Merge tag 'usb-4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv_builtin.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/xive.h>
27 #include <asm/dbell.h>
28 #include <asm/cputhreads.h>
29 #include <asm/io.h>
30 #include <asm/opal.h>
31 #include <asm/smp.h>
32
33 #define KVM_CMA_CHUNK_ORDER     18
34
35 #include "book3s_xics.h"
36 #include "book3s_xive.h"
37
38 /*
39  * The XIVE module will populate these when it loads
40  */
41 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
42 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
43 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
44                        unsigned long mfrr);
45 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
46 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
51 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
52
53 /*
54  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
55  * should be power of 2.
56  */
57 #define HPT_ALIGN_PAGES         ((1 << 18) >> PAGE_SHIFT) /* 256k */
58 /*
59  * By default we reserve 5% of memory for hash pagetable allocation.
60  */
61 static unsigned long kvm_cma_resv_ratio = 5;
62
63 static struct cma *kvm_cma;
64
65 static int __init early_parse_kvm_cma_resv(char *p)
66 {
67         pr_debug("%s(%s)\n", __func__, p);
68         if (!p)
69                 return -EINVAL;
70         return kstrtoul(p, 0, &kvm_cma_resv_ratio);
71 }
72 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
73
74 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
75 {
76         VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
77
78         return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
79                          GFP_KERNEL);
80 }
81 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
82
83 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
84 {
85         cma_release(kvm_cma, page, nr_pages);
86 }
87 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
88
89 /**
90  * kvm_cma_reserve() - reserve area for kvm hash pagetable
91  *
92  * This function reserves memory from early allocator. It should be
93  * called by arch specific code once the memblock allocator
94  * has been activated and all other subsystems have already allocated/reserved
95  * memory.
96  */
97 void __init kvm_cma_reserve(void)
98 {
99         unsigned long align_size;
100         struct memblock_region *reg;
101         phys_addr_t selected_size = 0;
102
103         /*
104          * We need CMA reservation only when we are in HV mode
105          */
106         if (!cpu_has_feature(CPU_FTR_HVMODE))
107                 return;
108         /*
109          * We cannot use memblock_phys_mem_size() here, because
110          * memblock_analyze() has not been called yet.
111          */
112         for_each_memblock(memory, reg)
113                 selected_size += memblock_region_memory_end_pfn(reg) -
114                                  memblock_region_memory_base_pfn(reg);
115
116         selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
117         if (selected_size) {
118                 pr_debug("%s: reserving %ld MiB for global area\n", __func__,
119                          (unsigned long)selected_size / SZ_1M);
120                 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
121                 cma_declare_contiguous(0, selected_size, 0, align_size,
122                         KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
123                         &kvm_cma);
124         }
125 }
126
127 /*
128  * Real-mode H_CONFER implementation.
129  * We check if we are the only vcpu out of this virtual core
130  * still running in the guest and not ceded.  If so, we pop up
131  * to the virtual-mode implementation; if not, just return to
132  * the guest.
133  */
134 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
135                             unsigned int yield_count)
136 {
137         struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
138         int ptid = local_paca->kvm_hstate.ptid;
139         int threads_running;
140         int threads_ceded;
141         int threads_conferring;
142         u64 stop = get_tb() + 10 * tb_ticks_per_usec;
143         int rv = H_SUCCESS; /* => don't yield */
144
145         set_bit(ptid, &vc->conferring_threads);
146         while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
147                 threads_running = VCORE_ENTRY_MAP(vc);
148                 threads_ceded = vc->napping_threads;
149                 threads_conferring = vc->conferring_threads;
150                 if ((threads_ceded | threads_conferring) == threads_running) {
151                         rv = H_TOO_HARD; /* => do yield */
152                         break;
153                 }
154         }
155         clear_bit(ptid, &vc->conferring_threads);
156         return rv;
157 }
158
159 /*
160  * When running HV mode KVM we need to block certain operations while KVM VMs
161  * exist in the system. We use a counter of VMs to track this.
162  *
163  * One of the operations we need to block is onlining of secondaries, so we
164  * protect hv_vm_count with get/put_online_cpus().
165  */
166 static atomic_t hv_vm_count;
167
168 void kvm_hv_vm_activated(void)
169 {
170         get_online_cpus();
171         atomic_inc(&hv_vm_count);
172         put_online_cpus();
173 }
174 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
175
176 void kvm_hv_vm_deactivated(void)
177 {
178         get_online_cpus();
179         atomic_dec(&hv_vm_count);
180         put_online_cpus();
181 }
182 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
183
184 bool kvm_hv_mode_active(void)
185 {
186         return atomic_read(&hv_vm_count) != 0;
187 }
188
189 extern int hcall_real_table[], hcall_real_table_end[];
190
191 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
192 {
193         cmd /= 4;
194         if (cmd < hcall_real_table_end - hcall_real_table &&
195             hcall_real_table[cmd])
196                 return 1;
197
198         return 0;
199 }
200 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
201
202 int kvmppc_hwrng_present(void)
203 {
204         return powernv_hwrng_present();
205 }
206 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
207
208 long kvmppc_h_random(struct kvm_vcpu *vcpu)
209 {
210         int r;
211
212         /* Only need to do the expensive mfmsr() on radix */
213         if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
214                 r = powernv_get_random_long(&vcpu->arch.gpr[4]);
215         else
216                 r = powernv_get_random_real_mode(&vcpu->arch.gpr[4]);
217         if (r)
218                 return H_SUCCESS;
219
220         return H_HARDWARE;
221 }
222
223 /*
224  * Send an interrupt or message to another CPU.
225  * The caller needs to include any barrier needed to order writes
226  * to memory vs. the IPI/message.
227  */
228 void kvmhv_rm_send_ipi(int cpu)
229 {
230         void __iomem *xics_phys;
231         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
232
233         /* On POWER9 we can use msgsnd for any destination cpu. */
234         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
235                 msg |= get_hard_smp_processor_id(cpu);
236                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
237                 return;
238         }
239
240         /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
241         if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
242             cpu_first_thread_sibling(cpu) ==
243             cpu_first_thread_sibling(raw_smp_processor_id())) {
244                 msg |= cpu_thread_in_core(cpu);
245                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
246                 return;
247         }
248
249         /* We should never reach this */
250         if (WARN_ON_ONCE(xive_enabled()))
251             return;
252
253         /* Else poke the target with an IPI */
254         xics_phys = paca[cpu].kvm_hstate.xics_phys;
255         if (xics_phys)
256                 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
257         else
258                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
259 }
260
261 /*
262  * The following functions are called from the assembly code
263  * in book3s_hv_rmhandlers.S.
264  */
265 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
266 {
267         int cpu = vc->pcpu;
268
269         /* Order setting of exit map vs. msgsnd/IPI */
270         smp_mb();
271         for (; active; active >>= 1, ++cpu)
272                 if (active & 1)
273                         kvmhv_rm_send_ipi(cpu);
274 }
275
276 void kvmhv_commence_exit(int trap)
277 {
278         struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
279         int ptid = local_paca->kvm_hstate.ptid;
280         struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
281         int me, ee, i;
282
283         /* Set our bit in the threads-exiting-guest map in the 0xff00
284            bits of vcore->entry_exit_map */
285         me = 0x100 << ptid;
286         do {
287                 ee = vc->entry_exit_map;
288         } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
289
290         /* Are we the first here? */
291         if ((ee >> 8) != 0)
292                 return;
293
294         /*
295          * Trigger the other threads in this vcore to exit the guest.
296          * If this is a hypervisor decrementer interrupt then they
297          * will be already on their way out of the guest.
298          */
299         if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
300                 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
301
302         /*
303          * If we are doing dynamic micro-threading, interrupt the other
304          * subcores to pull them out of their guests too.
305          */
306         if (!sip)
307                 return;
308
309         for (i = 0; i < MAX_SUBCORES; ++i) {
310                 vc = sip->master_vcs[i];
311                 if (!vc)
312                         break;
313                 do {
314                         ee = vc->entry_exit_map;
315                         /* Already asked to exit? */
316                         if ((ee >> 8) != 0)
317                                 break;
318                 } while (cmpxchg(&vc->entry_exit_map, ee,
319                                  ee | VCORE_EXIT_REQ) != ee);
320                 if ((ee >> 8) == 0)
321                         kvmhv_interrupt_vcore(vc, ee);
322         }
323 }
324
325 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
326 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
327
328 #ifdef CONFIG_KVM_XICS
329 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
330                                          u32 xisr)
331 {
332         int i;
333
334         /*
335          * We access the mapped array here without a lock.  That
336          * is safe because we never reduce the number of entries
337          * in the array and we never change the v_hwirq field of
338          * an entry once it is set.
339          *
340          * We have also carefully ordered the stores in the writer
341          * and the loads here in the reader, so that if we find a matching
342          * hwirq here, the associated GSI and irq_desc fields are valid.
343          */
344         for (i = 0; i < pimap->n_mapped; i++)  {
345                 if (xisr == pimap->mapped[i].r_hwirq) {
346                         /*
347                          * Order subsequent reads in the caller to serialize
348                          * with the writer.
349                          */
350                         smp_rmb();
351                         return &pimap->mapped[i];
352                 }
353         }
354         return NULL;
355 }
356
357 /*
358  * If we have an interrupt that's not an IPI, check if we have a
359  * passthrough adapter and if so, check if this external interrupt
360  * is for the adapter.
361  * We will attempt to deliver the IRQ directly to the target VCPU's
362  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
363  *
364  * If the delivery fails or if this is not for a passthrough adapter,
365  * return to the host to handle this interrupt. We earlier
366  * saved a copy of the XIRR in the PACA, it will be picked up by
367  * the host ICP driver.
368  */
369 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
370 {
371         struct kvmppc_passthru_irqmap *pimap;
372         struct kvmppc_irq_map *irq_map;
373         struct kvm_vcpu *vcpu;
374
375         vcpu = local_paca->kvm_hstate.kvm_vcpu;
376         if (!vcpu)
377                 return 1;
378         pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
379         if (!pimap)
380                 return 1;
381         irq_map = get_irqmap(pimap, xisr);
382         if (!irq_map)
383                 return 1;
384
385         /* We're handling this interrupt, generic code doesn't need to */
386         local_paca->kvm_hstate.saved_xirr = 0;
387
388         return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
389 }
390
391 #else
392 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
393 {
394         return 1;
395 }
396 #endif
397
398 /*
399  * Determine what sort of external interrupt is pending (if any).
400  * Returns:
401  *      0 if no interrupt is pending
402  *      1 if an interrupt is pending that needs to be handled by the host
403  *      2 Passthrough that needs completion in the host
404  *      -1 if there was a guest wakeup IPI (which has now been cleared)
405  *      -2 if there is PCI passthrough external interrupt that was handled
406  */
407 static long kvmppc_read_one_intr(bool *again);
408
409 long kvmppc_read_intr(void)
410 {
411         long ret = 0;
412         long rc;
413         bool again;
414
415         if (xive_enabled())
416                 return 1;
417
418         do {
419                 again = false;
420                 rc = kvmppc_read_one_intr(&again);
421                 if (rc && (ret == 0 || rc > ret))
422                         ret = rc;
423         } while (again);
424         return ret;
425 }
426
427 static long kvmppc_read_one_intr(bool *again)
428 {
429         void __iomem *xics_phys;
430         u32 h_xirr;
431         __be32 xirr;
432         u32 xisr;
433         u8 host_ipi;
434         int64_t rc;
435
436         if (xive_enabled())
437                 return 1;
438
439         /* see if a host IPI is pending */
440         host_ipi = local_paca->kvm_hstate.host_ipi;
441         if (host_ipi)
442                 return 1;
443
444         /* Now read the interrupt from the ICP */
445         xics_phys = local_paca->kvm_hstate.xics_phys;
446         rc = 0;
447         if (!xics_phys)
448                 rc = opal_int_get_xirr(&xirr, false);
449         else
450                 xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
451         if (rc < 0)
452                 return 1;
453
454         /*
455          * Save XIRR for later. Since we get control in reverse endian
456          * on LE systems, save it byte reversed and fetch it back in
457          * host endian. Note that xirr is the value read from the
458          * XIRR register, while h_xirr is the host endian version.
459          */
460         h_xirr = be32_to_cpu(xirr);
461         local_paca->kvm_hstate.saved_xirr = h_xirr;
462         xisr = h_xirr & 0xffffff;
463         /*
464          * Ensure that the store/load complete to guarantee all side
465          * effects of loading from XIRR has completed
466          */
467         smp_mb();
468
469         /* if nothing pending in the ICP */
470         if (!xisr)
471                 return 0;
472
473         /* We found something in the ICP...
474          *
475          * If it is an IPI, clear the MFRR and EOI it.
476          */
477         if (xisr == XICS_IPI) {
478                 rc = 0;
479                 if (xics_phys) {
480                         __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
481                         __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
482                 } else {
483                         opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
484                         rc = opal_int_eoi(h_xirr);
485                 }
486                 /* If rc > 0, there is another interrupt pending */
487                 *again = rc > 0;
488
489                 /*
490                  * Need to ensure side effects of above stores
491                  * complete before proceeding.
492                  */
493                 smp_mb();
494
495                 /*
496                  * We need to re-check host IPI now in case it got set in the
497                  * meantime. If it's clear, we bounce the interrupt to the
498                  * guest
499                  */
500                 host_ipi = local_paca->kvm_hstate.host_ipi;
501                 if (unlikely(host_ipi != 0)) {
502                         /* We raced with the host,
503                          * we need to resend that IPI, bummer
504                          */
505                         if (xics_phys)
506                                 __raw_rm_writeb(IPI_PRIORITY,
507                                                 xics_phys + XICS_MFRR);
508                         else
509                                 opal_int_set_mfrr(hard_smp_processor_id(),
510                                                   IPI_PRIORITY);
511                         /* Let side effects complete */
512                         smp_mb();
513                         return 1;
514                 }
515
516                 /* OK, it's an IPI for us */
517                 local_paca->kvm_hstate.saved_xirr = 0;
518                 return -1;
519         }
520
521         return kvmppc_check_passthru(xisr, xirr, again);
522 }
523
524 #ifdef CONFIG_KVM_XICS
525 static inline bool is_rm(void)
526 {
527         return !(mfmsr() & MSR_DR);
528 }
529
530 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
531 {
532         if (xive_enabled()) {
533                 if (is_rm())
534                         return xive_rm_h_xirr(vcpu);
535                 if (unlikely(!__xive_vm_h_xirr))
536                         return H_NOT_AVAILABLE;
537                 return __xive_vm_h_xirr(vcpu);
538         } else
539                 return xics_rm_h_xirr(vcpu);
540 }
541
542 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
543 {
544         vcpu->arch.gpr[5] = get_tb();
545         if (xive_enabled()) {
546                 if (is_rm())
547                         return xive_rm_h_xirr(vcpu);
548                 if (unlikely(!__xive_vm_h_xirr))
549                         return H_NOT_AVAILABLE;
550                 return __xive_vm_h_xirr(vcpu);
551         } else
552                 return xics_rm_h_xirr(vcpu);
553 }
554
555 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
556 {
557         if (xive_enabled()) {
558                 if (is_rm())
559                         return xive_rm_h_ipoll(vcpu, server);
560                 if (unlikely(!__xive_vm_h_ipoll))
561                         return H_NOT_AVAILABLE;
562                 return __xive_vm_h_ipoll(vcpu, server);
563         } else
564                 return H_TOO_HARD;
565 }
566
567 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
568                     unsigned long mfrr)
569 {
570         if (xive_enabled()) {
571                 if (is_rm())
572                         return xive_rm_h_ipi(vcpu, server, mfrr);
573                 if (unlikely(!__xive_vm_h_ipi))
574                         return H_NOT_AVAILABLE;
575                 return __xive_vm_h_ipi(vcpu, server, mfrr);
576         } else
577                 return xics_rm_h_ipi(vcpu, server, mfrr);
578 }
579
580 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
581 {
582         if (xive_enabled()) {
583                 if (is_rm())
584                         return xive_rm_h_cppr(vcpu, cppr);
585                 if (unlikely(!__xive_vm_h_cppr))
586                         return H_NOT_AVAILABLE;
587                 return __xive_vm_h_cppr(vcpu, cppr);
588         } else
589                 return xics_rm_h_cppr(vcpu, cppr);
590 }
591
592 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
593 {
594         if (xive_enabled()) {
595                 if (is_rm())
596                         return xive_rm_h_eoi(vcpu, xirr);
597                 if (unlikely(!__xive_vm_h_eoi))
598                         return H_NOT_AVAILABLE;
599                 return __xive_vm_h_eoi(vcpu, xirr);
600         } else
601                 return xics_rm_h_eoi(vcpu, xirr);
602 }
603 #endif /* CONFIG_KVM_XICS */