vcpu_debugfs(vcpu);
724
725         switch (vcpu->arch.irq_type) {
726         case KVMPPC_IRQ_MPIC:
727                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
728                 break;
729         case KVMPPC_IRQ_XICS:
730                 if (xive_enabled())
731                         kvmppc_xive_cleanup_vcpu(vcpu);
732                 else
733                         kvmppc_xics_free_icp(vcpu);
734                 break;
735         }
736
737         kvmppc_core_vcpu_free(vcpu);
738 }
739
740 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
741 {
742         kvm_arch_vcpu_free(vcpu);
743 }
744
745 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
746 {
747         return kvmppc_core_pending_dec(vcpu);
748 }
749
750 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
751 {
752         struct kvm_vcpu *vcpu;
753
754         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
755         kvmppc_decrementer_func(vcpu);
756
757         return HRTIMER_NORESTART;
758 }
759
760 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
761 {
762         int ret;
763
764         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
765         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
766         vcpu->arch.dec_expires = ~(u64)0;
767
768 #ifdef CONFIG_KVM_EXIT_TIMING
769         mutex_init(&vcpu->arch.exit_timing_lock);
770 #endif
771         ret = kvmppc_subarch_vcpu_init(vcpu);
772         return ret;
773 }
774
775 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
776 {
777         kvmppc_mmu_destroy(vcpu);
778         kvmppc_subarch_vcpu_uninit(vcpu);
779 }
780
781 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
782 {
783 #ifdef CONFIG_BOOKE
784         /*
785          * vrsave (formerly usprg0) isn't used by Linux, but may
786          * be used by the guest.
787          *
788          * On non-booke this is associated with Altivec and
789          * is handled by code in book3s.c.
790          */
791         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
792 #endif
793         kvmppc_core_vcpu_load(vcpu, cpu);
794 }
795
796 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
797 {
798         kvmppc_core_vcpu_put(vcpu);
799 #ifdef CONFIG_BOOKE
800         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
801 #endif
802 }
803
804 /*
805  * irq_bypass_add_producer and irq_bypass_del_producer are only
806  * useful if the architecture supports PCI passthrough.
807  * irq_bypass_stop and irq_bypass_start are not needed and so
808  * kvm_ops are not defined for them.
809  */
810 bool kvm_arch_has_irq_bypass(void)
811 {
812         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
813                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
814 }
815
816 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
817                                      struct irq_bypass_producer *prod)
818 {
819         struct kvm_kernel_irqfd *irqfd =
820                 container_of(cons, struct kvm_kernel_irqfd, consumer);
821         struct kvm *kvm = irqfd->kvm;
822
823         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
824                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
825
826         return 0;
827 }
828
829 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
830                                       struct irq_bypass_producer *prod)
831 {
832         struct kvm_kernel_irqfd *irqfd =
833                 container_of(cons, struct kvm_kernel_irqfd, consumer);
834         struct kvm *kvm = irqfd->kvm;
835
836         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
837                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
838 }
839
840 #ifdef CONFIG_VSX
841 static inline int kvmppc_get_vsr_dword_offset(int index)
842 {
843         int offset;
844
845         if ((index != 0) && (index != 1))
846                 return -1;
847
848 #ifdef __BIG_ENDIAN
849         offset =  index;
850 #else
851         offset = 1 - index;
852 #endif
853
854         return offset;
855 }
856
857 static inline int kvmppc_get_vsr_word_offset(int index)
858 {
859         int offset;
860
861         if ((index > 3) || (index < 0))
862                 return -1;
863
864 #ifdef __BIG_ENDIAN
865         offset = index;
866 #else
867         offset = 3 - index;
868 #endif
869         return offset;
870 }
871
872 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
873         u64 gpr)
874 {
875         union kvmppc_one_reg val;
876         int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
877         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
878
879         if (offset == -1)
880                 return;
881
882         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
883                 val.vval = VCPU_VSX_VR(vcpu, index);
884                 val.vsxval[offset] = gpr;
885                 VCPU_VSX_VR(vcpu, index) = val.vval;
886         } else {
887                 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
888         }
889 }
890
891 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
892         u64 gpr)
893 {
894         union kvmppc_one_reg val;
895         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
898                 val.vval = VCPU_VSX_VR(vcpu, index);
899                 val.vsxval[0] = gpr;
900                 val.vsxval[1] = gpr;
901                 VCPU_VSX_VR(vcpu, index) = val.vval;
902         } else {
903                 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
904                 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
905         }
906 }
907
908 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
909         u32 gpr32)
910 {
911         union kvmppc_one_reg val;
912         int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
913         int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914         int dword_offset, word_offset;
915
916         if (offset == -1)
917                 return;
918
919         if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
920                 val.vval = VCPU_VSX_VR(vcpu, index);
921                 val.vsx32val[offset] = gpr32;
922                 VCPU_VSX_VR(vcpu, index) = val.vval;
923         } else {
924                 dword_offset = offset / 2;
925                 word_offset = offset % 2;
926                 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
927                 val.vsx32val[word_offset] = gpr32;
928                 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
929         }
930 }
931 #endif /* CONFIG_VSX */
932
933 #ifdef CONFIG_PPC_FPU
934 static inline u64 sp_to_dp(u32 fprs)
935 {
936         u64 fprd;
937
938         preempt_disable();
939         enable_kernel_fp();
940         asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
941              : "fr0");
942         preempt_enable();
943         return fprd;
944 }
945
946 static inline u32 dp_to_sp(u64 fprd)
947 {
948         u32 fprs;
949
950         preempt_disable();
951         enable_kernel_fp();
952         asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
953              : "fr0");
954         preempt_enable();
955         return fprs;
956 }
957
958 #else
959 #define sp_to_dp(x)     (x)
960 #define dp_to_sp(x)     (x)
961 #endif /* CONFIG_PPC_FPU */
962
963 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
964                                       struct kvm_run *run)
965 {
966         u64 uninitialized_var(gpr);
967
968         if (run->mmio.len > sizeof(gpr)) {
969                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
970                 return;
971         }
972
973         if (!vcpu->arch.mmio_host_swabbed) {
974                 switch (run->mmio.len) {
975                 case 8: gpr = *(u64 *)run->mmio.data; break;
976                 case 4: gpr = *(u32 *)run->mmio.data; break;
977                 case 2: gpr = *(u16 *)run->mmio.data; break;
978                 case 1: gpr = *(u8 *)run->mmio.data; break;
979                 }
980         } else {
981                 switch (run->mmio.len) {
982                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
983                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
984                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
985                 case 1: gpr = *(u8 *)run->mmio.data; break;
986                 }
987         }
988
989         /* conversion between single and double precision */
990         if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
991                 gpr = sp_to_dp(gpr);
992
993         if (vcpu->arch.mmio_sign_extend) {
994                 switch (run->mmio.len) {
995 #ifdef CONFIG_PPC64
996                 case 4:
997                         gpr = (s64)(s32)gpr;
998                         break;
999 #endif
1000                 case 2:
1001                         gpr = (s64)(s16)gpr;
1002                         break;
1003                 case 1:
1004                         gpr = (s64)(s8)gpr;
1005                         break;
1006                 }
1007         }
1008
1009         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1010         case KVM_MMIO_REG_GPR:
1011                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1012                 break;
1013         case KVM_MMIO_REG_FPR:
1014                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1015                 break;
1016 #ifdef CONFIG_PPC_BOOK3S
1017         case KVM_MMIO_REG_QPR:
1018                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1019                 break;
1020         case KVM_MMIO_REG_FQPR:
1021                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1022                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1023                 break;
1024 #endif
1025 #ifdef CONFIG_VSX
1026         case KVM_MMIO_REG_VSX:
1027                 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1028                         kvmppc_set_vsr_dword(vcpu, gpr);
1029                 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1030                         kvmppc_set_vsr_word(vcpu, gpr);
1031                 else if (vcpu->arch.mmio_vsx_copy_type ==
1032                                 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1033                         kvmppc_set_vsr_dword_dump(vcpu, gpr);
1034                 break;
1035 #endif
1036         default:
1037                 BUG();
1038         }
1039 }
1040
1041 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1042                                 unsigned int rt, unsigned int bytes,
1043                                 int is_default_endian, int sign_extend)
1044 {
1045         int idx, ret;
1046         bool host_swabbed;
1047
1048         /* Pity C doesn't have a logical XOR operator */
1049         if (kvmppc_need_byteswap(vcpu)) {
1050                 host_swabbed = is_default_endian;
1051         } else {
1052                 host_swabbed = !is_default_endian;
1053         }
1054
1055         if (bytes > sizeof(run->mmio.data)) {
1056                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1057                        run->mmio.len);
1058         }
1059
1060         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1061         run->mmio.len = bytes;
1062         run->mmio.is_write = 0;
1063
1064         vcpu->arch.io_gpr = rt;
1065         vcpu->arch.mmio_host_swabbed = host_swabbed;
1066         vcpu->mmio_needed = 1;
1067         vcpu->mmio_is_write = 0;
1068         vcpu->arch.mmio_sign_extend = sign_extend;
1069
1070         idx = srcu_read_lock(&vcpu->kvm->srcu);
1071
1072         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1073                               bytes, &run->mmio.data);
1074
1075         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1076
1077         if (!ret) {
1078                 kvmppc_complete_mmio_load(vcpu, run);
1079                 vcpu->mmio_needed = 0;
1080                 return EMULATE_DONE;
1081         }
1082
1083         return EMULATE_DO_MMIO;
1084 }
1085
1086 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1087                        unsigned int rt, unsigned int bytes,
1088                        int is_default_endian)
1089 {
1090         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1091 }
1092 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1093
1094 /* Same as above, but sign extends */
1095 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1096                         unsigned int rt, unsigned int bytes,
1097                         int is_default_endian)
1098 {
1099         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1100 }
1101
1102 #ifdef CONFIG_VSX
1103 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1104                         unsigned int rt, unsigned int bytes,
1105                         int is_default_endian, int mmio_sign_extend)
1106 {
1107         enum emulation_result emulated = EMULATE_DONE;
1108
1109         /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1110         if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1111                 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1112                 return EMULATE_FAIL;
1113         }
1114
1115         while (vcpu->arch.mmio_vsx_copy_nums) {
1116                 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1117                         is_default_endian, mmio_sign_extend);
1118
1119                 if (emulated != EMULATE_DONE)
1120                         break;
1121
1122                 vcpu->arch.paddr_accessed += run->mmio.len;
1123
1124                 vcpu->arch.mmio_vsx_copy_nums--;
1125                 vcpu->arch.mmio_vsx_offset++;
1126         }
1127         return emulated;
1128 }
1129 #endif /* CONFIG_VSX */
1130
1131 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1132                         u64 val, unsigned int bytes, int is_default_endian)
1133 {
1134         void *data = run->mmio.data;
1135         int idx, ret;
1136         bool host_swabbed;
1137
1138         /* Pity C doesn't have a logical XOR operator */
1139         if (kvmppc_need_byteswap(vcpu)) {
1140                 host_swabbed = is_default_endian;
1141         } else {
1142                 host_swabbed = !is_default_endian;
1143         }
1144
1145         if (bytes > sizeof(run->mmio.data)) {
1146                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1147                        run->mmio.len);
1148         }
1149
1150         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1151         run->mmio.len = bytes;
1152         run->mmio.is_write = 1;
1153         vcpu->mmio_needed = 1;
1154         vcpu->mmio_is_write = 1;
1155
1156         if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1157                 val = dp_to_sp(val);
1158
1159         /* Store the value at the lowest bytes in 'data'. */
1160         if (!host_swabbed) {
1161                 switch (bytes) {
1162                 case 8: *(u64 *)data = val; break;
1163                 case 4: *(u32 *)data = val; break;
1164                 case 2: *(u16 *)data = val; break;
1165                 case 1: *(u8  *)data = val; break;
1166                 }
1167         } else {
1168                 switch (bytes) {
1169                 case 8: *(u64 *)data = swab64(val); break;
1170                 case 4: *(u32 *)data = swab32(val); break;
1171                 case 2: *(u16 *)data = swab16(val); break;
1172                 case 1: *(u8  *)data = val; break;
1173                 }
1174         }
1175
1176         idx = srcu_read_lock(&vcpu->kvm->srcu);
1177
1178         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1179                                bytes, &run->mmio.data);
1180
1181         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1182
1183         if (!ret) {
1184                 vcpu->mmio_needed = 0;
1185                 return EMULATE_DONE;
1186         }
1187
1188         return EMULATE_DO_MMIO;
1189 }
1190 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1191
1192 #ifdef CONFIG_VSX
1193 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1194 {
1195         u32 dword_offset, word_offset;
1196         union kvmppc_one_reg reg;
1197         int vsx_offset = 0;
1198         int copy_type = vcpu->arch.mmio_vsx_copy_type;
1199         int result = 0;
1200
1201         switch (copy_type) {
1202         case KVMPPC_VSX_COPY_DWORD:
1203                 vsx_offset =
1204                         kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1205
1206                 if (vsx_offset == -1) {
1207                         result = -1;
1208                         break;
1209                 }
1210
1211                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1212                         *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1213                 } else {
1214                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1215                         *val = reg.vsxval[vsx_offset];
1216                 }
1217                 break;
1218
1219         case KVMPPC_VSX_COPY_WORD:
1220                 vsx_offset =
1221                         kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1222
1223                 if (vsx_offset == -1) {
1224                         result = -1;
1225                         break;
1226                 }
1227
1228                 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1229                         dword_offset = vsx_offset / 2;
1230                         word_offset = vsx_offset % 2;
1231                         reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1232                         *val = reg.vsx32val[word_offset];
1233                 } else {
1234                         reg.vval = VCPU_VSX_VR(vcpu, rs);
1235                         *val = reg.vsx32val[vsx_offset];
1236                 }
1237                 break;
1238
1239         default:
1240                 result = -1;
1241                 break;
1242         }
1243
1244         return result;
1245 }
1246
1247 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1248                         int rs, unsigned int bytes, int is_default_endian)
1249 {
1250         u64 val;
1251         enum emulation_result emulated = EMULATE_DONE;
1252
1253         vcpu->arch.io_gpr = rs;
1254
1255         /* Currently, mmio_vsx_copy_nums only allowed to be less than 4 */
1256         if ( (vcpu->arch.mmio_vsx_copy_nums > 4) ||
1257                 (vcpu->arch.mmio_vsx_copy_nums < 0) ) {
1258                 return EMULATE_FAIL;
1259         }
1260
1261         while (vcpu->arch.mmio_vsx_copy_nums) {
1262                 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1263                         return EMULATE_FAIL;
1264
1265                 emulated = kvmppc_handle_store(run, vcpu,
1266                          val, bytes, is_default_endian);
1267
1268                 if (emulated != EMULATE_DONE)
1269                         break;
1270
1271                 vcpu->arch.paddr_accessed += run->mmio.len;
1272
1273                 vcpu->arch.mmio_vsx_copy_nums--;
1274                 vcpu->arch.mmio_vsx_offset++;
1275         }
1276
1277         return emulated;
1278 }
1279
1280 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1281                         struct kvm_run *run)
1282 {
1283         enum emulation_result emulated = EMULATE_FAIL;
1284         int r;
1285
1286         vcpu->arch.paddr_accessed += run->mmio.len;
1287
1288         if (!vcpu->mmio_is_write) {
1289                 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1290                          run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1291         } else {
1292                 emulated = kvmppc_handle_vsx_store(run, vcpu,
1293                          vcpu->arch.io_gpr, run->mmio.len, 1);
1294         }
1295
1296         switch (emulated) {
1297         case EMULATE_DO_MMIO:
1298                 run->exit_reason = KVM_EXIT_MMIO;
1299                 r = RESUME_HOST;
1300                 break;
1301         case EMULATE_FAIL:
1302                 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1303                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304                 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1305                 r = RESUME_HOST;
1306                 break;
1307         default:
1308                 r = RESUME_GUEST;
1309                 break;
1310         }
1311         return r;
1312 }
1313 #endif /* CONFIG_VSX */
1314
1315 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1316 {
1317         int r = 0;
1318         union kvmppc_one_reg val;
1319         int size;
1320
1321         size = one_reg_size(reg->id);
1322         if (size > sizeof(val))
1323                 return -EINVAL;
1324
1325         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1326         if (r == -EINVAL) {
1327                 r = 0;
1328                 switch (reg->id) {
1329 #ifdef CONFIG_ALTIVEC
1330                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1331                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1332                                 r = -ENXIO;
1333                                 break;
1334                         }
1335                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1336                         break;
1337                 case KVM_REG_PPC_VSCR:
1338                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1339                                 r = -ENXIO;
1340                                 break;
1341                         }
1342                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1343                         break;
1344                 case KVM_REG_PPC_VRSAVE:
1345                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1346                         break;
1347 #endif /* CONFIG_ALTIVEC */
1348                 default:
1349                         r = -EINVAL;
1350                         break;
1351                 }
1352         }
1353
1354         if (r)
1355                 return r;
1356
1357         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1358                 r = -EFAULT;
1359
1360         return r;
1361 }
1362
1363 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1364 {
1365         int r;
1366         union kvmppc_one_reg val;
1367         int size;
1368
1369         size = one_reg_size(reg->id);
1370         if (size > sizeof(val))
1371                 return -EINVAL;
1372
1373         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1374                 return -EFAULT;
1375
1376         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1377         if (r == -EINVAL) {
1378                 r = 0;
1379                 switch (reg->id) {
1380 #ifdef CONFIG_ALTIVEC
1381                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1382                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1383                                 r = -ENXIO;
1384                                 break;
1385                         }
1386                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1387                         break;
1388                 case KVM_REG_PPC_VSCR:
1389                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1390                                 r = -ENXIO;
1391                                 break;
1392                         }
1393                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1394                         break;
1395                 case KVM_REG_PPC_VRSAVE:
1396                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1397                                 r = -ENXIO;
1398                                 break;
1399                         }
1400                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1401                         break;
1402 #endif /* CONFIG_ALTIVEC */
1403                 default:
1404                         r = -EINVAL;
1405                         break;
1406                 }
1407         }
1408
1409         return r;
1410 }
1411
1412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1413 {
1414         int r;
1415
1416         if (vcpu->mmio_needed) {
1417                 vcpu->mmio_needed = 0;
1418                 if (!vcpu->mmio_is_write)
1419                         kvmppc_complete_mmio_load(vcpu, run);
1420 #ifdef CONFIG_VSX
1421                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1422                         vcpu->arch.mmio_vsx_copy_nums--;
1423                         vcpu->arch.mmio_vsx_offset++;
1424                 }
1425
1426                 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1427                         r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1428                         if (r == RESUME_HOST) {
1429                                 vcpu->mmio_needed = 1;
1430                                 return r;
1431                         }
1432                 }
1433 #endif
1434         } else if (vcpu->arch.osi_needed) {
1435                 u64 *gprs = run->osi.gprs;
1436                 int i;
1437
1438                 for (i = 0; i < 32; i++)
1439                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1440                 vcpu->arch.osi_needed = 0;
1441         } else if (vcpu->arch.hcall_needed) {
1442                 int i;
1443
1444                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1445                 for (i = 0; i < 9; ++i)
1446                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1447                 vcpu->arch.hcall_needed = 0;
1448 #ifdef CONFIG_BOOKE
1449         } else if (vcpu->arch.epr_needed) {
1450                 kvmppc_set_epr(vcpu, run->epr.epr);
1451                 vcpu->arch.epr_needed = 0;
1452 #endif
1453         }
1454
1455         kvm_sigset_activate(vcpu);
1456
1457         if (run->immediate_exit)
1458                 r = -EINTR;
1459         else
1460                 r = kvmppc_vcpu_run(run, vcpu);
1461
1462         kvm_sigset_deactivate(vcpu);
1463
1464         return r;
1465 }
1466
1467 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1468 {
1469         if (irq->irq == KVM_INTERRUPT_UNSET) {
1470                 kvmppc_core_dequeue_external(vcpu);
1471                 return 0;
1472         }
1473
1474         kvmppc_core_queue_external(vcpu, irq);
1475
1476         kvm_vcpu_kick(vcpu);
1477
1478         return 0;
1479 }
1480
1481 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1482                                      struct kvm_enable_cap *cap)
1483 {
1484         int r;
1485
1486         if (cap->flags)
1487                 return -EINVAL;
1488
1489         switch (cap->cap) {
1490         case KVM_CAP_PPC_OSI:
1491                 r = 0;
1492                 vcpu->arch.osi_enabled = true;
1493                 break;
1494         case KVM_CAP_PPC_PAPR:
1495                 r = 0;
1496                 vcpu->arch.papr_enabled = true;
1497                 break;
1498         case KVM_CAP_PPC_EPR:
1499                 r = 0;
1500                 if (cap->args[0])
1501                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1502                 else
1503                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1504                 break;
1505 #ifdef CONFIG_BOOKE
1506         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1507                 r = 0;
1508                 vcpu->arch.watchdog_enabled = true;
1509                 break;
1510 #endif
1511 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1512         case KVM_CAP_SW_TLB: {
1513                 struct kvm_config_tlb cfg;
1514                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1515
1516                 r = -EFAULT;
1517                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1518                         break;
1519
1520                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1521                 break;
1522         }
1523 #endif
1524 #ifdef CONFIG_KVM_MPIC
1525         case KVM_CAP_IRQ_MPIC: {
1526                 struct fd f;
1527                 struct kvm_device *dev;
1528
1529                 r = -EBADF;
1530                 f = fdget(cap->args[0]);
1531                 if (!f.file)
1532                         break;
1533
1534                 r = -EPERM;
1535                 dev = kvm_device_from_filp(f.file);
1536                 if (dev)
1537                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1538
1539                 fdput(f);
1540                 break;
1541         }
1542 #endif
1543 #ifdef CONFIG_KVM_XICS
1544         case KVM_CAP_IRQ_XICS: {
1545                 struct fd f;
1546                 struct kvm_device *dev;
1547
1548                 r = -EBADF;
1549                 f = fdget(cap->args[0]);
1550                 if (!f.file)
1551                         break;
1552
1553                 r = -EPERM;
1554                 dev = kvm_device_from_filp(f.file);
1555                 if (dev) {
1556                         if (xive_enabled())
1557                                 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1558                         else
1559                                 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1560                 }
1561
1562                 fdput(f);
1563                 break;
1564         }
1565 #endif /* CONFIG_KVM_XICS */
1566 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1567         case KVM_CAP_PPC_FWNMI:
1568                 r = -EINVAL;
1569                 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1570                         break;
1571                 r = 0;
1572                 vcpu->kvm->arch.fwnmi_enabled = true;
1573                 break;
1574 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1575         default:
1576                 r = -EINVAL;
1577                 break;
1578         }
1579
1580         if (!r)
1581                 r = kvmppc_sanity_check(vcpu);
1582
1583         return r;
1584 }
1585
1586 bool kvm_arch_intc_initialized(struct kvm *kvm)
1587 {
1588 #ifdef CONFIG_KVM_MPIC
1589         if (kvm->arch.mpic)
1590                 return true;
1591 #endif
1592 #ifdef CONFIG_KVM_XICS
1593         if (kvm->arch.xics || kvm->arch.xive)
1594                 return true;
1595 #endif
1596         return false;
1597 }
1598
1599 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1600                                     struct kvm_mp_state *mp_state)
1601 {
1602         return -EINVAL;
1603 }
1604
1605 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1606                                     struct kvm_mp_state *mp_state)
1607 {
1608         return -EINVAL;
1609 }
1610
1611 long kvm_arch_vcpu_ioctl(struct file *filp,
1612                          unsigned int ioctl, unsigned long arg)
1613 {
1614         struct kvm_vcpu *vcpu = filp->private_data;
1615         void __user *argp = (void __user *)arg;
1616         long r;
1617
1618         switch (ioctl) {
1619         case KVM_INTERRUPT: {
1620                 struct kvm_interrupt irq;
1621                 r = -EFAULT;
1622                 if (copy_from_user(&irq, argp, sizeof(irq)))
1623                         goto out;
1624                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1625                 goto out;
1626         }
1627
1628         case KVM_ENABLE_CAP:
1629         {
1630                 struct kvm_enable_cap cap;
1631                 r = -EFAULT;
1632                 if (copy_from_user(&cap, argp, sizeof(cap)))
1633                         goto out;
1634                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1635                 break;
1636         }
1637
1638         case KVM_SET_ONE_REG:
1639         case KVM_GET_ONE_REG:
1640         {
1641                 struct kvm_one_reg reg;
1642                 r = -EFAULT;
1643                 if (copy_from_user(&reg, argp, sizeof(reg)))
1644                         goto out;
1645                 if (ioctl == KVM_SET_ONE_REG)
1646                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1647                 else
1648                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1649                 break;
1650         }
1651
1652 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1653         case KVM_DIRTY_TLB: {
1654                 struct kvm_dirty_tlb dirty;
1655                 r = -EFAULT;
1656                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1657                         goto out;
1658                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1659                 break;
1660         }
1661 #endif
1662         default:
1663                 r = -EINVAL;
1664         }
1665
1666 out:
1667         return r;
1668 }
1669
1670 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1671 {
1672         return VM_FAULT_SIGBUS;
1673 }
1674
1675 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1676 {
1677         u32 inst_nop = 0x60000000;
1678 #ifdef CONFIG_KVM_BOOKE_HV
1679         u32 inst_sc1 = 0x44000022;
1680         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1681         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1682         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1683         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1684 #else
1685         u32 inst_lis = 0x3c000000;
1686         u32 inst_ori = 0x60000000;
1687         u32 inst_sc = 0x44000002;
1688         u32 inst_imm_mask = 0xffff;
1689
1690         /*
1691          * The hypercall to get into KVM from within guest context is as
1692          * follows:
1693          *
1694          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1695          *    ori r0, KVM_SC_MAGIC_R0@l
1696          *    sc
1697          *    nop
1698          */
1699         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1700         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1701         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1702         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1703 #endif
1704
1705         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1706
1707         return 0;
1708 }
1709
1710 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1711                           bool line_status)
1712 {
1713         if (!irqchip_in_kernel(kvm))
1714                 return -ENXIO;
1715
1716         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1717                                         irq_event->irq, irq_event->level,
1718                                         line_status);
1719         return 0;
1720 }
1721
1722
1723 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1724                                    struct kvm_enable_cap *cap)
1725 {
1726         int r;
1727
1728         if (cap->flags)
1729                 return -EINVAL;
1730
1731         switch (cap->cap) {
1732 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1733         case KVM_CAP_PPC_ENABLE_HCALL: {
1734                 unsigned long hcall = cap->args[0];
1735
1736                 r = -EINVAL;
1737                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1738                     cap->args[1] > 1)
1739                         break;
1740                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1741                         break;
1742                 if (cap->args[1])
1743                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1744                 else
1745                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1746                 r = 0;
1747                 break;
1748         }
1749         case KVM_CAP_PPC_SMT: {
1750                 unsigned long mode = cap->args[0];
1751                 unsigned long flags = cap->args[1];
1752
1753                 r = -EINVAL;
1754                 if (kvm->arch.kvm_ops->set_smt_mode)
1755                         r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1756                 break;
1757         }
1758 #endif
1759         default:
1760                 r = -EINVAL;
1761                 break;
1762         }
1763
1764         return r;
1765 }
1766
1767 #ifdef CONFIG_PPC_BOOK3S_64
1768 /*
1769  * These functions check whether the underlying hardware is safe
1770  * against attacks based on observing the effects of speculatively
1771  * executed instructions, and whether it supplies instructions for
1772  * use in workarounds.  The information comes from firmware, either
1773  * via the device tree on powernv platforms or from an hcall on
1774  * pseries platforms.
1775  */
1776 #ifdef CONFIG_PPC_PSERIES
1777 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1778 {
1779         struct h_cpu_char_result c;
1780         unsigned long rc;
1781
1782         if (!machine_is(pseries))
1783                 return -ENOTTY;
1784
1785         rc = plpar_get_cpu_characteristics(&c);
1786         if (rc == H_SUCCESS) {
1787                 cp->character = c.character;
1788                 cp->behaviour = c.behaviour;
1789                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1790                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1791                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1792                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1793                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1794                         KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
1795                         KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
1796                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1797                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1798                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1799                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1800         }
1801         return 0;
1802 }
1803 #else
1804 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1805 {
1806         return -ENOTTY;
1807 }
1808 #endif
1809
1810 static inline bool have_fw_feat(struct device_node *fw_features,
1811                                 const char *state, const char *name)
1812 {
1813         struct device_node *np;
1814         bool r = false;
1815
1816         np = of_get_child_by_name(fw_features, name);
1817         if (np) {
1818                 r = of_property_read_bool(np, state);
1819                 of_node_put(np);
1820         }
1821         return r;
1822 }
1823
1824 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
1825 {
1826         struct device_node *np, *fw_features;
1827         int r;
1828
1829         memset(cp, 0, sizeof(*cp));
1830         r = pseries_get_cpu_char(cp);
1831         if (r != -ENOTTY)
1832                 return r;
1833
1834         np = of_find_node_by_name(NULL, "ibm,opal");
1835         if (np) {
1836                 fw_features = of_get_child_by_name(np, "fw-features");
1837                 of_node_put(np);
1838                 if (!fw_features)
1839                         return 0;
1840                 if (have_fw_feat(fw_features, "enabled",
1841                                  "inst-spec-barrier-ori31,31,0"))
1842                         cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
1843                 if (have_fw_feat(fw_features, "enabled",
1844                                  "fw-bcctrl-serialized"))
1845                         cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
1846                 if (have_fw_feat(fw_features, "enabled",
1847                                  "inst-l1d-flush-ori30,30,0"))
1848                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
1849                 if (have_fw_feat(fw_features, "enabled",
1850                                  "inst-l1d-flush-trig2"))
1851                         cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
1852                 if (have_fw_feat(fw_features, "enabled",
1853                                  "fw-l1d-thread-split"))
1854                         cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
1855                 if (have_fw_feat(fw_features, "enabled",
1856                                  "fw-count-cache-disabled"))
1857                         cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1858                 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
1859                         KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
1860                         KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
1861                         KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
1862                         KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
1863                         KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
1864
1865                 if (have_fw_feat(fw_features, "enabled",
1866                                  "speculation-policy-favor-security"))
1867                         cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
1868                 if (!have_fw_feat(fw_features, "disabled",
1869                                   "needs-l1d-flush-msr-pr-0-to-1"))
1870                         cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
1871                 if (!have_fw_feat(fw_features, "disabled",
1872                                   "needs-spec-barrier-for-bound-checks"))
1873                         cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1874                 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
1875                         KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
1876                         KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1877
1878                 of_node_put(fw_features);
1879         }
1880
1881         return 0;
1882 }
1883 #endif
1884
1885 long kvm_arch_vm_ioctl(struct file *filp,
1886                        unsigned int ioctl, unsigned long arg)
1887 {
1888         struct kvm *kvm __maybe_unused = filp->private_data;
1889         void __user *argp = (void __user *)arg;
1890         long r;
1891
1892         switch (ioctl) {
1893         case KVM_PPC_GET_PVINFO: {
1894                 struct kvm_ppc_pvinfo pvinfo;
1895                 memset(&pvinfo, 0, sizeof(pvinfo));
1896                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1897                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1898                         r = -EFAULT;
1899                         goto out;
1900                 }
1901
1902                 break;
1903         }
1904         case KVM_ENABLE_CAP:
1905         {
1906                 struct kvm_enable_cap cap;
1907                 r = -EFAULT;
1908                 if (copy_from_user(&cap, argp, sizeof(cap)))
1909                         goto out;
1910                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1911                 break;
1912         }
1913 #ifdef CONFIG_SPAPR_TCE_IOMMU
1914         case KVM_CREATE_SPAPR_TCE_64: {
1915                 struct kvm_create_spapr_tce_64 create_tce_64;
1916
1917                 r = -EFAULT;
1918                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1919                         goto out;
1920                 if (create_tce_64.flags) {
1921                         r = -EINVAL;
1922                         goto out;
1923                 }
1924                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1925                 goto out;
1926         }
1927         case KVM_CREATE_SPAPR_TCE: {
1928                 struct kvm_create_spapr_tce create_tce;
1929                 struct kvm_create_spapr_tce_64 create_tce_64;
1930
1931                 r = -EFAULT;
1932                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1933                         goto out;
1934
1935                 create_tce_64.liobn = create_tce.liobn;
1936                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1937                 create_tce_64.offset = 0;
1938                 create_tce_64.size = create_tce.window_size >>
1939                                 IOMMU_PAGE_SHIFT_4K;
1940                 create_tce_64.flags = 0;
1941                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1942                 goto out;
1943         }
1944 #endif
1945 #ifdef CONFIG_PPC_BOOK3S_64
1946         case KVM_PPC_GET_SMMU_INFO: {
1947                 struct kvm_ppc_smmu_info info;
1948                 struct kvm *kvm = filp->private_data;
1949
1950                 memset(&info, 0, sizeof(info));
1951                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1952                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1953                         r = -EFAULT;
1954                 break;
1955         }
1956         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1957                 struct kvm *kvm = filp->private_data;
1958
1959                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1960                 break;
1961         }
1962         case KVM_PPC_CONFIGURE_V3_MMU: {
1963                 struct kvm *kvm = filp->private_data;
1964                 struct kvm_ppc_mmuv3_cfg cfg;
1965
1966                 r = -EINVAL;
1967                 if (!kvm->arch.kvm_ops->configure_mmu)
1968                         goto out;
1969                 r = -EFAULT;
1970                 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1971                         goto out;
1972                 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1973                 break;
1974         }
1975         case KVM_PPC_GET_RMMU_INFO: {
1976                 struct kvm *kvm = filp->private_data;
1977                 struct kvm_ppc_rmmu_info info;
1978
1979                 r = -EINVAL;
1980                 if (!kvm->arch.kvm_ops->get_rmmu_info)
1981                         goto out;
1982                 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
1983                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1984                         r = -EFAULT;
1985                 break;
1986         }
1987         case KVM_PPC_GET_CPU_CHAR: {
1988                 struct kvm_ppc_cpu_char cpuchar;
1989
1990                 r = kvmppc_get_cpu_char(&cpuchar);
1991                 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
1992                         r = -EFAULT;
1993                 break;
1994         }
1995         default: {
1996                 struct kvm *kvm = filp->private_data;
1997                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1998         }
1999 #else /* CONFIG_PPC_BOOK3S_64 */
2000         default:
2001                 r = -ENOTTY;
2002 #endif
2003         }
2004 out:
2005         return r;
2006 }
2007
2008 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2009 static unsigned long nr_lpids;
2010
2011 long kvmppc_alloc_lpid(void)
2012 {
2013         long lpid;
2014
2015         do {
2016                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2017                 if (lpid >= nr_lpids) {
2018                         pr_err("%s: No LPIDs free\n", __func__);
2019                         return -ENOMEM;
2020                 }
2021         } while (test_and_set_bit(lpid, lpid_inuse));
2022
2023         return lpid;
2024 }
2025 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2026
2027 void kvmppc_claim_lpid(long lpid)
2028 {
2029         set_bit(lpid, lpid_inuse);
2030 }
2031 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2032
2033 void kvmppc_free_lpid(long lpid)
2034 {
2035         clear_bit(lpid, lpid_inuse);
2036 }
2037 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2038
2039 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2040 {
2041         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2042         memset(lpid_inuse, 0, sizeof(lpid_inuse));
2043 }
2044 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2045
2046 int kvm_arch_init(void *opaque)
2047 {
2048         return 0;
2049 }
2050
2051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);