Merge tag 'linux-kselftest-4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/archrandom.h>
54 #include <asm/debug.h>
55 #include <asm/disassemble.h>
56 #include <asm/cputable.h>
57 #include <asm/cacheflush.h>
58 #include <linux/uaccess.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77
78 #include "book3s.h"
79
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
91
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL  (~(u64)0)
94
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114         .set = param_set_int,
115         .get = param_get_int,
116 };
117
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132         return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137
138 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_2THREAD,
159         RWMR_RPA_P8_3THREAD,
160         RWMR_RPA_P8_4THREAD,
161         RWMR_RPA_P8_5THREAD,
162         RWMR_RPA_P8_6THREAD,
163         RWMR_RPA_P8_7THREAD,
164         RWMR_RPA_P8_8THREAD,
165 };
166
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168                 int *ip)
169 {
170         int i = *ip;
171         struct kvm_vcpu *vcpu;
172
173         while (++i < MAX_SMT_THREADS) {
174                 vcpu = READ_ONCE(vc->runnable_threads[i]);
175                 if (vcpu) {
176                         *ip = i;
177                         return vcpu;
178                 }
179         }
180         return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192         if (kvmhv_on_pseries())
193                 return false;
194
195         /* On POWER9 we can use msgsnd to IPI any cpu */
196         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197                 msg |= get_hard_smp_processor_id(cpu);
198                 smp_mb();
199                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200                 return true;
201         }
202
203         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205                 preempt_disable();
206                 if (cpu_first_thread_sibling(cpu) ==
207                     cpu_first_thread_sibling(smp_processor_id())) {
208                         msg |= cpu_thread_in_core(cpu);
209                         smp_mb();
210                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                         preempt_enable();
212                         return true;
213                 }
214                 preempt_enable();
215         }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218         if (cpu >= 0 && cpu < nr_cpu_ids) {
219                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220                         xics_wake_cpu(cpu);
221                         return true;
222                 }
223                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224                 return true;
225         }
226 #endif
227
228         return false;
229 }
230
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233         int cpu;
234         struct swait_queue_head *wqp;
235
236         wqp = kvm_arch_vcpu_wq(vcpu);
237         if (swq_has_sleeper(wqp)) {
238                 swake_up_one(wqp);
239                 ++vcpu->stat.halt_wakeup;
240         }
241
242         cpu = READ_ONCE(vcpu->arch.thread_cpu);
243         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244                 return;
245
246         /* CPU points to the first thread of the core */
247         cpu = vcpu->cpu;
248         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249                 smp_send_reschedule(cpu);
250 }
251
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287         unsigned long flags;
288
289         spin_lock_irqsave(&vc->stoltb_lock, flags);
290         vc->preempt_tb = mftb();
291         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296         unsigned long flags;
297
298         spin_lock_irqsave(&vc->stoltb_lock, flags);
299         if (vc->preempt_tb != TB_NIL) {
300                 vc->stolen_tb += mftb() - vc->preempt_tb;
301                 vc->preempt_tb = TB_NIL;
302         }
303         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308         struct kvmppc_vcore *vc = vcpu->arch.vcore;
309         unsigned long flags;
310
311         /*
312          * We can test vc->runner without taking the vcore lock,
313          * because only this task ever sets vc->runner to this
314          * vcpu, and once it is set to this vcpu, only this task
315          * ever sets it to NULL.
316          */
317         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318                 kvmppc_core_end_stolen(vc);
319
320         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322             vcpu->arch.busy_preempt != TB_NIL) {
323                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324                 vcpu->arch.busy_preempt = TB_NIL;
325         }
326         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331         struct kvmppc_vcore *vc = vcpu->arch.vcore;
332         unsigned long flags;
333
334         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335                 kvmppc_core_start_stolen(vc);
336
337         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339                 vcpu->arch.busy_preempt = mftb();
340         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342
343 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
344 {
345         /*
346          * Check for illegal transactional state bit combination
347          * and if we find it, force the TS field to a safe state.
348          */
349         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
350                 msr &= ~MSR_TS_MASK;
351         vcpu->arch.shregs.msr = msr;
352         kvmppc_end_cede(vcpu);
353 }
354
355 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
356 {
357         vcpu->arch.pvr = pvr;
358 }
359
360 /* Dummy value used in computing PCR value below */
361 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
362
363 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
364 {
365         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
366         struct kvmppc_vcore *vc = vcpu->arch.vcore;
367
368         /* We can (emulate) our own architecture version and anything older */
369         if (cpu_has_feature(CPU_FTR_ARCH_300))
370                 host_pcr_bit = PCR_ARCH_300;
371         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
372                 host_pcr_bit = PCR_ARCH_207;
373         else if (cpu_has_feature(CPU_FTR_ARCH_206))
374                 host_pcr_bit = PCR_ARCH_206;
375         else
376                 host_pcr_bit = PCR_ARCH_205;
377
378         /* Determine lowest PCR bit needed to run guest in given PVR level */
379         guest_pcr_bit = host_pcr_bit;
380         if (arch_compat) {
381                 switch (arch_compat) {
382                 case PVR_ARCH_205:
383                         guest_pcr_bit = PCR_ARCH_205;
384                         break;
385                 case PVR_ARCH_206:
386                 case PVR_ARCH_206p:
387                         guest_pcr_bit = PCR_ARCH_206;
388                         break;
389                 case PVR_ARCH_207:
390                         guest_pcr_bit = PCR_ARCH_207;
391                         break;
392                 case PVR_ARCH_300:
393                         guest_pcr_bit = PCR_ARCH_300;
394                         break;
395                 default:
396                         return -EINVAL;
397                 }
398         }
399
400         /* Check requested PCR bits don't exceed our capabilities */
401         if (guest_pcr_bit > host_pcr_bit)
402                 return -EINVAL;
403
404         spin_lock(&vc->lock);
405         vc->arch_compat = arch_compat;
406         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
407         vc->pcr = host_pcr_bit - guest_pcr_bit;
408         spin_unlock(&vc->lock);
409
410         return 0;
411 }
412
413 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
414 {
415         int r;
416
417         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
418         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
419                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
420         for (r = 0; r < 16; ++r)
421                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
422                        r, kvmppc_get_gpr(vcpu, r),
423                        r+16, kvmppc_get_gpr(vcpu, r+16));
424         pr_err("ctr = %.16lx  lr  = %.16lx\n",
425                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
426         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
427                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
428         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
429                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
430         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
431                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
432         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
433                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
434         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
435         pr_err("fault dar = %.16lx dsisr = %.8x\n",
436                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
437         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
438         for (r = 0; r < vcpu->arch.slb_max; ++r)
439                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
440                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
441         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
442                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
443                vcpu->arch.last_inst);
444 }
445
446 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
447 {
448         struct kvm_vcpu *ret;
449
450         mutex_lock(&kvm->lock);
451         ret = kvm_get_vcpu_by_id(kvm, id);
452         mutex_unlock(&kvm->lock);
453         return ret;
454 }
455
456 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
457 {
458         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
459         vpa->yield_count = cpu_to_be32(1);
460 }
461
462 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
463                    unsigned long addr, unsigned long len)
464 {
465         /* check address is cacheline aligned */
466         if (addr & (L1_CACHE_BYTES - 1))
467                 return -EINVAL;
468         spin_lock(&vcpu->arch.vpa_update_lock);
469         if (v->next_gpa != addr || v->len != len) {
470                 v->next_gpa = addr;
471                 v->len = addr ? len : 0;
472                 v->update_pending = 1;
473         }
474         spin_unlock(&vcpu->arch.vpa_update_lock);
475         return 0;
476 }
477
478 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
479 struct reg_vpa {
480         u32 dummy;
481         union {
482                 __be16 hword;
483                 __be32 word;
484         } length;
485 };
486
487 static int vpa_is_registered(struct kvmppc_vpa *vpap)
488 {
489         if (vpap->update_pending)
490                 return vpap->next_gpa != 0;
491         return vpap->pinned_addr != NULL;
492 }
493
494 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
495                                        unsigned long flags,
496                                        unsigned long vcpuid, unsigned long vpa)
497 {
498         struct kvm *kvm = vcpu->kvm;
499         unsigned long len, nb;
500         void *va;
501         struct kvm_vcpu *tvcpu;
502         int err;
503         int subfunc;
504         struct kvmppc_vpa *vpap;
505
506         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
507         if (!tvcpu)
508                 return H_PARAMETER;
509
510         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
511         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
512             subfunc == H_VPA_REG_SLB) {
513                 /* Registering new area - address must be cache-line aligned */
514                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
515                         return H_PARAMETER;
516
517                 /* convert logical addr to kernel addr and read length */
518                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
519                 if (va == NULL)
520                         return H_PARAMETER;
521                 if (subfunc == H_VPA_REG_VPA)
522                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
523                 else
524                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
525                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
526
527                 /* Check length */
528                 if (len > nb || len < sizeof(struct reg_vpa))
529                         return H_PARAMETER;
530         } else {
531                 vpa = 0;
532                 len = 0;
533         }
534
535         err = H_PARAMETER;
536         vpap = NULL;
537         spin_lock(&tvcpu->arch.vpa_update_lock);
538
539         switch (subfunc) {
540         case H_VPA_REG_VPA:             /* register VPA */
541                 /*
542                  * The size of our lppaca is 1kB because of the way we align
543                  * it for the guest to avoid crossing a 4kB boundary. We only
544                  * use 640 bytes of the structure though, so we should accept
545                  * clients that set a size of 640.
546                  */
547                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
548                 if (len < sizeof(struct lppaca))
549                         break;
550                 vpap = &tvcpu->arch.vpa;
551                 err = 0;
552                 break;
553
554         case H_VPA_REG_DTL:             /* register DTL */
555                 if (len < sizeof(struct dtl_entry))
556                         break;
557                 len -= len % sizeof(struct dtl_entry);
558
559                 /* Check that they have previously registered a VPA */
560                 err = H_RESOURCE;
561                 if (!vpa_is_registered(&tvcpu->arch.vpa))
562                         break;
563
564                 vpap = &tvcpu->arch.dtl;
565                 err = 0;
566                 break;
567
568         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
569                 /* Check that they have previously registered a VPA */
570                 err = H_RESOURCE;
571                 if (!vpa_is_registered(&tvcpu->arch.vpa))
572                         break;
573
574                 vpap = &tvcpu->arch.slb_shadow;
575                 err = 0;
576                 break;
577
578         case H_VPA_DEREG_VPA:           /* deregister VPA */
579                 /* Check they don't still have a DTL or SLB buf registered */
580                 err = H_RESOURCE;
581                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
582                     vpa_is_registered(&tvcpu->arch.slb_shadow))
583                         break;
584
585                 vpap = &tvcpu->arch.vpa;
586                 err = 0;
587                 break;
588
589         case H_VPA_DEREG_DTL:           /* deregister DTL */
590                 vpap = &tvcpu->arch.dtl;
591                 err = 0;
592                 break;
593
594         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
595                 vpap = &tvcpu->arch.slb_shadow;
596                 err = 0;
597                 break;
598         }
599
600         if (vpap) {
601                 vpap->next_gpa = vpa;
602                 vpap->len = len;
603                 vpap->update_pending = 1;
604         }
605
606         spin_unlock(&tvcpu->arch.vpa_update_lock);
607
608         return err;
609 }
610
611 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
612 {
613         struct kvm *kvm = vcpu->kvm;
614         void *va;
615         unsigned long nb;
616         unsigned long gpa;
617
618         /*
619          * We need to pin the page pointed to by vpap->next_gpa,
620          * but we can't call kvmppc_pin_guest_page under the lock
621          * as it does get_user_pages() and down_read().  So we
622          * have to drop the lock, pin the page, then get the lock
623          * again and check that a new area didn't get registered
624          * in the meantime.
625          */
626         for (;;) {
627                 gpa = vpap->next_gpa;
628                 spin_unlock(&vcpu->arch.vpa_update_lock);
629                 va = NULL;
630                 nb = 0;
631                 if (gpa)
632                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
633                 spin_lock(&vcpu->arch.vpa_update_lock);
634                 if (gpa == vpap->next_gpa)
635                         break;
636                 /* sigh... unpin that one and try again */
637                 if (va)
638                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
639         }
640
641         vpap->update_pending = 0;
642         if (va && nb < vpap->len) {
643                 /*
644                  * If it's now too short, it must be that userspace
645                  * has changed the mappings underlying guest memory,
646                  * so unregister the region.
647                  */
648                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
649                 va = NULL;
650         }
651         if (vpap->pinned_addr)
652                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
653                                         vpap->dirty);
654         vpap->gpa = gpa;
655         vpap->pinned_addr = va;
656         vpap->dirty = false;
657         if (va)
658                 vpap->pinned_end = va + vpap->len;
659 }
660
661 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
662 {
663         if (!(vcpu->arch.vpa.update_pending ||
664               vcpu->arch.slb_shadow.update_pending ||
665               vcpu->arch.dtl.update_pending))
666                 return;
667
668         spin_lock(&vcpu->arch.vpa_update_lock);
669         if (vcpu->arch.vpa.update_pending) {
670                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
671                 if (vcpu->arch.vpa.pinned_addr)
672                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
673         }
674         if (vcpu->arch.dtl.update_pending) {
675                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
676                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
677                 vcpu->arch.dtl_index = 0;
678         }
679         if (vcpu->arch.slb_shadow.update_pending)
680                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
681         spin_unlock(&vcpu->arch.vpa_update_lock);
682 }
683
684 /*
685  * Return the accumulated stolen time for the vcore up until `now'.
686  * The caller should hold the vcore lock.
687  */
688 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
689 {
690         u64 p;
691         unsigned long flags;
692
693         spin_lock_irqsave(&vc->stoltb_lock, flags);
694         p = vc->stolen_tb;
695         if (vc->vcore_state != VCORE_INACTIVE &&
696             vc->preempt_tb != TB_NIL)
697                 p += now - vc->preempt_tb;
698         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
699         return p;
700 }
701
702 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
703                                     struct kvmppc_vcore *vc)
704 {
705         struct dtl_entry *dt;
706         struct lppaca *vpa;
707         unsigned long stolen;
708         unsigned long core_stolen;
709         u64 now;
710         unsigned long flags;
711
712         dt = vcpu->arch.dtl_ptr;
713         vpa = vcpu->arch.vpa.pinned_addr;
714         now = mftb();
715         core_stolen = vcore_stolen_time(vc, now);
716         stolen = core_stolen - vcpu->arch.stolen_logged;
717         vcpu->arch.stolen_logged = core_stolen;
718         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
719         stolen += vcpu->arch.busy_stolen;
720         vcpu->arch.busy_stolen = 0;
721         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
722         if (!dt || !vpa)
723                 return;
724         memset(dt, 0, sizeof(struct dtl_entry));
725         dt->dispatch_reason = 7;
726         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
727         dt->timebase = cpu_to_be64(now + vc->tb_offset);
728         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
729         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
730         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
731         ++dt;
732         if (dt == vcpu->arch.dtl.pinned_end)
733                 dt = vcpu->arch.dtl.pinned_addr;
734         vcpu->arch.dtl_ptr = dt;
735         /* order writing *dt vs. writing vpa->dtl_idx */
736         smp_wmb();
737         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
738         vcpu->arch.dtl.dirty = true;
739 }
740
741 /* See if there is a doorbell interrupt pending for a vcpu */
742 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
743 {
744         int thr;
745         struct kvmppc_vcore *vc;
746
747         if (vcpu->arch.doorbell_request)
748                 return true;
749         /*
750          * Ensure that the read of vcore->dpdes comes after the read
751          * of vcpu->doorbell_request.  This barrier matches the
752          * smb_wmb() in kvmppc_guest_entry_inject().
753          */
754         smp_rmb();
755         vc = vcpu->arch.vcore;
756         thr = vcpu->vcpu_id - vc->first_vcpuid;
757         return !!(vc->dpdes & (1 << thr));
758 }
759
760 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
761 {
762         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
763                 return true;
764         if ((!vcpu->arch.vcore->arch_compat) &&
765             cpu_has_feature(CPU_FTR_ARCH_207S))
766                 return true;
767         return false;
768 }
769
770 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
771                              unsigned long resource, unsigned long value1,
772                              unsigned long value2)
773 {
774         switch (resource) {
775         case H_SET_MODE_RESOURCE_SET_CIABR:
776                 if (!kvmppc_power8_compatible(vcpu))
777                         return H_P2;
778                 if (value2)
779                         return H_P4;
780                 if (mflags)
781                         return H_UNSUPPORTED_FLAG_START;
782                 /* Guests can't breakpoint the hypervisor */
783                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
784                         return H_P3;
785                 vcpu->arch.ciabr  = value1;
786                 return H_SUCCESS;
787         case H_SET_MODE_RESOURCE_SET_DAWR:
788                 if (!kvmppc_power8_compatible(vcpu))
789                         return H_P2;
790                 if (!ppc_breakpoint_available())
791                         return H_P2;
792                 if (mflags)
793                         return H_UNSUPPORTED_FLAG_START;
794                 if (value2 & DABRX_HYP)
795                         return H_P4;
796                 vcpu->arch.dawr  = value1;
797                 vcpu->arch.dawrx = value2;
798                 return H_SUCCESS;
799         default:
800                 return H_TOO_HARD;
801         }
802 }
803
804 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
805 {
806         struct kvmppc_vcore *vcore = target->arch.vcore;
807
808         /*
809          * We expect to have been called by the real mode handler
810          * (kvmppc_rm_h_confer()) which would have directly returned
811          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
812          * have useful work to do and should not confer) so we don't
813          * recheck that here.
814          */
815
816         spin_lock(&vcore->lock);
817         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
818             vcore->vcore_state != VCORE_INACTIVE &&
819             vcore->runner)
820                 target = vcore->runner;
821         spin_unlock(&vcore->lock);
822
823         return kvm_vcpu_yield_to(target);
824 }
825
826 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
827 {
828         int yield_count = 0;
829         struct lppaca *lppaca;
830
831         spin_lock(&vcpu->arch.vpa_update_lock);
832         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
833         if (lppaca)
834                 yield_count = be32_to_cpu(lppaca->yield_count);
835         spin_unlock(&vcpu->arch.vpa_update_lock);
836         return yield_count;
837 }
838
839 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
840 {
841         unsigned long req = kvmppc_get_gpr(vcpu, 3);
842         unsigned long target, ret = H_SUCCESS;
843         int yield_count;
844         struct kvm_vcpu *tvcpu;
845         int idx, rc;
846
847         if (req <= MAX_HCALL_OPCODE &&
848             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
849                 return RESUME_HOST;
850
851         switch (req) {
852         case H_CEDE:
853                 break;
854         case H_PROD:
855                 target = kvmppc_get_gpr(vcpu, 4);
856                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
857                 if (!tvcpu) {
858                         ret = H_PARAMETER;
859                         break;
860                 }
861                 tvcpu->arch.prodded = 1;
862                 smp_mb();
863                 if (tvcpu->arch.ceded)
864                         kvmppc_fast_vcpu_kick_hv(tvcpu);
865                 break;
866         case H_CONFER:
867                 target = kvmppc_get_gpr(vcpu, 4);
868                 if (target == -1)
869                         break;
870                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
871                 if (!tvcpu) {
872                         ret = H_PARAMETER;
873                         break;
874                 }
875                 yield_count = kvmppc_get_gpr(vcpu, 5);
876                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
877                         break;
878                 kvm_arch_vcpu_yield_to(tvcpu);
879                 break;
880         case H_REGISTER_VPA:
881                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
882                                         kvmppc_get_gpr(vcpu, 5),
883                                         kvmppc_get_gpr(vcpu, 6));
884                 break;
885         case H_RTAS:
886                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
887                         return RESUME_HOST;
888
889                 idx = srcu_read_lock(&vcpu->kvm->srcu);
890                 rc = kvmppc_rtas_hcall(vcpu);
891                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
892
893                 if (rc == -ENOENT)
894                         return RESUME_HOST;
895                 else if (rc == 0)
896                         break;
897
898                 /* Send the error out to userspace via KVM_RUN */
899                 return rc;
900         case H_LOGICAL_CI_LOAD:
901                 ret = kvmppc_h_logical_ci_load(vcpu);
902                 if (ret == H_TOO_HARD)
903                         return RESUME_HOST;
904                 break;
905         case H_LOGICAL_CI_STORE:
906                 ret = kvmppc_h_logical_ci_store(vcpu);
907                 if (ret == H_TOO_HARD)
908                         return RESUME_HOST;
909                 break;
910         case H_SET_MODE:
911                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
912                                         kvmppc_get_gpr(vcpu, 5),
913                                         kvmppc_get_gpr(vcpu, 6),
914                                         kvmppc_get_gpr(vcpu, 7));
915                 if (ret == H_TOO_HARD)
916                         return RESUME_HOST;
917                 break;
918         case H_XIRR:
919         case H_CPPR:
920         case H_EOI:
921         case H_IPI:
922         case H_IPOLL:
923         case H_XIRR_X:
924                 if (kvmppc_xics_enabled(vcpu)) {
925                         if (xive_enabled()) {
926                                 ret = H_NOT_AVAILABLE;
927                                 return RESUME_GUEST;
928                         }
929                         ret = kvmppc_xics_hcall(vcpu, req);
930                         break;
931                 }
932                 return RESUME_HOST;
933         case H_SET_DABR:
934                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
935                 break;
936         case H_SET_XDABR:
937                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
938                                                 kvmppc_get_gpr(vcpu, 5));
939                 break;
940         case H_GET_TCE:
941                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
942                                                 kvmppc_get_gpr(vcpu, 5));
943                 if (ret == H_TOO_HARD)
944                         return RESUME_HOST;
945                 break;
946         case H_PUT_TCE:
947                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
948                                                 kvmppc_get_gpr(vcpu, 5),
949                                                 kvmppc_get_gpr(vcpu, 6));
950                 if (ret == H_TOO_HARD)
951                         return RESUME_HOST;
952                 break;
953         case H_PUT_TCE_INDIRECT:
954                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
955                                                 kvmppc_get_gpr(vcpu, 5),
956                                                 kvmppc_get_gpr(vcpu, 6),
957                                                 kvmppc_get_gpr(vcpu, 7));
958                 if (ret == H_TOO_HARD)
959                         return RESUME_HOST;
960                 break;
961         case H_STUFF_TCE:
962                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
963                                                 kvmppc_get_gpr(vcpu, 5),
964                                                 kvmppc_get_gpr(vcpu, 6),
965                                                 kvmppc_get_gpr(vcpu, 7));
966                 if (ret == H_TOO_HARD)
967                         return RESUME_HOST;
968                 break;
969         case H_RANDOM:
970                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
971                         ret = H_HARDWARE;
972                 break;
973
974         case H_SET_PARTITION_TABLE:
975                 ret = H_FUNCTION;
976                 if (nesting_enabled(vcpu->kvm))
977                         ret = kvmhv_set_partition_table(vcpu);
978                 break;
979         case H_ENTER_NESTED:
980                 ret = H_FUNCTION;
981                 if (!nesting_enabled(vcpu->kvm))
982                         break;
983                 ret = kvmhv_enter_nested_guest(vcpu);
984                 if (ret == H_INTERRUPT) {
985                         kvmppc_set_gpr(vcpu, 3, 0);
986                         return -EINTR;
987                 }
988                 break;
989         case H_TLB_INVALIDATE:
990                 ret = H_FUNCTION;
991                 if (nesting_enabled(vcpu->kvm))
992                         ret = kvmhv_do_nested_tlbie(vcpu);
993                 break;
994
995         default:
996                 return RESUME_HOST;
997         }
998         kvmppc_set_gpr(vcpu, 3, ret);
999         vcpu->arch.hcall_needed = 0;
1000         return RESUME_GUEST;
1001 }
1002
1003 /*
1004  * Handle H_CEDE in the nested virtualization case where we haven't
1005  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1006  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1007  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1008  */
1009 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1010 {
1011         vcpu->arch.shregs.msr |= MSR_EE;
1012         vcpu->arch.ceded = 1;
1013         smp_mb();
1014         if (vcpu->arch.prodded) {
1015                 vcpu->arch.prodded = 0;
1016                 smp_mb();
1017                 vcpu->arch.ceded = 0;
1018         }
1019 }
1020
1021 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1022 {
1023         switch (cmd) {
1024         case H_CEDE:
1025         case H_PROD:
1026         case H_CONFER:
1027         case H_REGISTER_VPA:
1028         case H_SET_MODE:
1029         case H_LOGICAL_CI_LOAD:
1030         case H_LOGICAL_CI_STORE:
1031 #ifdef CONFIG_KVM_XICS
1032         case H_XIRR:
1033         case H_CPPR:
1034         case H_EOI:
1035         case H_IPI:
1036         case H_IPOLL:
1037         case H_XIRR_X:
1038 #endif
1039                 return 1;
1040         }
1041
1042         /* See if it's in the real-mode table */
1043         return kvmppc_hcall_impl_hv_realmode(cmd);
1044 }
1045
1046 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1047                                         struct kvm_vcpu *vcpu)
1048 {
1049         u32 last_inst;
1050
1051         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1052                                         EMULATE_DONE) {
1053                 /*
1054                  * Fetch failed, so return to guest and
1055                  * try executing it again.
1056                  */
1057                 return RESUME_GUEST;
1058         }
1059
1060         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1061                 run->exit_reason = KVM_EXIT_DEBUG;
1062                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1063                 return RESUME_HOST;
1064         } else {
1065                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1066                 return RESUME_GUEST;
1067         }
1068 }
1069
1070 static void do_nothing(void *x)
1071 {
1072 }
1073
1074 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1075 {
1076         int thr, cpu, pcpu, nthreads;
1077         struct kvm_vcpu *v;
1078         unsigned long dpdes;
1079
1080         nthreads = vcpu->kvm->arch.emul_smt_mode;
1081         dpdes = 0;
1082         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1083         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1084                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1085                 if (!v)
1086                         continue;
1087                 /*
1088                  * If the vcpu is currently running on a physical cpu thread,
1089                  * interrupt it in order to pull it out of the guest briefly,
1090                  * which will update its vcore->dpdes value.
1091                  */
1092                 pcpu = READ_ONCE(v->cpu);
1093                 if (pcpu >= 0)
1094                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1095                 if (kvmppc_doorbell_pending(v))
1096                         dpdes |= 1 << thr;
1097         }
1098         return dpdes;
1099 }
1100
1101 /*
1102  * On POWER9, emulate doorbell-related instructions in order to
1103  * give the guest the illusion of running on a multi-threaded core.
1104  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1105  * and mfspr DPDES.
1106  */
1107 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1108 {
1109         u32 inst, rb, thr;
1110         unsigned long arg;
1111         struct kvm *kvm = vcpu->kvm;
1112         struct kvm_vcpu *tvcpu;
1113
1114         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1115                 return RESUME_GUEST;
1116         if (get_op(inst) != 31)
1117                 return EMULATE_FAIL;
1118         rb = get_rb(inst);
1119         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1120         switch (get_xop(inst)) {
1121         case OP_31_XOP_MSGSNDP:
1122                 arg = kvmppc_get_gpr(vcpu, rb);
1123                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1124                         break;
1125                 arg &= 0x3f;
1126                 if (arg >= kvm->arch.emul_smt_mode)
1127                         break;
1128                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1129                 if (!tvcpu)
1130                         break;
1131                 if (!tvcpu->arch.doorbell_request) {
1132                         tvcpu->arch.doorbell_request = 1;
1133                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1134                 }
1135                 break;
1136         case OP_31_XOP_MSGCLRP:
1137                 arg = kvmppc_get_gpr(vcpu, rb);
1138                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1139                         break;
1140                 vcpu->arch.vcore->dpdes = 0;
1141                 vcpu->arch.doorbell_request = 0;
1142                 break;
1143         case OP_31_XOP_MFSPR:
1144                 switch (get_sprn(inst)) {
1145                 case SPRN_TIR:
1146                         arg = thr;
1147                         break;
1148                 case SPRN_DPDES:
1149                         arg = kvmppc_read_dpdes(vcpu);
1150                         break;
1151                 default:
1152                         return EMULATE_FAIL;
1153                 }
1154                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1155                 break;
1156         default:
1157                 return EMULATE_FAIL;
1158         }
1159         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1160         return RESUME_GUEST;
1161 }
1162
1163 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1164                                  struct task_struct *tsk)
1165 {
1166         int r = RESUME_HOST;
1167
1168         vcpu->stat.sum_exits++;
1169
1170         /*
1171          * This can happen if an interrupt occurs in the last stages
1172          * of guest entry or the first stages of guest exit (i.e. after
1173          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1174          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1175          * That can happen due to a bug, or due to a machine check
1176          * occurring at just the wrong time.
1177          */
1178         if (vcpu->arch.shregs.msr & MSR_HV) {
1179                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1180                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1181                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1182                         vcpu->arch.shregs.msr);
1183                 kvmppc_dump_regs(vcpu);
1184                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1185                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1186                 return RESUME_HOST;
1187         }
1188         run->exit_reason = KVM_EXIT_UNKNOWN;
1189         run->ready_for_interrupt_injection = 1;
1190         switch (vcpu->arch.trap) {
1191         /* We're good on these - the host merely wanted to get our attention */
1192         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1193                 vcpu->stat.dec_exits++;
1194                 r = RESUME_GUEST;
1195                 break;
1196         case BOOK3S_INTERRUPT_EXTERNAL:
1197         case BOOK3S_INTERRUPT_H_DOORBELL:
1198         case BOOK3S_INTERRUPT_H_VIRT:
1199                 vcpu->stat.ext_intr_exits++;
1200                 r = RESUME_GUEST;
1201                 break;
1202         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1203         case BOOK3S_INTERRUPT_HMI:
1204         case BOOK3S_INTERRUPT_PERFMON:
1205         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1206                 r = RESUME_GUEST;
1207                 break;
1208         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1209                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1210                 run->exit_reason = KVM_EXIT_NMI;
1211                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1212                 /* Clear out the old NMI status from run->flags */
1213                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1214                 /* Now set the NMI status */
1215                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1216                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1217                 else
1218                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1219
1220                 r = RESUME_HOST;
1221                 /* Print the MCE event to host console. */
1222                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1223                 break;
1224         case BOOK3S_INTERRUPT_PROGRAM:
1225         {
1226                 ulong flags;
1227                 /*
1228                  * Normally program interrupts are delivered directly
1229                  * to the guest by the hardware, but we can get here
1230                  * as a result of a hypervisor emulation interrupt
1231                  * (e40) getting turned into a 700 by BML RTAS.
1232                  */
1233                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1234                 kvmppc_core_queue_program(vcpu, flags);
1235                 r = RESUME_GUEST;
1236                 break;
1237         }
1238         case BOOK3S_INTERRUPT_SYSCALL:
1239         {
1240                 /* hcall - punt to userspace */
1241                 int i;
1242
1243                 /* hypercall with MSR_PR has already been handled in rmode,
1244                  * and never reaches here.
1245                  */
1246
1247                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1248                 for (i = 0; i < 9; ++i)
1249                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1250                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1251                 vcpu->arch.hcall_needed = 1;
1252                 r = RESUME_HOST;
1253                 break;
1254         }
1255         /*
1256          * We get these next two if the guest accesses a page which it thinks
1257          * it has mapped but which is not actually present, either because
1258          * it is for an emulated I/O device or because the corresonding
1259          * host page has been paged out.  Any other HDSI/HISI interrupts
1260          * have been handled already.
1261          */
1262         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1263                 r = RESUME_PAGE_FAULT;
1264                 break;
1265         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1266                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1267                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1268                         DSISR_SRR1_MATCH_64S;
1269                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1270                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1271                 r = RESUME_PAGE_FAULT;
1272                 break;
1273         /*
1274          * This occurs if the guest executes an illegal instruction.
1275          * If the guest debug is disabled, generate a program interrupt
1276          * to the guest. If guest debug is enabled, we need to check
1277          * whether the instruction is a software breakpoint instruction.
1278          * Accordingly return to Guest or Host.
1279          */
1280         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1281                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1282                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1283                                 swab32(vcpu->arch.emul_inst) :
1284                                 vcpu->arch.emul_inst;
1285                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1286                         r = kvmppc_emulate_debug_inst(run, vcpu);
1287                 } else {
1288                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1289                         r = RESUME_GUEST;
1290                 }
1291                 break;
1292         /*
1293          * This occurs if the guest (kernel or userspace), does something that
1294          * is prohibited by HFSCR.
1295          * On POWER9, this could be a doorbell instruction that we need
1296          * to emulate.
1297          * Otherwise, we just generate a program interrupt to the guest.
1298          */
1299         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1300                 r = EMULATE_FAIL;
1301                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1302                     cpu_has_feature(CPU_FTR_ARCH_300))
1303                         r = kvmppc_emulate_doorbell_instr(vcpu);
1304                 if (r == EMULATE_FAIL) {
1305                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1306                         r = RESUME_GUEST;
1307                 }
1308                 break;
1309
1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1311         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1312                 /*
1313                  * This occurs for various TM-related instructions that
1314                  * we need to emulate on POWER9 DD2.2.  We have already
1315                  * handled the cases where the guest was in real-suspend
1316                  * mode and was transitioning to transactional state.
1317                  */
1318                 r = kvmhv_p9_tm_emulation(vcpu);
1319                 break;
1320 #endif
1321
1322         case BOOK3S_INTERRUPT_HV_RM_HARD:
1323                 r = RESUME_PASSTHROUGH;
1324                 break;
1325         default:
1326                 kvmppc_dump_regs(vcpu);
1327                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1328                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1329                         vcpu->arch.shregs.msr);
1330                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1331                 r = RESUME_HOST;
1332                 break;
1333         }
1334
1335         return r;
1336 }
1337
1338 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1339 {
1340         int r;
1341         int srcu_idx;
1342
1343         vcpu->stat.sum_exits++;
1344
1345         /*
1346          * This can happen if an interrupt occurs in the last stages
1347          * of guest entry or the first stages of guest exit (i.e. after
1348          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1349          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1350          * That can happen due to a bug, or due to a machine check
1351          * occurring at just the wrong time.
1352          */
1353         if (vcpu->arch.shregs.msr & MSR_HV) {
1354                 pr_emerg("KVM trap in HV mode while nested!\n");
1355                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1356                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1357                          vcpu->arch.shregs.msr);
1358                 kvmppc_dump_regs(vcpu);
1359                 return RESUME_HOST;
1360         }
1361         switch (vcpu->arch.trap) {
1362         /* We're good on these - the host merely wanted to get our attention */
1363         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1364                 vcpu->stat.dec_exits++;
1365                 r = RESUME_GUEST;
1366                 break;
1367         case BOOK3S_INTERRUPT_EXTERNAL:
1368                 vcpu->stat.ext_intr_exits++;
1369                 r = RESUME_HOST;
1370                 break;
1371         case BOOK3S_INTERRUPT_H_DOORBELL:
1372         case BOOK3S_INTERRUPT_H_VIRT:
1373                 vcpu->stat.ext_intr_exits++;
1374                 r = RESUME_GUEST;
1375                 break;
1376         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1377         case BOOK3S_INTERRUPT_HMI:
1378         case BOOK3S_INTERRUPT_PERFMON:
1379         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1380                 r = RESUME_GUEST;
1381                 break;
1382         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1383                 /* Pass the machine check to the L1 guest */
1384                 r = RESUME_HOST;
1385                 /* Print the MCE event to host console. */
1386                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1387                 break;
1388         /*
1389          * We get these next two if the guest accesses a page which it thinks
1390          * it has mapped but which is not actually present, either because
1391          * it is for an emulated I/O device or because the corresonding
1392          * host page has been paged out.
1393          */
1394         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1395                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1396                 r = kvmhv_nested_page_fault(vcpu);
1397                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1398                 break;
1399         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1400                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1401                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1402                                          DSISR_SRR1_MATCH_64S;
1403                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1404                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1405                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1406                 r = kvmhv_nested_page_fault(vcpu);
1407                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1408                 break;
1409
1410 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1411         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1412                 /*
1413                  * This occurs for various TM-related instructions that
1414                  * we need to emulate on POWER9 DD2.2.  We have already
1415                  * handled the cases where the guest was in real-suspend
1416                  * mode and was transitioning to transactional state.
1417                  */
1418                 r = kvmhv_p9_tm_emulation(vcpu);
1419                 break;
1420 #endif
1421
1422         case BOOK3S_INTERRUPT_HV_RM_HARD:
1423                 vcpu->arch.trap = 0;
1424                 r = RESUME_GUEST;
1425                 if (!xive_enabled())
1426                         kvmppc_xics_rm_complete(vcpu, 0);
1427                 break;
1428         default:
1429                 r = RESUME_HOST;
1430                 break;
1431         }
1432
1433         return r;
1434 }
1435
1436 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1437                                             struct kvm_sregs *sregs)
1438 {
1439         int i;
1440
1441         memset(sregs, 0, sizeof(struct kvm_sregs));
1442         sregs->pvr = vcpu->arch.pvr;
1443         for (i = 0; i < vcpu->arch.slb_max; i++) {
1444                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1445                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1446         }
1447
1448         return 0;
1449 }
1450
1451 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1452                                             struct kvm_sregs *sregs)
1453 {
1454         int i, j;
1455
1456         /* Only accept the same PVR as the host's, since we can't spoof it */
1457         if (sregs->pvr != vcpu->arch.pvr)
1458                 return -EINVAL;
1459
1460         j = 0;
1461         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1462                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1463                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1464                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1465                         ++j;
1466                 }
1467         }
1468         vcpu->arch.slb_max = j;
1469
1470         return 0;
1471 }
1472
1473 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1474                 bool preserve_top32)
1475 {
1476         struct kvm *kvm = vcpu->kvm;
1477         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1478         u64 mask;
1479
1480         mutex_lock(&kvm->lock);
1481         spin_lock(&vc->lock);
1482         /*
1483          * If ILE (interrupt little-endian) has changed, update the
1484          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1485          */
1486         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1487                 struct kvm_vcpu *vcpu;
1488                 int i;
1489
1490                 kvm_for_each_vcpu(i, vcpu, kvm) {
1491                         if (vcpu->arch.vcore != vc)
1492                                 continue;
1493                         if (new_lpcr & LPCR_ILE)
1494                                 vcpu->arch.intr_msr |= MSR_LE;
1495                         else
1496                                 vcpu->arch.intr_msr &= ~MSR_LE;
1497                 }
1498         }
1499
1500         /*
1501          * Userspace can only modify DPFD (default prefetch depth),
1502          * ILE (interrupt little-endian) and TC (translation control).
1503          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1504          */
1505         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1506         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1507                 mask |= LPCR_AIL;
1508         /*
1509          * On POWER9, allow userspace to enable large decrementer for the
1510          * guest, whether or not the host has it enabled.
1511          */
1512         if (cpu_has_feature(CPU_FTR_ARCH_300))
1513                 mask |= LPCR_LD;
1514
1515         /* Broken 32-bit version of LPCR must not clear top bits */
1516         if (preserve_top32)
1517                 mask &= 0xFFFFFFFF;
1518         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1519         spin_unlock(&vc->lock);
1520         mutex_unlock(&kvm->lock);
1521 }
1522
1523 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1524                                  union kvmppc_one_reg *val)
1525 {
1526         int r = 0;
1527         long int i;
1528
1529         switch (id) {
1530         case KVM_REG_PPC_DEBUG_INST:
1531                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1532                 break;
1533         case KVM_REG_PPC_HIOR:
1534                 *val = get_reg_val(id, 0);
1535                 break;
1536         case KVM_REG_PPC_DABR:
1537                 *val = get_reg_val(id, vcpu->arch.dabr);
1538                 break;
1539         case KVM_REG_PPC_DABRX:
1540                 *val = get_reg_val(id, vcpu->arch.dabrx);
1541                 break;
1542         case KVM_REG_PPC_DSCR:
1543                 *val = get_reg_val(id, vcpu->arch.dscr);
1544                 break;
1545         case KVM_REG_PPC_PURR:
1546                 *val = get_reg_val(id, vcpu->arch.purr);
1547                 break;
1548         case KVM_REG_PPC_SPURR:
1549                 *val = get_reg_val(id, vcpu->arch.spurr);
1550                 break;
1551         case KVM_REG_PPC_AMR:
1552                 *val = get_reg_val(id, vcpu->arch.amr);
1553                 break;
1554         case KVM_REG_PPC_UAMOR:
1555                 *val = get_reg_val(id, vcpu->arch.uamor);
1556                 break;
1557         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1558                 i = id - KVM_REG_PPC_MMCR0;
1559                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1560                 break;
1561         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1562                 i = id - KVM_REG_PPC_PMC1;
1563                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1564                 break;
1565         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1566                 i = id - KVM_REG_PPC_SPMC1;
1567                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1568                 break;
1569         case KVM_REG_PPC_SIAR:
1570                 *val = get_reg_val(id, vcpu->arch.siar);
1571                 break;
1572         case KVM_REG_PPC_SDAR:
1573                 *val = get_reg_val(id, vcpu->arch.sdar);
1574                 break;
1575         case KVM_REG_PPC_SIER:
1576                 *val = get_reg_val(id, vcpu->arch.sier);
1577                 break;
1578         case KVM_REG_PPC_IAMR:
1579                 *val = get_reg_val(id, vcpu->arch.iamr);
1580                 break;
1581         case KVM_REG_PPC_PSPB:
1582                 *val = get_reg_val(id, vcpu->arch.pspb);
1583                 break;
1584         case KVM_REG_PPC_DPDES:
1585                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1586                 break;
1587         case KVM_REG_PPC_VTB:
1588                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1589                 break;
1590         case KVM_REG_PPC_DAWR:
1591                 *val = get_reg_val(id, vcpu->arch.dawr);
1592                 break;
1593         case KVM_REG_PPC_DAWRX:
1594                 *val = get_reg_val(id, vcpu->arch.dawrx);
1595                 break;
1596         case KVM_REG_PPC_CIABR:
1597                 *val = get_reg_val(id, vcpu->arch.ciabr);
1598                 break;
1599         case KVM_REG_PPC_CSIGR:
1600                 *val = get_reg_val(id, vcpu->arch.csigr);
1601                 break;
1602         case KVM_REG_PPC_TACR:
1603                 *val = get_reg_val(id, vcpu->arch.tacr);
1604                 break;
1605         case KVM_REG_PPC_TCSCR:
1606                 *val = get_reg_val(id, vcpu->arch.tcscr);
1607                 break;
1608         case KVM_REG_PPC_PID:
1609                 *val = get_reg_val(id, vcpu->arch.pid);
1610                 break;
1611         case KVM_REG_PPC_ACOP:
1612                 *val = get_reg_val(id, vcpu->arch.acop);
1613                 break;
1614         case KVM_REG_PPC_WORT:
1615                 *val = get_reg_val(id, vcpu->arch.wort);
1616                 break;
1617         case KVM_REG_PPC_TIDR:
1618                 *val = get_reg_val(id, vcpu->arch.tid);
1619                 break;
1620         case KVM_REG_PPC_PSSCR:
1621                 *val = get_reg_val(id, vcpu->arch.psscr);
1622                 break;
1623         case KVM_REG_PPC_VPA_ADDR:
1624                 spin_lock(&vcpu->arch.vpa_update_lock);
1625                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1626                 spin_unlock(&vcpu->arch.vpa_update_lock);
1627                 break;
1628         case KVM_REG_PPC_VPA_SLB:
1629                 spin_lock(&vcpu->arch.vpa_update_lock);
1630                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1631                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1632                 spin_unlock(&vcpu->arch.vpa_update_lock);
1633                 break;
1634         case KVM_REG_PPC_VPA_DTL:
1635                 spin_lock(&vcpu->arch.vpa_update_lock);
1636                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1637                 val->vpaval.length = vcpu->arch.dtl.len;
1638                 spin_unlock(&vcpu->arch.vpa_update_lock);
1639                 break;
1640         case KVM_REG_PPC_TB_OFFSET:
1641                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1642                 break;
1643         case KVM_REG_PPC_LPCR:
1644         case KVM_REG_PPC_LPCR_64:
1645                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1646                 break;
1647         case KVM_REG_PPC_PPR:
1648                 *val = get_reg_val(id, vcpu->arch.ppr);
1649                 break;
1650 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1651         case KVM_REG_PPC_TFHAR:
1652                 *val = get_reg_val(id, vcpu->arch.tfhar);
1653                 break;
1654         case KVM_REG_PPC_TFIAR:
1655                 *val = get_reg_val(id, vcpu->arch.tfiar);
1656                 break;
1657         case KVM_REG_PPC_TEXASR:
1658                 *val = get_reg_val(id, vcpu->arch.texasr);
1659                 break;
1660         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1661                 i = id - KVM_REG_PPC_TM_GPR0;
1662                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1663                 break;
1664         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1665         {
1666                 int j;
1667                 i = id - KVM_REG_PPC_TM_VSR0;
1668                 if (i < 32)
1669                         for (j = 0; j < TS_FPRWIDTH; j++)
1670                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1671                 else {
1672                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1673                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1674                         else
1675                                 r = -ENXIO;
1676                 }
1677                 break;
1678         }
1679         case KVM_REG_PPC_TM_CR:
1680                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1681                 break;
1682         case KVM_REG_PPC_TM_XER:
1683                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1684                 break;
1685         case KVM_REG_PPC_TM_LR:
1686                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1687                 break;
1688         case KVM_REG_PPC_TM_CTR:
1689                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1690                 break;
1691         case KVM_REG_PPC_TM_FPSCR:
1692                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1693                 break;
1694         case KVM_REG_PPC_TM_AMR:
1695                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1696                 break;
1697         case KVM_REG_PPC_TM_PPR:
1698                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1699                 break;
1700         case KVM_REG_PPC_TM_VRSAVE:
1701                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1702                 break;
1703         case KVM_REG_PPC_TM_VSCR:
1704                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1705                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1706                 else
1707                         r = -ENXIO;
1708                 break;
1709         case KVM_REG_PPC_TM_DSCR:
1710                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1711                 break;
1712         case KVM_REG_PPC_TM_TAR:
1713                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1714                 break;
1715 #endif
1716         case KVM_REG_PPC_ARCH_COMPAT:
1717                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1718                 break;
1719         case KVM_REG_PPC_DEC_EXPIRY:
1720                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1721                                    vcpu->arch.vcore->tb_offset);
1722                 break;
1723         case KVM_REG_PPC_ONLINE:
1724                 *val = get_reg_val(id, vcpu->arch.online);
1725                 break;
1726         case KVM_REG_PPC_PTCR:
1727                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1728                 break;
1729         default:
1730                 r = -EINVAL;
1731                 break;
1732         }
1733
1734         return r;
1735 }
1736
1737 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1738                                  union kvmppc_one_reg *val)
1739 {
1740         int r = 0;
1741         long int i;
1742         unsigned long addr, len;
1743
1744         switch (id) {
1745         case KVM_REG_PPC_HIOR:
1746                 /* Only allow this to be set to zero */
1747                 if (set_reg_val(id, *val))
1748                         r = -EINVAL;
1749                 break;
1750         case KVM_REG_PPC_DABR:
1751                 vcpu->arch.dabr = set_reg_val(id, *val);
1752                 break;
1753         case KVM_REG_PPC_DABRX:
1754                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1755                 break;
1756         case KVM_REG_PPC_DSCR:
1757                 vcpu->arch.dscr = set_reg_val(id, *val);
1758                 break;
1759         case KVM_REG_PPC_PURR:
1760                 vcpu->arch.purr = set_reg_val(id, *val);
1761                 break;
1762         case KVM_REG_PPC_SPURR:
1763                 vcpu->arch.spurr = set_reg_val(id, *val);
1764                 break;
1765         case KVM_REG_PPC_AMR:
1766                 vcpu->arch.amr = set_reg_val(id, *val);
1767                 break;
1768         case KVM_REG_PPC_UAMOR:
1769                 vcpu->arch.uamor = set_reg_val(id, *val);
1770                 break;
1771         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1772                 i = id - KVM_REG_PPC_MMCR0;
1773                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1774                 break;
1775         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1776                 i = id - KVM_REG_PPC_PMC1;
1777                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1778                 break;
1779         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1780                 i = id - KVM_REG_PPC_SPMC1;
1781                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1782                 break;
1783         case KVM_REG_PPC_SIAR:
1784                 vcpu->arch.siar = set_reg_val(id, *val);
1785                 break;
1786         case KVM_REG_PPC_SDAR:
1787                 vcpu->arch.sdar = set_reg_val(id, *val);
1788                 break;
1789         case KVM_REG_PPC_SIER:
1790                 vcpu->arch.sier = set_reg_val(id, *val);
1791                 break;
1792         case KVM_REG_PPC_IAMR:
1793                 vcpu->arch.iamr = set_reg_val(id, *val);
1794                 break;
1795         case KVM_REG_PPC_PSPB:
1796                 vcpu->arch.pspb = set_reg_val(id, *val);
1797                 break;
1798         case KVM_REG_PPC_DPDES:
1799                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1800                 break;
1801         case KVM_REG_PPC_VTB:
1802                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1803                 break;
1804         case KVM_REG_PPC_DAWR:
1805                 vcpu->arch.dawr = set_reg_val(id, *val);
1806                 break;
1807         case KVM_REG_PPC_DAWRX:
1808                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1809                 break;
1810         case KVM_REG_PPC_CIABR:
1811                 vcpu->arch.ciabr = set_reg_val(id, *val);
1812                 /* Don't allow setting breakpoints in hypervisor code */
1813                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1814                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1815                 break;
1816         case KVM_REG_PPC_CSIGR:
1817                 vcpu->arch.csigr = set_reg_val(id, *val);
1818                 break;
1819         case KVM_REG_PPC_TACR:
1820                 vcpu->arch.tacr = set_reg_val(id, *val);
1821                 break;
1822         case KVM_REG_PPC_TCSCR:
1823                 vcpu->arch.tcscr = set_reg_val(id, *val);
1824                 break;
1825         case KVM_REG_PPC_PID:
1826                 vcpu->arch.pid = set_reg_val(id, *val);
1827                 break;
1828         case KVM_REG_PPC_ACOP:
1829                 vcpu->arch.acop = set_reg_val(id, *val);
1830                 break;
1831         case KVM_REG_PPC_WORT:
1832                 vcpu->arch.wort = set_reg_val(id, *val);
1833                 break;
1834         case KVM_REG_PPC_TIDR:
1835                 vcpu->arch.tid = set_reg_val(id, *val);
1836                 break;
1837         case KVM_REG_PPC_PSSCR:
1838                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1839                 break;
1840         case KVM_REG_PPC_VPA_ADDR:
1841                 addr = set_reg_val(id, *val);
1842                 r = -EINVAL;
1843                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1844                               vcpu->arch.dtl.next_gpa))
1845                         break;
1846                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1847                 break;
1848         case KVM_REG_PPC_VPA_SLB:
1849                 addr = val->vpaval.addr;
1850                 len = val->vpaval.length;
1851                 r = -EINVAL;
1852                 if (addr && !vcpu->arch.vpa.next_gpa)
1853                         break;
1854                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1855                 break;
1856         case KVM_REG_PPC_VPA_DTL:
1857                 addr = val->vpaval.addr;
1858                 len = val->vpaval.length;
1859                 r = -EINVAL;
1860                 if (addr && (len < sizeof(struct dtl_entry) ||
1861                              !vcpu->arch.vpa.next_gpa))
1862                         break;
1863                 len -= len % sizeof(struct dtl_entry);
1864                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1865                 break;
1866         case KVM_REG_PPC_TB_OFFSET:
1867                 /* round up to multiple of 2^24 */
1868                 vcpu->arch.vcore->tb_offset =
1869                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1870                 break;
1871         case KVM_REG_PPC_LPCR:
1872                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1873                 break;
1874         case KVM_REG_PPC_LPCR_64:
1875                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1876                 break;
1877         case KVM_REG_PPC_PPR:
1878                 vcpu->arch.ppr = set_reg_val(id, *val);
1879                 break;
1880 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1881         case KVM_REG_PPC_TFHAR:
1882                 vcpu->arch.tfhar = set_reg_val(id, *val);
1883                 break;
1884         case KVM_REG_PPC_TFIAR:
1885                 vcpu->arch.tfiar = set_reg_val(id, *val);
1886                 break;
1887         case KVM_REG_PPC_TEXASR:
1888                 vcpu->arch.texasr = set_reg_val(id, *val);
1889                 break;
1890         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1891                 i = id - KVM_REG_PPC_TM_GPR0;
1892                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1893                 break;
1894         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1895         {
1896                 int j;
1897                 i = id - KVM_REG_PPC_TM_VSR0;
1898                 if (i < 32)
1899                         for (j = 0; j < TS_FPRWIDTH; j++)
1900                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1901                 else
1902                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1903                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1904                         else
1905                                 r = -ENXIO;
1906                 break;
1907         }
1908         case KVM_REG_PPC_TM_CR:
1909                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1910                 break;
1911         case KVM_REG_PPC_TM_XER:
1912                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1913                 break;
1914         case KVM_REG_PPC_TM_LR:
1915                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1916                 break;
1917         case KVM_REG_PPC_TM_CTR:
1918                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1919                 break;
1920         case KVM_REG_PPC_TM_FPSCR:
1921                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1922                 break;
1923         case KVM_REG_PPC_TM_AMR:
1924                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1925                 break;
1926         case KVM_REG_PPC_TM_PPR:
1927                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1928                 break;
1929         case KVM_REG_PPC_TM_VRSAVE:
1930                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1931                 break;
1932         case KVM_REG_PPC_TM_VSCR:
1933                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1934                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1935                 else
1936                         r = - ENXIO;
1937                 break;
1938         case KVM_REG_PPC_TM_DSCR:
1939                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1940                 break;
1941         case KVM_REG_PPC_TM_TAR:
1942                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1943                 break;
1944 #endif
1945         case KVM_REG_PPC_ARCH_COMPAT:
1946                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1947                 break;
1948         case KVM_REG_PPC_DEC_EXPIRY:
1949                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1950                         vcpu->arch.vcore->tb_offset;
1951                 break;
1952         case KVM_REG_PPC_ONLINE:
1953                 i = set_reg_val(id, *val);
1954                 if (i && !vcpu->arch.online)
1955                         atomic_inc(&vcpu->arch.vcore->online_count);
1956                 else if (!i && vcpu->arch.online)
1957                         atomic_dec(&vcpu->arch.vcore->online_count);
1958                 vcpu->arch.online = i;
1959                 break;
1960         case KVM_REG_PPC_PTCR:
1961                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
1962                 break;
1963         default:
1964                 r = -EINVAL;
1965                 break;
1966         }
1967
1968         return r;
1969 }
1970
1971 /*
1972  * On POWER9, threads are independent and can be in different partitions.
1973  * Therefore we consider each thread to be a subcore.
1974  * There is a restriction that all threads have to be in the same
1975  * MMU mode (radix or HPT), unfortunately, but since we only support
1976  * HPT guests on a HPT host so far, that isn't an impediment yet.
1977  */
1978 static int threads_per_vcore(struct kvm *kvm)
1979 {
1980         if (kvm->arch.threads_indep)
1981                 return 1;
1982         return threads_per_subcore;
1983 }
1984
1985 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1986 {
1987         struct kvmppc_vcore *vcore;
1988
1989         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1990
1991         if (vcore == NULL)
1992                 return NULL;
1993
1994         spin_lock_init(&vcore->lock);
1995         spin_lock_init(&vcore->stoltb_lock);
1996         init_swait_queue_head(&vcore->wq);
1997         vcore->preempt_tb = TB_NIL;
1998         vcore->lpcr = kvm->arch.lpcr;
1999         vcore->first_vcpuid = id;
2000         vcore->kvm = kvm;
2001         INIT_LIST_HEAD(&vcore->preempt_list);
2002
2003         return vcore;
2004 }
2005
2006 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2007 static struct debugfs_timings_element {
2008         const char *name;
2009         size_t offset;
2010 } timings[] = {
2011         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2012         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2013         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2014         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2015         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2016 };
2017
2018 #define N_TIMINGS       (ARRAY_SIZE(timings))
2019
2020 struct debugfs_timings_state {
2021         struct kvm_vcpu *vcpu;
2022         unsigned int    buflen;
2023         char            buf[N_TIMINGS * 100];
2024 };
2025
2026 static int debugfs_timings_open(struct inode *inode, struct file *file)
2027 {
2028         struct kvm_vcpu *vcpu = inode->i_private;
2029         struct debugfs_timings_state *p;
2030
2031         p = kzalloc(sizeof(*p), GFP_KERNEL);
2032         if (!p)
2033                 return -ENOMEM;
2034
2035         kvm_get_kvm(vcpu->kvm);
2036         p->vcpu = vcpu;
2037         file->private_data = p;
2038
2039         return nonseekable_open(inode, file);
2040 }
2041
2042 static int debugfs_timings_release(struct inode *inode, struct file *file)
2043 {
2044         struct debugfs_timings_state *p = file->private_data;
2045
2046         kvm_put_kvm(p->vcpu->kvm);
2047         kfree(p);
2048         return 0;
2049 }
2050
2051 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2052                                     size_t len, loff_t *ppos)
2053 {
2054         struct debugfs_timings_state *p = file->private_data;
2055         struct kvm_vcpu *vcpu = p->vcpu;
2056         char *s, *buf_end;
2057         struct kvmhv_tb_accumulator tb;
2058         u64 count;
2059         loff_t pos;
2060         ssize_t n;
2061         int i, loops;
2062         bool ok;
2063
2064         if (!p->buflen) {
2065                 s = p->buf;
2066                 buf_end = s + sizeof(p->buf);
2067                 for (i = 0; i < N_TIMINGS; ++i) {
2068                         struct kvmhv_tb_accumulator *acc;
2069
2070                         acc = (struct kvmhv_tb_accumulator *)
2071                                 ((unsigned long)vcpu + timings[i].offset);
2072                         ok = false;
2073                         for (loops = 0; loops < 1000; ++loops) {
2074                                 count = acc->seqcount;
2075                                 if (!(count & 1)) {
2076                                         smp_rmb();
2077                                         tb = *acc;
2078                                         smp_rmb();
2079                                         if (count == acc->seqcount) {
2080                                                 ok = true;
2081                                                 break;
2082                                         }
2083                                 }
2084                                 udelay(1);
2085                         }
2086                         if (!ok)
2087                                 snprintf(s, buf_end - s, "%s: stuck\n",
2088                                         timings[i].name);
2089                         else
2090                                 snprintf(s, buf_end - s,
2091                                         "%s: %llu %llu %llu %llu\n",
2092                                         timings[i].name, count / 2,
2093                                         tb_to_ns(tb.tb_total),
2094                                         tb_to_ns(tb.tb_min),
2095                                         tb_to_ns(tb.tb_max));
2096                         s += strlen(s);
2097                 }
2098                 p->buflen = s - p->buf;
2099         }
2100
2101         pos = *ppos;
2102         if (pos >= p->buflen)
2103                 return 0;
2104         if (len > p->buflen - pos)
2105                 len = p->buflen - pos;
2106         n = copy_to_user(buf, p->buf + pos, len);
2107         if (n) {
2108                 if (n == len)
2109                         return -EFAULT;
2110                 len -= n;
2111         }
2112         *ppos = pos + len;
2113         return len;
2114 }
2115
2116 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2117                                      size_t len, loff_t *ppos)
2118 {
2119         return -EACCES;
2120 }
2121
2122 static const struct file_operations debugfs_timings_ops = {
2123         .owner   = THIS_MODULE,
2124         .open    = debugfs_timings_open,
2125         .release = debugfs_timings_release,
2126         .read    = debugfs_timings_read,
2127         .write   = debugfs_timings_write,
2128         .llseek  = generic_file_llseek,
2129 };
2130
2131 /* Create a debugfs directory for the vcpu */
2132 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2133 {
2134         char buf[16];
2135         struct kvm *kvm = vcpu->kvm;
2136
2137         snprintf(buf, sizeof(buf), "vcpu%u", id);
2138         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2139                 return;
2140         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2141         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2142                 return;
2143         vcpu->arch.debugfs_timings =
2144                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2145                                     vcpu, &debugfs_timings_ops);
2146 }
2147
2148 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2149 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2150 {
2151 }
2152 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2153
2154 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2155                                                    unsigned int id)
2156 {
2157         struct kvm_vcpu *vcpu;
2158         int err;
2159         int core;
2160         struct kvmppc_vcore *vcore;
2161
2162         err = -ENOMEM;
2163         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2164         if (!vcpu)
2165                 goto out;
2166
2167         err = kvm_vcpu_init(vcpu, kvm, id);
2168         if (err)
2169                 goto free_vcpu;
2170
2171         vcpu->arch.shared = &vcpu->arch.shregs;
2172 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2173         /*
2174          * The shared struct is never shared on HV,
2175          * so we can always use host endianness
2176          */
2177 #ifdef __BIG_ENDIAN__
2178         vcpu->arch.shared_big_endian = true;
2179 #else
2180         vcpu->arch.shared_big_endian = false;
2181 #endif
2182 #endif
2183         vcpu->arch.mmcr[0] = MMCR0_FC;
2184         vcpu->arch.ctrl = CTRL_RUNLATCH;
2185         /* default to host PVR, since we can't spoof it */
2186         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2187         spin_lock_init(&vcpu->arch.vpa_update_lock);
2188         spin_lock_init(&vcpu->arch.tbacct_lock);
2189         vcpu->arch.busy_preempt = TB_NIL;
2190         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2191
2192         /*
2193          * Set the default HFSCR for the guest from the host value.
2194          * This value is only used on POWER9.
2195          * On POWER9, we want to virtualize the doorbell facility, so we
2196          * don't set the HFSCR_MSGP bit, and that causes those instructions
2197          * to trap and then we emulate them.
2198          */
2199         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2200                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2201         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2202                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2203                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2204                         vcpu->arch.hfscr |= HFSCR_TM;
2205         }
2206         if (cpu_has_feature(CPU_FTR_TM_COMP))
2207                 vcpu->arch.hfscr |= HFSCR_TM;
2208
2209         kvmppc_mmu_book3s_hv_init(vcpu);
2210
2211         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2212
2213         init_waitqueue_head(&vcpu->arch.cpu_run);
2214
2215         mutex_lock(&kvm->lock);
2216         vcore = NULL;
2217         err = -EINVAL;
2218         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2219                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2220                         pr_devel("KVM: VCPU ID too high\n");
2221                         core = KVM_MAX_VCORES;
2222                 } else {
2223                         BUG_ON(kvm->arch.smt_mode != 1);
2224                         core = kvmppc_pack_vcpu_id(kvm, id);
2225                 }
2226         } else {
2227                 core = id / kvm->arch.smt_mode;
2228         }
2229         if (core < KVM_MAX_VCORES) {
2230                 vcore = kvm->arch.vcores[core];
2231                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2232                         pr_devel("KVM: collision on id %u", id);
2233                         vcore = NULL;
2234                 } else if (!vcore) {
2235                         err = -ENOMEM;
2236                         vcore = kvmppc_vcore_create(kvm,
2237                                         id & ~(kvm->arch.smt_mode - 1));
2238                         kvm->arch.vcores[core] = vcore;
2239                         kvm->arch.online_vcores++;
2240                 }
2241         }
2242         mutex_unlock(&kvm->lock);
2243
2244         if (!vcore)
2245                 goto free_vcpu;
2246
2247         spin_lock(&vcore->lock);
2248         ++vcore->num_threads;
2249         spin_unlock(&vcore->lock);
2250         vcpu->arch.vcore = vcore;
2251         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2252         vcpu->arch.thread_cpu = -1;
2253         vcpu->arch.prev_cpu = -1;
2254
2255         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2256         kvmppc_sanity_check(vcpu);
2257
2258         debugfs_vcpu_init(vcpu, id);
2259
2260         return vcpu;
2261
2262 free_vcpu:
2263         kmem_cache_free(kvm_vcpu_cache, vcpu);
2264 out:
2265         return ERR_PTR(err);
2266 }
2267
2268 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2269                               unsigned long flags)
2270 {
2271         int err;
2272         int esmt = 0;
2273
2274         if (flags)
2275                 return -EINVAL;
2276         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2277                 return -EINVAL;
2278         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2279                 /*
2280                  * On POWER8 (or POWER7), the threading mode is "strict",
2281                  * so we pack smt_mode vcpus per vcore.
2282                  */
2283                 if (smt_mode > threads_per_subcore)
2284                         return -EINVAL;
2285         } else {
2286                 /*
2287                  * On POWER9, the threading mode is "loose",
2288                  * so each vcpu gets its own vcore.
2289                  */
2290                 esmt = smt_mode;
2291                 smt_mode = 1;
2292         }
2293         mutex_lock(&kvm->lock);
2294         err = -EBUSY;
2295         if (!kvm->arch.online_vcores) {
2296                 kvm->arch.smt_mode = smt_mode;
2297                 kvm->arch.emul_smt_mode = esmt;
2298                 err = 0;
2299         }
2300         mutex_unlock(&kvm->lock);
2301
2302         return err;
2303 }
2304
2305 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2306 {
2307         if (vpa->pinned_addr)
2308                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2309                                         vpa->dirty);
2310 }
2311
2312 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2313 {
2314         spin_lock(&vcpu->arch.vpa_update_lock);
2315         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2316         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2317         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2318         spin_unlock(&vcpu->arch.vpa_update_lock);
2319         kvm_vcpu_uninit(vcpu);
2320         kmem_cache_free(kvm_vcpu_cache, vcpu);
2321 }
2322
2323 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2324 {
2325         /* Indicate we want to get back into the guest */
2326         return 1;
2327 }
2328
2329 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2330 {
2331         unsigned long dec_nsec, now;
2332
2333         now = get_tb();
2334         if (now > vcpu->arch.dec_expires) {
2335                 /* decrementer has already gone negative */
2336                 kvmppc_core_queue_dec(vcpu);
2337                 kvmppc_core_prepare_to_enter(vcpu);
2338                 return;
2339         }
2340         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2341                    / tb_ticks_per_sec;
2342         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2343         vcpu->arch.timer_running = 1;
2344 }
2345
2346 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2347 {
2348         vcpu->arch.ceded = 0;
2349         if (vcpu->arch.timer_running) {
2350                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2351                 vcpu->arch.timer_running = 0;
2352         }
2353 }
2354
2355 extern int __kvmppc_vcore_entry(void);
2356
2357 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2358                                    struct kvm_vcpu *vcpu)
2359 {
2360         u64 now;
2361
2362         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2363                 return;
2364         spin_lock_irq(&vcpu->arch.tbacct_lock);
2365         now = mftb();
2366         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2367                 vcpu->arch.stolen_logged;
2368         vcpu->arch.busy_preempt = now;
2369         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2370         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2371         --vc->n_runnable;
2372         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2373 }
2374
2375 static int kvmppc_grab_hwthread(int cpu)
2376 {
2377         struct paca_struct *tpaca;
2378         long timeout = 10000;
2379
2380         tpaca = paca_ptrs[cpu];
2381
2382         /* Ensure the thread won't go into the kernel if it wakes */
2383         tpaca->kvm_hstate.kvm_vcpu = NULL;
2384         tpaca->kvm_hstate.kvm_vcore = NULL;
2385         tpaca->kvm_hstate.napping = 0;
2386         smp_wmb();
2387         tpaca->kvm_hstate.hwthread_req = 1;
2388
2389         /*
2390          * If the thread is already executing in the kernel (e.g. handling
2391          * a stray interrupt), wait for it to get back to nap mode.
2392          * The smp_mb() is to ensure that our setting of hwthread_req
2393          * is visible before we look at hwthread_state, so if this
2394          * races with the code at system_reset_pSeries and the thread
2395          * misses our setting of hwthread_req, we are sure to see its
2396          * setting of hwthread_state, and vice versa.
2397          */
2398         smp_mb();
2399         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2400                 if (--timeout <= 0) {
2401                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2402                         return -EBUSY;
2403                 }
2404                 udelay(1);
2405         }
2406         return 0;
2407 }
2408
2409 static void kvmppc_release_hwthread(int cpu)
2410 {
2411         struct paca_struct *tpaca;
2412
2413         tpaca = paca_ptrs[cpu];
2414         tpaca->kvm_hstate.hwthread_req = 0;
2415         tpaca->kvm_hstate.kvm_vcpu = NULL;
2416         tpaca->kvm_hstate.kvm_vcore = NULL;
2417         tpaca->kvm_hstate.kvm_split_mode = NULL;
2418 }
2419
2420 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2421 {
2422         struct kvm_nested_guest *nested = vcpu->arch.nested;
2423         cpumask_t *cpu_in_guest;
2424         int i;
2425
2426         cpu = cpu_first_thread_sibling(cpu);
2427         if (nested) {
2428                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2429                 cpu_in_guest = &nested->cpu_in_guest;
2430         } else {
2431                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2432                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2433         }
2434         /*
2435          * Make sure setting of bit in need_tlb_flush precedes
2436          * testing of cpu_in_guest bits.  The matching barrier on
2437          * the other side is the first smp_mb() in kvmppc_run_core().
2438          */
2439         smp_mb();
2440         for (i = 0; i < threads_per_core; ++i)
2441                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2442                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2443 }
2444
2445 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2446 {
2447         struct kvm_nested_guest *nested = vcpu->arch.nested;
2448         struct kvm *kvm = vcpu->kvm;
2449         int prev_cpu;
2450
2451         if (!cpu_has_feature(CPU_FTR_HVMODE))
2452                 return;
2453
2454         if (nested)
2455                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2456         else
2457                 prev_cpu = vcpu->arch.prev_cpu;
2458
2459         /*
2460          * With radix, the guest can do TLB invalidations itself,
2461          * and it could choose to use the local form (tlbiel) if
2462          * it is invalidating a translation that has only ever been
2463          * used on one vcpu.  However, that doesn't mean it has
2464          * only ever been used on one physical cpu, since vcpus
2465          * can move around between pcpus.  To cope with this, when
2466          * a vcpu moves from one pcpu to another, we need to tell
2467          * any vcpus running on the same core as this vcpu previously
2468          * ran to flush the TLB.  The TLB is shared between threads,
2469          * so we use a single bit in .need_tlb_flush for all 4 threads.
2470          */
2471         if (prev_cpu != pcpu) {
2472                 if (prev_cpu >= 0 &&
2473                     cpu_first_thread_sibling(prev_cpu) !=
2474                     cpu_first_thread_sibling(pcpu))
2475                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2476                 if (nested)
2477                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2478                 else
2479                         vcpu->arch.prev_cpu = pcpu;
2480         }
2481 }
2482
2483 static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu,
2484                                               struct kvm_nested_guest *nested)
2485 {
2486         cpumask_t *need_tlb_flush;
2487         int lpid;
2488
2489         if (!cpu_has_feature(CPU_FTR_HVMODE))
2490                 return;
2491
2492         if (cpu_has_feature(CPU_FTR_ARCH_300))
2493                 pcpu &= ~0x3UL;
2494
2495         if (nested) {
2496                 lpid = nested->shadow_lpid;
2497                 need_tlb_flush = &nested->need_tlb_flush;
2498         } else {
2499                 lpid = kvm->arch.lpid;
2500                 need_tlb_flush = &kvm->arch.need_tlb_flush;
2501         }
2502
2503         mtspr(SPRN_LPID, lpid);
2504         isync();
2505         smp_mb();
2506
2507         if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
2508                 radix__local_flush_tlb_lpid_guest(lpid);
2509                 /* Clear the bit after the TLB flush */
2510                 cpumask_clear_cpu(pcpu, need_tlb_flush);
2511         }
2512 }
2513
2514 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2515 {
2516         int cpu;
2517         struct paca_struct *tpaca;
2518         struct kvm *kvm = vc->kvm;
2519
2520         cpu = vc->pcpu;
2521         if (vcpu) {
2522                 if (vcpu->arch.timer_running) {
2523                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2524                         vcpu->arch.timer_running = 0;
2525                 }
2526                 cpu += vcpu->arch.ptid;
2527                 vcpu->cpu = vc->pcpu;
2528                 vcpu->arch.thread_cpu = cpu;
2529                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2530         }
2531         tpaca = paca_ptrs[cpu];
2532         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2533         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2534         tpaca->kvm_hstate.fake_suspend = 0;
2535         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2536         smp_wmb();
2537         tpaca->kvm_hstate.kvm_vcore = vc;
2538         if (cpu != smp_processor_id())
2539                 kvmppc_ipi_thread(cpu);
2540 }
2541
2542 static void kvmppc_wait_for_nap(int n_threads)
2543 {
2544         int cpu = smp_processor_id();
2545         int i, loops;
2546
2547         if (n_threads <= 1)
2548                 return;
2549         for (loops = 0; loops < 1000000; ++loops) {
2550                 /*
2551                  * Check if all threads are finished.
2552                  * We set the vcore pointer when starting a thread
2553                  * and the thread clears it when finished, so we look
2554                  * for any threads that still have a non-NULL vcore ptr.
2555                  */
2556                 for (i = 1; i < n_threads; ++i)
2557                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2558                                 break;
2559                 if (i == n_threads) {
2560                         HMT_medium();
2561                         return;
2562                 }
2563                 HMT_low();
2564         }
2565         HMT_medium();
2566         for (i = 1; i < n_threads; ++i)
2567                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2568                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2569 }
2570
2571 /*
2572  * Check that we are on thread 0 and that any other threads in
2573  * this core are off-line.  Then grab the threads so they can't
2574  * enter the kernel.
2575  */
2576 static int on_primary_thread(void)
2577 {
2578         int cpu = smp_processor_id();
2579         int thr;
2580
2581         /* Are we on a primary subcore? */
2582         if (cpu_thread_in_subcore(cpu))
2583                 return 0;
2584
2585         thr = 0;
2586         while (++thr < threads_per_subcore)
2587                 if (cpu_online(cpu + thr))
2588                         return 0;
2589
2590         /* Grab all hw threads so they can't go into the kernel */
2591         for (thr = 1; thr < threads_per_subcore; ++thr) {
2592                 if (kvmppc_grab_hwthread(cpu + thr)) {
2593                         /* Couldn't grab one; let the others go */
2594                         do {
2595                                 kvmppc_release_hwthread(cpu + thr);
2596                         } while (--thr > 0);
2597                         return 0;
2598                 }
2599         }
2600         return 1;
2601 }
2602
2603 /*
2604  * A list of virtual cores for each physical CPU.
2605  * These are vcores that could run but their runner VCPU tasks are
2606  * (or may be) preempted.
2607  */
2608 struct preempted_vcore_list {
2609         struct list_head        list;
2610         spinlock_t              lock;
2611 };
2612
2613 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2614
2615 static void init_vcore_lists(void)
2616 {
2617         int cpu;
2618
2619         for_each_possible_cpu(cpu) {
2620                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2621                 spin_lock_init(&lp->lock);
2622                 INIT_LIST_HEAD(&lp->list);
2623         }
2624 }
2625
2626 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2627 {
2628         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2629
2630         vc->vcore_state = VCORE_PREEMPT;
2631         vc->pcpu = smp_processor_id();
2632         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2633                 spin_lock(&lp->lock);
2634                 list_add_tail(&vc->preempt_list, &lp->list);
2635                 spin_unlock(&lp->lock);
2636         }
2637
2638         /* Start accumulating stolen time */
2639         kvmppc_core_start_stolen(vc);
2640 }
2641
2642 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2643 {
2644         struct preempted_vcore_list *lp;
2645
2646         kvmppc_core_end_stolen(vc);
2647         if (!list_empty(&vc->preempt_list)) {
2648                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2649                 spin_lock(&lp->lock);
2650                 list_del_init(&vc->preempt_list);
2651                 spin_unlock(&lp->lock);
2652         }
2653         vc->vcore_state = VCORE_INACTIVE;
2654 }
2655
2656 /*
2657  * This stores information about the virtual cores currently
2658  * assigned to a physical core.
2659  */
2660 struct core_info {
2661         int             n_subcores;
2662         int             max_subcore_threads;
2663         int             total_threads;
2664         int             subcore_threads[MAX_SUBCORES];
2665         struct kvmppc_vcore *vc[MAX_SUBCORES];
2666 };
2667
2668 /*
2669  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2670  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2671  */
2672 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2673
2674 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2675 {
2676         memset(cip, 0, sizeof(*cip));
2677         cip->n_subcores = 1;
2678         cip->max_subcore_threads = vc->num_threads;
2679         cip->total_threads = vc->num_threads;
2680         cip->subcore_threads[0] = vc->num_threads;
2681         cip->vc[0] = vc;
2682 }
2683
2684 static bool subcore_config_ok(int n_subcores, int n_threads)
2685 {
2686         /*
2687          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2688          * split-core mode, with one thread per subcore.
2689          */
2690         if (cpu_has_feature(CPU_FTR_ARCH_300))
2691                 return n_subcores <= 4 && n_threads == 1;
2692
2693         /* On POWER8, can only dynamically split if unsplit to begin with */
2694         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2695                 return false;
2696         if (n_subcores > MAX_SUBCORES)
2697                 return false;
2698         if (n_subcores > 1) {
2699                 if (!(dynamic_mt_modes & 2))
2700                         n_subcores = 4;
2701                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2702                         return false;
2703         }
2704
2705         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2706 }
2707
2708 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2709 {
2710         vc->entry_exit_map = 0;
2711         vc->in_guest = 0;
2712         vc->napping_threads = 0;
2713         vc->conferring_threads = 0;
2714         vc->tb_offset_applied = 0;
2715 }
2716
2717 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2718 {
2719         int n_threads = vc->num_threads;
2720         int sub;
2721
2722         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2723                 return false;
2724
2725         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2726         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2727                 return false;
2728
2729         /* Some POWER9 chips require all threads to be in the same MMU mode */
2730         if (no_mixing_hpt_and_radix &&
2731             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2732                 return false;
2733
2734         if (n_threads < cip->max_subcore_threads)
2735                 n_threads = cip->max_subcore_threads;
2736         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2737                 return false;
2738         cip->max_subcore_threads = n_threads;
2739
2740         sub = cip->n_subcores;
2741         ++cip->n_subcores;
2742         cip->total_threads += vc->num_threads;
2743         cip->subcore_threads[sub] = vc->num_threads;
2744         cip->vc[sub] = vc;
2745         init_vcore_to_run(vc);
2746         list_del_init(&vc->preempt_list);
2747
2748         return true;
2749 }
2750
2751 /*
2752  * Work out whether it is possible to piggyback the execution of
2753  * vcore *pvc onto the execution of the other vcores described in *cip.
2754  */
2755 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2756                           int target_threads)
2757 {
2758         if (cip->total_threads + pvc->num_threads > target_threads)
2759                 return false;
2760
2761         return can_dynamic_split(pvc, cip);
2762 }
2763
2764 static void prepare_threads(struct kvmppc_vcore *vc)
2765 {
2766         int i;
2767         struct kvm_vcpu *vcpu;
2768
2769         for_each_runnable_thread(i, vcpu, vc) {
2770                 if (signal_pending(vcpu->arch.run_task))
2771                         vcpu->arch.ret = -EINTR;
2772                 else if (vcpu->arch.vpa.update_pending ||
2773                          vcpu->arch.slb_shadow.update_pending ||
2774                          vcpu->arch.dtl.update_pending)
2775                         vcpu->arch.ret = RESUME_GUEST;
2776                 else
2777                         continue;
2778                 kvmppc_remove_runnable(vc, vcpu);
2779                 wake_up(&vcpu->arch.cpu_run);
2780         }
2781 }
2782
2783 static void collect_piggybacks(struct core_info *cip, int target_threads)
2784 {
2785         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2786         struct kvmppc_vcore *pvc, *vcnext;
2787
2788         spin_lock(&lp->lock);
2789         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2790                 if (!spin_trylock(&pvc->lock))
2791                         continue;
2792                 prepare_threads(pvc);
2793                 if (!pvc->n_runnable) {
2794                         list_del_init(&pvc->preempt_list);
2795                         if (pvc->runner == NULL) {
2796                                 pvc->vcore_state = VCORE_INACTIVE;
2797                                 kvmppc_core_end_stolen(pvc);
2798                         }
2799                         spin_unlock(&pvc->lock);
2800                         continue;
2801                 }
2802                 if (!can_piggyback(pvc, cip, target_threads)) {
2803                         spin_unlock(&pvc->lock);
2804                         continue;
2805                 }
2806                 kvmppc_core_end_stolen(pvc);
2807                 pvc->vcore_state = VCORE_PIGGYBACK;
2808                 if (cip->total_threads >= target_threads)
2809                         break;
2810         }
2811         spin_unlock(&lp->lock);
2812 }
2813
2814 static bool recheck_signals(struct core_info *cip)
2815 {
2816         int sub, i;
2817         struct kvm_vcpu *vcpu;
2818
2819         for (sub = 0; sub < cip->n_subcores; ++sub)
2820                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2821                         if (signal_pending(vcpu->arch.run_task))
2822                                 return true;
2823         return false;
2824 }
2825
2826 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2827 {
2828         int still_running = 0, i;
2829         u64 now;
2830         long ret;
2831         struct kvm_vcpu *vcpu;
2832
2833         spin_lock(&vc->lock);
2834         now = get_tb();
2835         for_each_runnable_thread(i, vcpu, vc) {
2836                 /*
2837                  * It's safe to unlock the vcore in the loop here, because
2838                  * for_each_runnable_thread() is safe against removal of
2839                  * the vcpu, and the vcore state is VCORE_EXITING here,
2840                  * so any vcpus becoming runnable will have their arch.trap
2841                  * set to zero and can't actually run in the guest.
2842                  */
2843                 spin_unlock(&vc->lock);
2844                 /* cancel pending dec exception if dec is positive */
2845                 if (now < vcpu->arch.dec_expires &&
2846                     kvmppc_core_pending_dec(vcpu))
2847                         kvmppc_core_dequeue_dec(vcpu);
2848
2849                 trace_kvm_guest_exit(vcpu);
2850
2851                 ret = RESUME_GUEST;
2852                 if (vcpu->arch.trap)
2853                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2854                                                     vcpu->arch.run_task);
2855
2856                 vcpu->arch.ret = ret;
2857                 vcpu->arch.trap = 0;
2858
2859                 spin_lock(&vc->lock);
2860                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2861                         if (vcpu->arch.pending_exceptions)
2862                                 kvmppc_core_prepare_to_enter(vcpu);
2863                         if (vcpu->arch.ceded)
2864                                 kvmppc_set_timer(vcpu);
2865                         else
2866                                 ++still_running;
2867                 } else {
2868                         kvmppc_remove_runnable(vc, vcpu);
2869                         wake_up(&vcpu->arch.cpu_run);
2870                 }
2871         }
2872         if (!is_master) {
2873                 if (still_running > 0) {
2874                         kvmppc_vcore_preempt(vc);
2875                 } else if (vc->runner) {
2876                         vc->vcore_state = VCORE_PREEMPT;
2877                         kvmppc_core_start_stolen(vc);
2878                 } else {
2879                         vc->vcore_state = VCORE_INACTIVE;
2880                 }
2881                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2882                         /* make sure there's a candidate runner awake */
2883                         i = -1;
2884                         vcpu = next_runnable_thread(vc, &i);
2885                         wake_up(&vcpu->arch.cpu_run);
2886                 }
2887         }
2888         spin_unlock(&vc->lock);
2889 }
2890
2891 /*
2892  * Clear core from the list of active host cores as we are about to
2893  * enter the guest. Only do this if it is the primary thread of the
2894  * core (not if a subcore) that is entering the guest.
2895  */
2896 static inline int kvmppc_clear_host_core(unsigned int cpu)
2897 {
2898         int core;
2899
2900         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2901                 return 0;
2902         /*
2903          * Memory barrier can be omitted here as we will do a smp_wmb()
2904          * later in kvmppc_start_thread and we need ensure that state is
2905          * visible to other CPUs only after we enter guest.
2906          */
2907         core = cpu >> threads_shift;
2908         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2909         return 0;
2910 }
2911
2912 /*
2913  * Advertise this core as an active host core since we exited the guest
2914  * Only need to do this if it is the primary thread of the core that is
2915  * exiting.
2916  */
2917 static inline int kvmppc_set_host_core(unsigned int cpu)
2918 {
2919         int core;
2920
2921         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2922                 return 0;
2923
2924         /*
2925          * Memory barrier can be omitted here because we do a spin_unlock
2926          * immediately after this which provides the memory barrier.
2927          */
2928         core = cpu >> threads_shift;
2929         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2930         return 0;
2931 }
2932
2933 static void set_irq_happened(int trap)
2934 {
2935         switch (trap) {
2936         case BOOK3S_INTERRUPT_EXTERNAL:
2937                 local_paca->irq_happened |= PACA_IRQ_EE;
2938                 break;
2939         case BOOK3S_INTERRUPT_H_DOORBELL:
2940                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2941                 break;
2942         case BOOK3S_INTERRUPT_HMI:
2943                 local_paca->irq_happened |= PACA_IRQ_HMI;
2944                 break;
2945         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2946                 replay_system_reset();
2947                 break;
2948         }
2949 }
2950
2951 /*
2952  * Run a set of guest threads on a physical core.
2953  * Called with vc->lock held.
2954  */
2955 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2956 {
2957         struct kvm_vcpu *vcpu;
2958         int i;
2959         int srcu_idx;
2960         struct core_info core_info;
2961         struct kvmppc_vcore *pvc;
2962         struct kvm_split_mode split_info, *sip;
2963         int split, subcore_size, active;
2964         int sub;
2965         bool thr0_done;
2966         unsigned long cmd_bit, stat_bit;
2967         int pcpu, thr;
2968         int target_threads;
2969         int controlled_threads;
2970         int trap;
2971         bool is_power8;
2972         bool hpt_on_radix;
2973
2974         /*
2975          * Remove from the list any threads that have a signal pending
2976          * or need a VPA update done
2977          */
2978         prepare_threads(vc);
2979
2980         /* if the runner is no longer runnable, let the caller pick a new one */
2981         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2982                 return;
2983
2984         /*
2985          * Initialize *vc.
2986          */
2987         init_vcore_to_run(vc);
2988         vc->preempt_tb = TB_NIL;
2989
2990         /*
2991          * Number of threads that we will be controlling: the same as
2992          * the number of threads per subcore, except on POWER9,
2993          * where it's 1 because the threads are (mostly) independent.
2994          */
2995         controlled_threads = threads_per_vcore(vc->kvm);
2996
2997         /*
2998          * Make sure we are running on primary threads, and that secondary
2999          * threads are offline.  Also check if the number of threads in this
3000          * guest are greater than the current system threads per guest.
3001          * On POWER9, we need to be not in independent-threads mode if
3002          * this is a HPT guest on a radix host machine where the
3003          * CPU threads may not be in different MMU modes.
3004          */
3005         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3006                 !kvm_is_radix(vc->kvm);
3007         if (((controlled_threads > 1) &&
3008              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3009             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3010                 for_each_runnable_thread(i, vcpu, vc) {
3011                         vcpu->arch.ret = -EBUSY;
3012                         kvmppc_remove_runnable(vc, vcpu);
3013                         wake_up(&vcpu->arch.cpu_run);
3014                 }
3015                 goto out;
3016         }
3017
3018         /*
3019          * See if we could run any other vcores on the physical core
3020          * along with this one.
3021          */
3022         init_core_info(&core_info, vc);
3023         pcpu = smp_processor_id();
3024         target_threads = controlled_threads;
3025         if (target_smt_mode && target_smt_mode < target_threads)
3026                 target_threads = target_smt_mode;
3027         if (vc->num_threads < target_threads)
3028                 collect_piggybacks(&core_info, target_threads);
3029
3030         /*
3031          * On radix, arrange for TLB flushing if necessary.
3032          * This has to be done before disabling interrupts since
3033          * it uses smp_call_function().
3034          */
3035         pcpu = smp_processor_id();
3036         if (kvm_is_radix(vc->kvm)) {
3037                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3038                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3039                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3040         }
3041
3042         /*
3043          * Hard-disable interrupts, and check resched flag and signals.
3044          * If we need to reschedule or deliver a signal, clean up
3045          * and return without going into the guest(s).
3046          * If the mmu_ready flag has been cleared, don't go into the
3047          * guest because that means a HPT resize operation is in progress.
3048          */
3049         local_irq_disable();
3050         hard_irq_disable();
3051         if (lazy_irq_pending() || need_resched() ||
3052             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3053                 local_irq_enable();
3054                 vc->vcore_state = VCORE_INACTIVE;
3055                 /* Unlock all except the primary vcore */
3056                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3057                         pvc = core_info.vc[sub];
3058                         /* Put back on to the preempted vcores list */
3059                         kvmppc_vcore_preempt(pvc);
3060                         spin_unlock(&pvc->lock);
3061                 }
3062                 for (i = 0; i < controlled_threads; ++i)
3063                         kvmppc_release_hwthread(pcpu + i);
3064                 return;
3065         }
3066
3067         kvmppc_clear_host_core(pcpu);
3068
3069         /* Decide on micro-threading (split-core) mode */
3070         subcore_size = threads_per_subcore;
3071         cmd_bit = stat_bit = 0;
3072         split = core_info.n_subcores;
3073         sip = NULL;
3074         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3075                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3076
3077         if (split > 1 || hpt_on_radix) {
3078                 sip = &split_info;
3079                 memset(&split_info, 0, sizeof(split_info));
3080                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3081                         split_info.vc[sub] = core_info.vc[sub];
3082
3083                 if (is_power8) {
3084                         if (split == 2 && (dynamic_mt_modes & 2)) {
3085                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3086                                 stat_bit = HID0_POWER8_2LPARMODE;
3087                         } else {
3088                                 split = 4;
3089                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3090                                 stat_bit = HID0_POWER8_4LPARMODE;
3091                         }
3092                         subcore_size = MAX_SMT_THREADS / split;
3093                         split_info.rpr = mfspr(SPRN_RPR);
3094                         split_info.pmmar = mfspr(SPRN_PMMAR);
3095                         split_info.ldbar = mfspr(SPRN_LDBAR);
3096                         split_info.subcore_size = subcore_size;
3097                 } else {
3098                         split_info.subcore_size = 1;
3099                         if (hpt_on_radix) {
3100                                 /* Use the split_info for LPCR/LPIDR changes */
3101                                 split_info.lpcr_req = vc->lpcr;
3102                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3103                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3104                                 split_info.do_set = 1;
3105                         }
3106                 }
3107
3108                 /* order writes to split_info before kvm_split_mode pointer */
3109                 smp_wmb();
3110         }
3111
3112         for (thr = 0; thr < controlled_threads; ++thr) {
3113                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3114
3115                 paca->kvm_hstate.tid = thr;
3116                 paca->kvm_hstate.napping = 0;
3117                 paca->kvm_hstate.kvm_split_mode = sip;
3118         }
3119
3120         /* Initiate micro-threading (split-core) on POWER8 if required */
3121         if (cmd_bit) {
3122                 unsigned long hid0 = mfspr(SPRN_HID0);
3123
3124                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3125                 mb();
3126                 mtspr(SPRN_HID0, hid0);
3127                 isync();
3128                 for (;;) {
3129                         hid0 = mfspr(SPRN_HID0);
3130                         if (hid0 & stat_bit)
3131                                 break;
3132                         cpu_relax();
3133                 }
3134         }
3135
3136         /*
3137          * On POWER8, set RWMR register.
3138          * Since it only affects PURR and SPURR, it doesn't affect
3139          * the host, so we don't save/restore the host value.
3140          */
3141         if (is_power8) {
3142                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3143                 int n_online = atomic_read(&vc->online_count);
3144
3145                 /*
3146                  * Use the 8-thread value if we're doing split-core
3147                  * or if the vcore's online count looks bogus.
3148                  */
3149                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3150                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3151                         rwmr_val = p8_rwmr_values[n_online];
3152                 mtspr(SPRN_RWMR, rwmr_val);
3153         }
3154
3155         /* Start all the threads */
3156         active = 0;
3157         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3158                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3159                 thr0_done = false;
3160                 active |= 1 << thr;
3161                 pvc = core_info.vc[sub];
3162                 pvc->pcpu = pcpu + thr;
3163                 for_each_runnable_thread(i, vcpu, pvc) {
3164                         kvmppc_start_thread(vcpu, pvc);
3165                         kvmppc_create_dtl_entry(vcpu, pvc);
3166                         trace_kvm_guest_enter(vcpu);
3167                         if (!vcpu->arch.ptid)
3168                                 thr0_done = true;
3169                         active |= 1 << (thr + vcpu->arch.ptid);
3170                 }
3171                 /*
3172                  * We need to start the first thread of each subcore
3173                  * even if it doesn't have a vcpu.
3174                  */
3175                 if (!thr0_done)
3176                         kvmppc_start_thread(NULL, pvc);
3177         }
3178
3179         /*
3180          * Ensure that split_info.do_nap is set after setting
3181          * the vcore pointer in the PACA of the secondaries.
3182          */
3183         smp_mb();
3184
3185         /*
3186          * When doing micro-threading, poke the inactive threads as well.
3187          * This gets them to the nap instruction after kvm_do_nap,
3188          * which reduces the time taken to unsplit later.
3189          * For POWER9 HPT guest on radix host, we need all the secondary
3190          * threads woken up so they can do the LPCR/LPIDR change.
3191          */
3192         if (cmd_bit || hpt_on_radix) {
3193                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3194                 for (thr = 1; thr < threads_per_subcore; ++thr)
3195                         if (!(active & (1 << thr)))
3196                                 kvmppc_ipi_thread(pcpu + thr);
3197         }
3198
3199         vc->vcore_state = VCORE_RUNNING;
3200         preempt_disable();
3201
3202         trace_kvmppc_run_core(vc, 0);
3203
3204         for (sub = 0; sub < core_info.n_subcores; ++sub)
3205                 spin_unlock(&core_info.vc[sub]->lock);
3206
3207         if (kvm_is_radix(vc->kvm)) {
3208                 /*
3209                  * Do we need to flush the process scoped TLB for the LPAR?
3210                  *
3211                  * On POWER9, individual threads can come in here, but the
3212                  * TLB is shared between the 4 threads in a core, hence
3213                  * invalidating on one thread invalidates for all.
3214                  * Thus we make all 4 threads use the same bit here.
3215                  *
3216                  * Hash must be flushed in realmode in order to use tlbiel.
3217                  */
3218                 kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL);
3219         }
3220
3221         /*
3222          * Interrupts will be enabled once we get into the guest,
3223          * so tell lockdep that we're about to enable interrupts.
3224          */
3225         trace_hardirqs_on();
3226
3227         guest_enter_irqoff();
3228
3229         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3230
3231         this_cpu_disable_ftrace();
3232
3233         trap = __kvmppc_vcore_entry();
3234
3235         this_cpu_enable_ftrace();
3236
3237         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3238
3239         trace_hardirqs_off();
3240         set_irq_happened(trap);
3241
3242         spin_lock(&vc->lock);
3243         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3244         vc->vcore_state = VCORE_EXITING;
3245
3246         /* wait for secondary threads to finish writing their state to memory */
3247         kvmppc_wait_for_nap(controlled_threads);
3248
3249         /* Return to whole-core mode if we split the core earlier */
3250         if (cmd_bit) {
3251                 unsigned long hid0 = mfspr(SPRN_HID0);
3252                 unsigned long loops = 0;
3253
3254                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3255                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3256                 mb();
3257                 mtspr(SPRN_HID0, hid0);
3258                 isync();
3259                 for (;;) {
3260                         hid0 = mfspr(SPRN_HID0);
3261                         if (!(hid0 & stat_bit))
3262                                 break;
3263                         cpu_relax();
3264                         ++loops;
3265                 }
3266         } else if (hpt_on_radix) {
3267                 /* Wait for all threads to have seen final sync */
3268                 for (thr = 1; thr < controlled_threads; ++thr) {
3269                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3270
3271                         while (paca->kvm_hstate.kvm_split_mode) {
3272                                 HMT_low();
3273                                 barrier();
3274                         }
3275                         HMT_medium();
3276                 }
3277         }
3278         split_info.do_nap = 0;
3279
3280         kvmppc_set_host_core(pcpu);
3281
3282         local_irq_enable();
3283         guest_exit();
3284
3285         /* Let secondaries go back to the offline loop */
3286         for (i = 0; i < controlled_threads; ++i) {
3287                 kvmppc_release_hwthread(pcpu + i);
3288                 if (sip && sip->napped[i])
3289                         kvmppc_ipi_thread(pcpu + i);
3290                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3291         }
3292
3293         spin_unlock(&vc->lock);
3294
3295         /* make sure updates to secondary vcpu structs are visible now */
3296         smp_mb();
3297
3298         preempt_enable();
3299
3300         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3301                 pvc = core_info.vc[sub];
3302                 post_guest_process(pvc, pvc == vc);
3303         }
3304
3305         spin_lock(&vc->lock);
3306
3307  out:
3308         vc->vcore_state = VCORE_INACTIVE;
3309         trace_kvmppc_run_core(vc, 1);
3310 }
3311
3312 /*
3313  * Load up hypervisor-mode registers on P9.
3314  */
3315 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3316                                      unsigned long lpcr)
3317 {
3318         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3319         s64 hdec;
3320         u64 tb, purr, spurr;
3321         int trap;
3322         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3323         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3324         unsigned long host_dawr = mfspr(SPRN_DAWR);
3325         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3326         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3327         unsigned long host_pidr = mfspr(SPRN_PID);
3328
3329         hdec = time_limit - mftb();
3330         if (hdec < 0)
3331                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3332         mtspr(SPRN_HDEC, hdec);
3333
3334         if (vc->tb_offset) {
3335                 u64 new_tb = mftb() + vc->tb_offset;
3336                 mtspr(SPRN_TBU40, new_tb);
3337                 tb = mftb();
3338                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3339                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3340                 vc->tb_offset_applied = vc->tb_offset;
3341         }
3342
3343         if (vc->pcr)
3344                 mtspr(SPRN_PCR, vc->pcr);
3345         mtspr(SPRN_DPDES, vc->dpdes);
3346         mtspr(SPRN_VTB, vc->vtb);
3347
3348         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3349         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3350         mtspr(SPRN_PURR, vcpu->arch.purr);
3351         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3352
3353         if (cpu_has_feature(CPU_FTR_DAWR)) {
3354                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3355                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3356         }
3357         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3358         mtspr(SPRN_IC, vcpu->arch.ic);
3359         mtspr(SPRN_PID, vcpu->arch.pid);
3360
3361         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3362               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3363
3364         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3365
3366         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3367         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3368         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3369         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3370
3371         mtspr(SPRN_AMOR, ~0UL);
3372
3373         mtspr(SPRN_LPCR, lpcr);
3374         isync();
3375
3376         kvmppc_xive_push_vcpu(vcpu);
3377
3378         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3379         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3380
3381         trap = __kvmhv_vcpu_entry_p9(vcpu);
3382
3383         /* Advance host PURR/SPURR by the amount used by guest */
3384         purr = mfspr(SPRN_PURR);
3385         spurr = mfspr(SPRN_SPURR);
3386         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3387               purr - vcpu->arch.purr);
3388         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3389               spurr - vcpu->arch.spurr);
3390         vcpu->arch.purr = purr;
3391         vcpu->arch.spurr = spurr;
3392
3393         vcpu->arch.ic = mfspr(SPRN_IC);
3394         vcpu->arch.pid = mfspr(SPRN_PID);
3395         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3396
3397         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3398         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3399         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3400         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3401
3402         mtspr(SPRN_PSSCR, host_psscr);
3403         mtspr(SPRN_HFSCR, host_hfscr);
3404         mtspr(SPRN_CIABR, host_ciabr);
3405         mtspr(SPRN_DAWR, host_dawr);
3406         mtspr(SPRN_DAWRX, host_dawrx);
3407         mtspr(SPRN_PID, host_pidr);
3408
3409         /*
3410          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3411          * case we interrupted the guest between a tlbie and a ptesync.
3412          */
3413         asm volatile("eieio; tlbsync; ptesync");
3414
3415         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3416         isync();
3417
3418         vc->dpdes = mfspr(SPRN_DPDES);
3419         vc->vtb = mfspr(SPRN_VTB);
3420         mtspr(SPRN_DPDES, 0);
3421         if (vc->pcr)
3422                 mtspr(SPRN_PCR, 0);
3423
3424         if (vc->tb_offset_applied) {
3425                 u64 new_tb = mftb() - vc->tb_offset_applied;
3426                 mtspr(SPRN_TBU40, new_tb);
3427                 tb = mftb();
3428                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3429                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3430                 vc->tb_offset_applied = 0;
3431         }
3432
3433         mtspr(SPRN_HDEC, 0x7fffffff);
3434         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3435
3436         return trap;
3437 }
3438
3439 /*
3440  * Virtual-mode guest entry for POWER9 and later when the host and
3441  * guest are both using the radix MMU.  The LPIDR has already been set.
3442  */
3443 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3444                          unsigned long lpcr)
3445 {
3446         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3447         unsigned long host_dscr = mfspr(SPRN_DSCR);
3448         unsigned long host_tidr = mfspr(SPRN_TIDR);
3449         unsigned long host_iamr = mfspr(SPRN_IAMR);
3450         s64 dec;
3451         u64 tb;
3452         int trap, save_pmu;
3453
3454         dec = mfspr(SPRN_DEC);
3455         tb = mftb();
3456         if (dec < 512)
3457                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3458         local_paca->kvm_hstate.dec_expires = dec + tb;
3459         if (local_paca->kvm_hstate.dec_expires < time_limit)
3460                 time_limit = local_paca->kvm_hstate.dec_expires;
3461
3462         vcpu->arch.ceded = 0;
3463
3464         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3465
3466         kvmppc_subcore_enter_guest();
3467
3468         vc->entry_exit_map = 1;
3469         vc->in_guest = 1;
3470
3471         if (vcpu->arch.vpa.pinned_addr) {
3472                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3473                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3474                 lp->yield_count = cpu_to_be32(yield_count);
3475                 vcpu->arch.vpa.dirty = 1;
3476         }
3477
3478         if (cpu_has_feature(CPU_FTR_TM) ||
3479             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3480                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3481
3482         kvmhv_load_guest_pmu(vcpu);
3483
3484         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3485         load_fp_state(&vcpu->arch.fp);
3486 #ifdef CONFIG_ALTIVEC
3487         load_vr_state(&vcpu->arch.vr);
3488 #endif
3489
3490         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3491         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3492         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3493         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3494         mtspr(SPRN_TAR, vcpu->arch.tar);
3495         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3496         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3497         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3498         mtspr(SPRN_WORT, vcpu->arch.wort);
3499         mtspr(SPRN_TIDR, vcpu->arch.tid);
3500         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3501         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3502         mtspr(SPRN_AMR, vcpu->arch.amr);
3503         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3504
3505         if (!(vcpu->arch.ctrl & 1))
3506                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3507
3508         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3509
3510         if (kvmhv_on_pseries()) {
3511                 /* call our hypervisor to load up HV regs and go */
3512                 struct hv_guest_state hvregs;
3513
3514                 kvmhv_save_hv_regs(vcpu, &hvregs);
3515                 hvregs.lpcr = lpcr;
3516                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3517                 hvregs.version = HV_GUEST_STATE_VERSION;
3518                 if (vcpu->arch.nested) {
3519                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3520                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3521                 } else {
3522                         hvregs.lpid = vcpu->kvm->arch.lpid;
3523                         hvregs.vcpu_token = vcpu->vcpu_id;
3524                 }
3525                 hvregs.hdec_expiry = time_limit;
3526                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3527                                           __pa(&vcpu->arch.regs));
3528                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3529                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3530                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3531                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3532
3533                 /* H_CEDE has to be handled now, not later */
3534                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3535                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3536                         kvmppc_nested_cede(vcpu);
3537                         trap = 0;
3538                 }
3539         } else {
3540                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3541         }
3542
3543         vcpu->arch.slb_max = 0;
3544         dec = mfspr(SPRN_DEC);
3545         tb = mftb();
3546         vcpu->arch.dec_expires = dec + tb;
3547         vcpu->cpu = -1;
3548         vcpu->arch.thread_cpu = -1;
3549         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3550
3551         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3552         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3553         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3554         vcpu->arch.tar = mfspr(SPRN_TAR);
3555         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3556         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3557         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3558         vcpu->arch.wort = mfspr(SPRN_WORT);
3559         vcpu->arch.tid = mfspr(SPRN_TIDR);
3560         vcpu->arch.amr = mfspr(SPRN_AMR);
3561         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3562         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3563
3564         mtspr(SPRN_PSPB, 0);
3565         mtspr(SPRN_WORT, 0);
3566         mtspr(SPRN_AMR, 0);
3567         mtspr(SPRN_UAMOR, 0);
3568         mtspr(SPRN_DSCR, host_dscr);
3569         mtspr(SPRN_TIDR, host_tidr);
3570         mtspr(SPRN_IAMR, host_iamr);
3571         mtspr(SPRN_PSPB, 0);
3572
3573         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3574         store_fp_state(&vcpu->arch.fp);
3575 #ifdef CONFIG_ALTIVEC
3576         store_vr_state(&vcpu->arch.vr);
3577 #endif
3578
3579         if (cpu_has_feature(CPU_FTR_TM) ||
3580             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3581                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3582
3583         save_pmu = 1;
3584         if (vcpu->arch.vpa.pinned_addr) {
3585                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3586                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3587                 lp->yield_count = cpu_to_be32(yield_count);
3588                 vcpu->arch.vpa.dirty = 1;
3589                 save_pmu = lp->pmcregs_in_use;
3590         }
3591
3592         kvmhv_save_guest_pmu(vcpu, save_pmu);
3593
3594         vc->entry_exit_map = 0x101;
3595         vc->in_guest = 0;
3596
3597         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3598
3599         kvmhv_load_host_pmu();
3600
3601         kvmppc_subcore_exit_guest();
3602
3603         return trap;
3604 }
3605
3606 /*
3607  * Wait for some other vcpu thread to execute us, and
3608  * wake us up when we need to handle something in the host.
3609  */
3610 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3611                                  struct kvm_vcpu *vcpu, int wait_state)
3612 {
3613         DEFINE_WAIT(wait);
3614
3615         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3616         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3617                 spin_unlock(&vc->lock);
3618                 schedule();
3619                 spin_lock(&vc->lock);
3620         }
3621         finish_wait(&vcpu->arch.cpu_run, &wait);
3622 }
3623
3624 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3625 {
3626         /* 10us base */
3627         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3628                 vc->halt_poll_ns = 10000;
3629         else
3630                 vc->halt_poll_ns *= halt_poll_ns_grow;
3631 }
3632
3633 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3634 {
3635         if (halt_poll_ns_shrink == 0)
3636                 vc->halt_poll_ns = 0;
3637         else
3638                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3639 }
3640
3641 #ifdef CONFIG_KVM_XICS
3642 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3643 {
3644         if (!xive_enabled())
3645                 return false;
3646         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3647                 vcpu->arch.xive_saved_state.cppr;
3648 }
3649 #else
3650 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3651 {
3652         return false;
3653 }
3654 #endif /* CONFIG_KVM_XICS */
3655
3656 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3657 {
3658         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3659             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3660                 return true;
3661
3662         return false;
3663 }
3664
3665 /*
3666  * Check to see if any of the runnable vcpus on the vcore have pending
3667  * exceptions or are no longer ceded
3668  */
3669 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3670 {
3671         struct kvm_vcpu *vcpu;
3672         int i;
3673
3674         for_each_runnable_thread(i, vcpu, vc) {
3675                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3676                         return 1;
3677         }
3678
3679         return 0;
3680 }
3681
3682 /*
3683  * All the vcpus in this vcore are idle, so wait for a decrementer
3684  * or external interrupt to one of the vcpus.  vc->lock is held.
3685  */
3686 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3687 {
3688         ktime_t cur, start_poll, start_wait;
3689         int do_sleep = 1;
3690         u64 block_ns;
3691         DECLARE_SWAITQUEUE(wait);
3692
3693         /* Poll for pending exceptions and ceded state */
3694         cur = start_poll = ktime_get();
3695         if (vc->halt_poll_ns) {
3696                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3697                 ++vc->runner->stat.halt_attempted_poll;
3698
3699                 vc->vcore_state = VCORE_POLLING;
3700                 spin_unlock(&vc->lock);
3701
3702                 do {
3703                         if (kvmppc_vcore_check_block(vc)) {
3704                                 do_sleep = 0;
3705                                 break;
3706                         }
3707                         cur = ktime_get();
3708                 } while (single_task_running() && ktime_before(cur, stop));
3709
3710                 spin_lock(&vc->lock);
3711                 vc->vcore_state = VCORE_INACTIVE;
3712
3713                 if (!do_sleep) {
3714                         ++vc->runner->stat.halt_successful_poll;
3715                         goto out;
3716                 }
3717         }
3718
3719         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3720
3721         if (kvmppc_vcore_check_block(vc)) {
3722                 finish_swait(&vc->wq, &wait);
3723                 do_sleep = 0;
3724                 /* If we polled, count this as a successful poll */
3725                 if (vc->halt_poll_ns)
3726                         ++vc->runner->stat.halt_successful_poll;
3727                 goto out;
3728         }
3729
3730         start_wait = ktime_get();
3731
3732         vc->vcore_state = VCORE_SLEEPING;
3733         trace_kvmppc_vcore_blocked(vc, 0);
3734         spin_unlock(&vc->lock);
3735         schedule();
3736         finish_swait(&vc->wq, &wait);
3737         spin_lock(&vc->lock);
3738         vc->vcore_state = VCORE_INACTIVE;
3739         trace_kvmppc_vcore_blocked(vc, 1);
3740         ++vc->runner->stat.halt_successful_wait;
3741
3742         cur = ktime_get();
3743
3744 out:
3745         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3746
3747         /* Attribute wait time */
3748         if (do_sleep) {
3749                 vc->runner->stat.halt_wait_ns +=
3750                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3751                 /* Attribute failed poll time */
3752                 if (vc->halt_poll_ns)
3753                         vc->runner->stat.halt_poll_fail_ns +=
3754                                 ktime_to_ns(start_wait) -
3755                                 ktime_to_ns(start_poll);
3756         } else {
3757                 /* Attribute successful poll time */
3758                 if (vc->halt_poll_ns)
3759                         vc->runner->stat.halt_poll_success_ns +=
3760                                 ktime_to_ns(cur) -
3761                                 ktime_to_ns(start_poll);
3762         }
3763
3764         /* Adjust poll time */
3765         if (halt_poll_ns) {
3766                 if (block_ns <= vc->halt_poll_ns)
3767                         ;
3768                 /* We slept and blocked for longer than the max halt time */
3769                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3770                         shrink_halt_poll_ns(vc);
3771                 /* We slept and our poll time is too small */
3772                 else if (vc->halt_poll_ns < halt_poll_ns &&
3773                                 block_ns < halt_poll_ns)
3774                         grow_halt_poll_ns(vc);
3775                 if (vc->halt_poll_ns > halt_poll_ns)
3776                         vc->halt_poll_ns = halt_poll_ns;
3777         } else
3778                 vc->halt_poll_ns = 0;
3779
3780         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3781 }
3782
3783 /*
3784  * This never fails for a radix guest, as none of the operations it does
3785  * for a radix guest can fail or have a way to report failure.
3786  * kvmhv_run_single_vcpu() relies on this fact.
3787  */
3788 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3789 {
3790         int r = 0;
3791         struct kvm *kvm = vcpu->kvm;
3792
3793         mutex_lock(&kvm->lock);
3794         if (!kvm->arch.mmu_ready) {
3795                 if (!kvm_is_radix(kvm))
3796                         r = kvmppc_hv_setup_htab_rma(vcpu);
3797                 if (!r) {
3798                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3799                                 kvmppc_setup_partition_table(kvm);
3800                         kvm->arch.mmu_ready = 1;
3801                 }
3802         }
3803         mutex_unlock(&kvm->lock);
3804         return r;
3805 }
3806
3807 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3808 {
3809         int n_ceded, i, r;
3810         struct kvmppc_vcore *vc;
3811         struct kvm_vcpu *v;
3812
3813         trace_kvmppc_run_vcpu_enter(vcpu);
3814
3815         kvm_run->exit_reason = 0;
3816         vcpu->arch.ret = RESUME_GUEST;
3817         vcpu->arch.trap = 0;
3818         kvmppc_update_vpas(vcpu);
3819
3820         /*
3821          * Synchronize with other threads in this virtual core
3822          */
3823         vc = vcpu->arch.vcore;
3824         spin_lock(&vc->lock);
3825         vcpu->arch.ceded = 0;
3826         vcpu->arch.run_task = current;
3827         vcpu->arch.kvm_run = kvm_run;
3828         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3829         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3830         vcpu->arch.busy_preempt = TB_NIL;
3831         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3832         ++vc->n_runnable;
3833
3834         /*
3835          * This happens the first time this is called for a vcpu.
3836          * If the vcore is already running, we may be able to start
3837          * this thread straight away and have it join in.
3838          */
3839         if (!signal_pending(current)) {
3840                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3841                      vc->vcore_state == VCORE_RUNNING) &&
3842                            !VCORE_IS_EXITING(vc)) {
3843                         kvmppc_create_dtl_entry(vcpu, vc);
3844                         kvmppc_start_thread(vcpu, vc);
3845                         trace_kvm_guest_enter(vcpu);
3846                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3847                         swake_up_one(&vc->wq);
3848                 }
3849
3850         }
3851
3852         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3853                !signal_pending(current)) {
3854                 /* See if the MMU is ready to go */
3855                 if (!vcpu->kvm->arch.mmu_ready) {
3856                         spin_unlock(&vc->lock);
3857                         r = kvmhv_setup_mmu(vcpu);
3858                         spin_lock(&vc->lock);
3859                         if (r) {
3860                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3861                                 kvm_run->fail_entry.
3862                                         hardware_entry_failure_reason = 0;
3863                                 vcpu->arch.ret = r;
3864                                 break;
3865                         }
3866                 }
3867
3868                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3869                         kvmppc_vcore_end_preempt(vc);
3870
3871                 if (vc->vcore_state != VCORE_INACTIVE) {
3872                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3873                         continue;
3874                 }
3875                 for_each_runnable_thread(i, v, vc) {
3876                         kvmppc_core_prepare_to_enter(v);
3877                         if (signal_pending(v->arch.run_task)) {
3878                                 kvmppc_remove_runnable(vc, v);
3879                                 v->stat.signal_exits++;
3880                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3881                                 v->arch.ret = -EINTR;
3882                                 wake_up(&v->arch.cpu_run);
3883                         }
3884                 }
3885                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3886                         break;
3887                 n_ceded = 0;
3888                 for_each_runnable_thread(i, v, vc) {
3889                         if (!kvmppc_vcpu_woken(v))
3890                                 n_ceded += v->arch.ceded;
3891                         else
3892                                 v->arch.ceded = 0;
3893                 }
3894                 vc->runner = vcpu;
3895                 if (n_ceded == vc->n_runnable) {
3896                         kvmppc_vcore_blocked(vc);
3897                 } else if (need_resched()) {
3898                         kvmppc_vcore_preempt(vc);
3899                         /* Let something else run */
3900                         cond_resched_lock(&vc->lock);
3901                         if (vc->vcore_state == VCORE_PREEMPT)
3902                                 kvmppc_vcore_end_preempt(vc);
3903                 } else {
3904                         kvmppc_run_core(vc);
3905                 }
3906                 vc->runner = NULL;
3907         }
3908
3909         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3910                (vc->vcore_state == VCORE_RUNNING ||
3911                 vc->vcore_state == VCORE_EXITING ||
3912                 vc->vcore_state == VCORE_PIGGYBACK))
3913                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3914
3915         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3916                 kvmppc_vcore_end_preempt(vc);
3917
3918         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3919                 kvmppc_remove_runnable(vc, vcpu);
3920                 vcpu->stat.signal_exits++;
3921                 kvm_run->exit_reason = KVM_EXIT_INTR;
3922                 vcpu->arch.ret = -EINTR;
3923         }
3924
3925         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3926                 /* Wake up some vcpu to run the core */
3927                 i = -1;
3928                 v = next_runnable_thread(vc, &i);
3929                 wake_up(&v->arch.cpu_run);
3930         }
3931
3932         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3933         spin_unlock(&vc->lock);
3934         return vcpu->arch.ret;
3935 }
3936
3937 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
3938                           struct kvm_vcpu *vcpu, u64 time_limit,
3939                           unsigned long lpcr)
3940 {
3941         int trap, r, pcpu;
3942         int srcu_idx;
3943         struct kvmppc_vcore *vc;
3944         struct kvm *kvm = vcpu->kvm;
3945         struct kvm_nested_guest *nested = vcpu->arch.nested;
3946
3947         trace_kvmppc_run_vcpu_enter(vcpu);
3948
3949         kvm_run->exit_reason = 0;
3950         vcpu->arch.ret = RESUME_GUEST;
3951         vcpu->arch.trap = 0;
3952
3953         vc = vcpu->arch.vcore;
3954         vcpu->arch.ceded = 0;
3955         vcpu->arch.run_task = current;
3956         vcpu->arch.kvm_run = kvm_run;
3957         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3958         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3959         vcpu->arch.busy_preempt = TB_NIL;
3960         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
3961         vc->runnable_threads[0] = vcpu;
3962         vc->n_runnable = 1;
3963         vc->runner = vcpu;
3964
3965         /* See if the MMU is ready to go */
3966         if (!kvm->arch.mmu_ready)
3967                 kvmhv_setup_mmu(vcpu);
3968
3969         if (need_resched())
3970                 cond_resched();
3971
3972         kvmppc_update_vpas(vcpu);
3973
3974         init_vcore_to_run(vc);
3975         vc->preempt_tb = TB_NIL;
3976
3977         preempt_disable();
3978         pcpu = smp_processor_id();
3979         vc->pcpu = pcpu;
3980         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3981
3982         local_irq_disable();
3983         hard_irq_disable();
3984         if (signal_pending(current))
3985                 goto sigpend;
3986         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
3987                 goto out;
3988
3989         if (!nested) {
3990                 kvmppc_core_prepare_to_enter(vcpu);
3991                 if (vcpu->arch.doorbell_request) {
3992                         vc->dpdes = 1;
3993                         smp_wmb();
3994                         vcpu->arch.doorbell_request = 0;
3995                 }
3996                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
3997                              &vcpu->arch.pending_exceptions))
3998                         lpcr |= LPCR_MER;
3999         } else if (vcpu->arch.pending_exceptions ||
4000                    vcpu->arch.doorbell_request ||
4001                    xive_interrupt_pending(vcpu)) {
4002                 vcpu->arch.ret = RESUME_HOST;
4003                 goto out;
4004         }
4005
4006         kvmppc_clear_host_core(pcpu);
4007
4008         local_paca->kvm_hstate.tid = 0;
4009         local_paca->kvm_hstate.napping = 0;
4010         local_paca->kvm_hstate.kvm_split_mode = NULL;
4011         kvmppc_start_thread(vcpu, vc);
4012         kvmppc_create_dtl_entry(vcpu, vc);
4013         trace_kvm_guest_enter(vcpu);
4014
4015         vc->vcore_state = VCORE_RUNNING;
4016         trace_kvmppc_run_core(vc, 0);
4017
4018         if (cpu_has_feature(CPU_FTR_HVMODE))
4019                 kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested);
4020
4021         trace_hardirqs_on();
4022         guest_enter_irqoff();
4023
4024         srcu_idx = srcu_read_lock(&kvm->srcu);
4025
4026         this_cpu_disable_ftrace();
4027
4028         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4029         vcpu->arch.trap = trap;
4030
4031         this_cpu_enable_ftrace();
4032
4033         srcu_read_unlock(&kvm->srcu, srcu_idx);
4034
4035         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4036                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4037                 isync();
4038         }
4039
4040         trace_hardirqs_off();
4041         set_irq_happened(trap);
4042
4043         kvmppc_set_host_core(pcpu);
4044
4045         local_irq_enable();
4046         guest_exit();
4047
4048         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4049
4050         preempt_enable();
4051
4052         /* cancel pending decrementer exception if DEC is now positive */
4053         if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
4054                 kvmppc_core_dequeue_dec(vcpu);
4055
4056         trace_kvm_guest_exit(vcpu);
4057         r = RESUME_GUEST;
4058         if (trap) {
4059                 if (!nested)
4060                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4061                 else
4062                         r = kvmppc_handle_nested_exit(vcpu);
4063         }
4064         vcpu->arch.ret = r;
4065
4066         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4067             !kvmppc_vcpu_woken(vcpu)) {
4068                 kvmppc_set_timer(vcpu);
4069                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4070                         if (signal_pending(current)) {
4071                                 vcpu->stat.signal_exits++;
4072                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4073                                 vcpu->arch.ret = -EINTR;
4074                                 break;
4075                         }
4076                         spin_lock(&vc->lock);
4077                         kvmppc_vcore_blocked(vc);
4078                         spin_unlock(&vc->lock);
4079                 }
4080         }
4081         vcpu->arch.ceded = 0;
4082
4083         vc->vcore_state = VCORE_INACTIVE;
4084         trace_kvmppc_run_core(vc, 1);
4085
4086  done:
4087         kvmppc_remove_runnable(vc, vcpu);
4088         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4089
4090         return vcpu->arch.ret;
4091
4092  sigpend:
4093         vcpu->stat.signal_exits++;
4094         kvm_run->exit_reason = KVM_EXIT_INTR;
4095         vcpu->arch.ret = -EINTR;
4096  out:
4097         local_irq_enable();
4098         preempt_enable();
4099         goto done;
4100 }
4101
4102 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4103 {
4104         int r;
4105         int srcu_idx;
4106         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4107         unsigned long user_tar = 0;
4108         unsigned int user_vrsave;
4109         struct kvm *kvm;
4110
4111         if (!vcpu->arch.sane) {
4112                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4113                 return -EINVAL;
4114         }
4115
4116         /*
4117          * Don't allow entry with a suspended transaction, because
4118          * the guest entry/exit code will lose it.
4119          * If the guest has TM enabled, save away their TM-related SPRs
4120          * (they will get restored by the TM unavailable interrupt).
4121          */
4122 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4123         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4124             (current->thread.regs->msr & MSR_TM)) {
4125                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4126                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4127                         run->fail_entry.hardware_entry_failure_reason = 0;
4128                         return -EINVAL;
4129                 }
4130                 /* Enable TM so we can read the TM SPRs */
4131                 mtmsr(mfmsr() | MSR_TM);
4132                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4133                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4134                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4135                 current->thread.regs->msr &= ~MSR_TM;
4136         }
4137 #endif
4138
4139         /*
4140          * Force online to 1 for the sake of old userspace which doesn't
4141          * set it.
4142          */
4143         if (!vcpu->arch.online) {
4144                 atomic_inc(&vcpu->arch.vcore->online_count);
4145                 vcpu->arch.online = 1;
4146         }
4147
4148         kvmppc_core_prepare_to_enter(vcpu);
4149
4150         /* No need to go into the guest when all we'll do is come back out */
4151         if (signal_pending(current)) {
4152                 run->exit_reason = KVM_EXIT_INTR;
4153                 return -EINTR;
4154         }
4155
4156         kvm = vcpu->kvm;
4157         atomic_inc(&kvm->arch.vcpus_running);
4158         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4159         smp_mb();
4160
4161         flush_all_to_thread(current);
4162
4163         /* Save userspace EBB and other register values */
4164         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4165                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4166                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4167                 ebb_regs[2] = mfspr(SPRN_BESCR);
4168                 user_tar = mfspr(SPRN_TAR);
4169         }
4170         user_vrsave = mfspr(SPRN_VRSAVE);
4171
4172         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4173         vcpu->arch.pgdir = current->mm->pgd;
4174         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4175
4176         do {
4177                 /*
4178                  * The early POWER9 chips that can't mix radix and HPT threads
4179                  * on the same core also need the workaround for the problem
4180                  * where the TLB would prefetch entries in the guest exit path
4181                  * for radix guests using the guest PIDR value and LPID 0.
4182                  * The workaround is in the old path (kvmppc_run_vcpu())
4183                  * but not the new path (kvmhv_run_single_vcpu()).
4184                  */
4185                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4186                     !no_mixing_hpt_and_radix)
4187                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4188                                                   vcpu->arch.vcore->lpcr);
4189                 else
4190                         r = kvmppc_run_vcpu(run, vcpu);
4191
4192                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4193                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4194                         trace_kvm_hcall_enter(vcpu);
4195                         r = kvmppc_pseries_do_hcall(vcpu);
4196                         trace_kvm_hcall_exit(vcpu, r);
4197                         kvmppc_core_prepare_to_enter(vcpu);
4198                 } else if (r == RESUME_PAGE_FAULT) {
4199                         srcu_idx = srcu_read_lock(&kvm->srcu);
4200                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4201                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4202                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4203                 } else if (r == RESUME_PASSTHROUGH) {
4204                         if (WARN_ON(xive_enabled()))
4205                                 r = H_SUCCESS;
4206                         else
4207                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4208                 }
4209         } while (is_kvmppc_resume_guest(r));
4210
4211         /* Restore userspace EBB and other register values */
4212         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4213                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4214                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4215                 mtspr(SPRN_BESCR, ebb_regs[2]);
4216                 mtspr(SPRN_TAR, user_tar);
4217                 mtspr(SPRN_FSCR, current->thread.fscr);
4218         }
4219         mtspr(SPRN_VRSAVE, user_vrsave);
4220
4221         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4222         atomic_dec(&kvm->arch.vcpus_running);
4223         return r;
4224 }
4225
4226 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4227                                      int shift, int sllp)
4228 {
4229         (*sps)->page_shift = shift;
4230         (*sps)->slb_enc = sllp;
4231         (*sps)->enc[0].page_shift = shift;
4232         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4233         /*
4234          * Add 16MB MPSS support (may get filtered out by userspace)
4235          */
4236         if (shift != 24) {
4237                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4238                 if (penc != -1) {
4239                         (*sps)->enc[1].page_shift = 24;
4240                         (*sps)->enc[1].pte_enc = penc;
4241                 }
4242         }
4243         (*sps)++;
4244 }
4245
4246 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4247                                          struct kvm_ppc_smmu_info *info)
4248 {
4249         struct kvm_ppc_one_seg_page_size *sps;
4250
4251         /*
4252          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4253          * POWER7 doesn't support keys for instruction accesses,
4254          * POWER8 and POWER9 do.
4255          */
4256         info->data_keys = 32;
4257         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4258
4259         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4260         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4261         info->slb_size = 32;
4262
4263         /* We only support these sizes for now, and no muti-size segments */
4264         sps = &info->sps[0];
4265         kvmppc_add_seg_page_size(&sps, 12, 0);
4266         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4267         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4268
4269         /* If running as a nested hypervisor, we don't support HPT guests */
4270         if (kvmhv_on_pseries())
4271                 info->flags |= KVM_PPC_NO_HASH;
4272
4273         return 0;
4274 }
4275
4276 /*
4277  * Get (and clear) the dirty memory log for a memory slot.
4278  */
4279 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4280                                          struct kvm_dirty_log *log)
4281 {
4282         struct kvm_memslots *slots;
4283         struct kvm_memory_slot *memslot;
4284         int i, r;
4285         unsigned long n;
4286         unsigned long *buf, *p;
4287         struct kvm_vcpu *vcpu;
4288
4289         mutex_lock(&kvm->slots_lock);
4290
4291         r = -EINVAL;
4292         if (log->slot >= KVM_USER_MEM_SLOTS)
4293                 goto out;
4294
4295         slots = kvm_memslots(kvm);
4296         memslot = id_to_memslot(slots, log->slot);
4297         r = -ENOENT;
4298         if (!memslot->dirty_bitmap)
4299                 goto out;
4300
4301         /*
4302          * Use second half of bitmap area because both HPT and radix
4303          * accumulate bits in the first half.
4304          */
4305         n = kvm_dirty_bitmap_bytes(memslot);
4306         buf = memslot->dirty_bitmap + n / sizeof(long);
4307         memset(buf, 0, n);
4308
4309         if (kvm_is_radix(kvm))
4310                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4311         else
4312                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4313         if (r)
4314                 goto out;
4315
4316         /*
4317          * We accumulate dirty bits in the first half of the
4318          * memslot's dirty_bitmap area, for when pages are paged
4319          * out or modified by the host directly.  Pick up these
4320          * bits and add them to the map.
4321          */
4322         p = memslot->dirty_bitmap;
4323         for (i = 0; i < n / sizeof(long); ++i)
4324                 buf[i] |= xchg(&p[i], 0);
4325
4326         /* Harvest dirty bits from VPA and DTL updates */
4327         /* Note: we never modify the SLB shadow buffer areas */
4328         kvm_for_each_vcpu(i, vcpu, kvm) {
4329                 spin_lock(&vcpu->arch.vpa_update_lock);
4330                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4331                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4332                 spin_unlock(&vcpu->arch.vpa_update_lock);
4333         }
4334
4335         r = -EFAULT;
4336         if (copy_to_user(log->dirty_bitmap, buf, n))
4337                 goto out;
4338
4339         r = 0;
4340 out:
4341         mutex_unlock(&kvm->slots_lock);
4342         return r;
4343 }
4344
4345 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4346                                         struct kvm_memory_slot *dont)
4347 {
4348         if (!dont || free->arch.rmap != dont->arch.rmap) {
4349                 vfree(free->arch.rmap);
4350                 free->arch.rmap = NULL;
4351         }
4352 }
4353
4354 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4355                                          unsigned long npages)
4356 {
4357         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4358         if (!slot->arch.rmap)
4359                 return -ENOMEM;
4360
4361         return 0;
4362 }
4363
4364 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4365                                         struct kvm_memory_slot *memslot,
4366                                         const struct kvm_userspace_memory_region *mem)
4367 {
4368         return 0;
4369 }
4370
4371 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4372                                 const struct kvm_userspace_memory_region *mem,
4373                                 const struct kvm_memory_slot *old,
4374                                 const struct kvm_memory_slot *new)
4375 {
4376         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4377
4378         /*
4379          * If we are making a new memslot, it might make
4380          * some address that was previously cached as emulated
4381          * MMIO be no longer emulated MMIO, so invalidate
4382          * all the caches of emulated MMIO translations.
4383          */
4384         if (npages)
4385                 atomic64_inc(&kvm->arch.mmio_update);
4386 }
4387
4388 /*
4389  * Update LPCR values in kvm->arch and in vcores.
4390  * Caller must hold kvm->lock.
4391  */
4392 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4393 {
4394         long int i;
4395         u32 cores_done = 0;
4396
4397         if ((kvm->arch.lpcr & mask) == lpcr)
4398                 return;
4399
4400         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4401
4402         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4403                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4404                 if (!vc)
4405                         continue;
4406                 spin_lock(&vc->lock);
4407                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4408                 spin_unlock(&vc->lock);
4409                 if (++cores_done >= kvm->arch.online_vcores)
4410                         break;
4411         }
4412 }
4413
4414 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4415 {
4416         return;
4417 }
4418
4419 void kvmppc_setup_partition_table(struct kvm *kvm)
4420 {
4421         unsigned long dw0, dw1;
4422
4423         if (!kvm_is_radix(kvm)) {
4424                 /* PS field - page size for VRMA */
4425                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4426                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4427                 /* HTABSIZE and HTABORG fields */
4428                 dw0 |= kvm->arch.sdr1;
4429
4430                 /* Second dword as set by userspace */
4431                 dw1 = kvm->arch.process_table;
4432         } else {
4433                 dw0 = PATB_HR | radix__get_tree_size() |
4434                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4435                 dw1 = PATB_GR | kvm->arch.process_table;
4436         }
4437         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4438 }
4439
4440 /*
4441  * Set up HPT (hashed page table) and RMA (real-mode area).
4442  * Must be called with kvm->lock held.
4443  */
4444 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4445 {
4446         int err = 0;
4447         struct kvm *kvm = vcpu->kvm;
4448         unsigned long hva;
4449         struct kvm_memory_slot *memslot;
4450         struct vm_area_struct *vma;
4451         unsigned long lpcr = 0, senc;
4452         unsigned long psize, porder;
4453         int srcu_idx;
4454
4455         /* Allocate hashed page table (if not done already) and reset it */
4456         if (!kvm->arch.hpt.virt) {
4457                 int order = KVM_DEFAULT_HPT_ORDER;
4458                 struct kvm_hpt_info info;
4459
4460                 err = kvmppc_allocate_hpt(&info, order);
4461                 /* If we get here, it means userspace didn't specify a
4462                  * size explicitly.  So, try successively smaller
4463                  * sizes if the default failed. */
4464                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4465                         err  = kvmppc_allocate_hpt(&info, order);
4466
4467                 if (err < 0) {
4468                         pr_err("KVM: Couldn't alloc HPT\n");
4469                         goto out;
4470                 }
4471
4472                 kvmppc_set_hpt(kvm, &info);
4473         }
4474
4475         /* Look up the memslot for guest physical address 0 */
4476         srcu_idx = srcu_read_lock(&kvm->srcu);
4477         memslot = gfn_to_memslot(kvm, 0);
4478
4479         /* We must have some memory at 0 by now */
4480         err = -EINVAL;
4481         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4482                 goto out_srcu;
4483
4484         /* Look up the VMA for the start of this memory slot */
4485         hva = memslot->userspace_addr;
4486         down_read(&current->mm->mmap_sem);
4487         vma = find_vma(current->mm, hva);
4488         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4489                 goto up_out;
4490
4491         psize = vma_kernel_pagesize(vma);
4492
4493         up_read(&current->mm->mmap_sem);
4494
4495         /* We can handle 4k, 64k or 16M pages in the VRMA */
4496         if (psize >= 0x1000000)
4497                 psize = 0x1000000;
4498         else if (psize >= 0x10000)
4499                 psize = 0x10000;
4500         else
4501                 psize = 0x1000;
4502         porder = __ilog2(psize);
4503
4504         senc = slb_pgsize_encoding(psize);
4505         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4506                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4507         /* Create HPTEs in the hash page table for the VRMA */
4508         kvmppc_map_vrma(vcpu, memslot, porder);
4509
4510         /* Update VRMASD field in the LPCR */
4511         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4512                 /* the -4 is to account for senc values starting at 0x10 */
4513                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4514                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4515         }
4516
4517         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4518         smp_wmb();
4519         err = 0;
4520  out_srcu:
4521         srcu_read_unlock(&kvm->srcu, srcu_idx);
4522  out:
4523         return err;
4524
4525  up_out:
4526         up_read(&current->mm->mmap_sem);
4527         goto out_srcu;
4528 }
4529
4530 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4531 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4532 {
4533         if (nesting_enabled(kvm))
4534                 kvmhv_release_all_nested(kvm);
4535         kvmppc_free_radix(kvm);
4536         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4537                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4538         kvmppc_rmap_reset(kvm);
4539         kvm->arch.radix = 0;
4540         kvm->arch.process_table = 0;
4541         return 0;
4542 }
4543
4544 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4545 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4546 {
4547         int err;
4548
4549         err = kvmppc_init_vm_radix(kvm);
4550         if (err)
4551                 return err;
4552
4553         kvmppc_free_hpt(&kvm->arch.hpt);
4554         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4555                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4556         kvmppc_rmap_reset(kvm);
4557         kvm->arch.radix = 1;
4558         return 0;
4559 }
4560
4561 #ifdef CONFIG_KVM_XICS
4562 /*
4563  * Allocate a per-core structure for managing state about which cores are
4564  * running in the host versus the guest and for exchanging data between
4565  * real mode KVM and CPU running in the host.
4566  * This is only done for the first VM.
4567  * The allocated structure stays even if all VMs have stopped.
4568  * It is only freed when the kvm-hv module is unloaded.
4569  * It's OK for this routine to fail, we just don't support host
4570  * core operations like redirecting H_IPI wakeups.
4571  */
4572 void kvmppc_alloc_host_rm_ops(void)
4573 {
4574         struct kvmppc_host_rm_ops *ops;
4575         unsigned long l_ops;
4576         int cpu, core;
4577         int size;
4578
4579         /* Not the first time here ? */
4580         if (kvmppc_host_rm_ops_hv != NULL)
4581                 return;
4582
4583         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4584         if (!ops)
4585                 return;
4586
4587         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4588         ops->rm_core = kzalloc(size, GFP_KERNEL);
4589
4590         if (!ops->rm_core) {
4591                 kfree(ops);
4592                 return;
4593         }
4594
4595         cpus_read_lock();
4596
4597         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4598                 if (!cpu_online(cpu))
4599                         continue;
4600
4601                 core = cpu >> threads_shift;
4602                 ops->rm_core[core].rm_state.in_host = 1;
4603         }
4604
4605         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4606
4607         /*
4608          * Make the contents of the kvmppc_host_rm_ops structure visible
4609          * to other CPUs before we assign it to the global variable.
4610          * Do an atomic assignment (no locks used here), but if someone
4611          * beats us to it, just free our copy and return.
4612          */
4613         smp_wmb();
4614         l_ops = (unsigned long) ops;
4615
4616         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4617                 cpus_read_unlock();
4618                 kfree(ops->rm_core);
4619                 kfree(ops);
4620                 return;
4621         }
4622
4623         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4624                                              "ppc/kvm_book3s:prepare",
4625                                              kvmppc_set_host_core,
4626                                              kvmppc_clear_host_core);
4627         cpus_read_unlock();
4628 }
4629
4630 void kvmppc_free_host_rm_ops(void)
4631 {
4632         if (kvmppc_host_rm_ops_hv) {
4633                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4634                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4635                 kfree(kvmppc_host_rm_ops_hv);
4636                 kvmppc_host_rm_ops_hv = NULL;
4637         }
4638 }
4639 #endif
4640
4641 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4642 {
4643         unsigned long lpcr, lpid;
4644         char buf[32];
4645         int ret;
4646
4647         /* Allocate the guest's logical partition ID */
4648
4649         lpid = kvmppc_alloc_lpid();
4650         if ((long)lpid < 0)
4651                 return -ENOMEM;
4652         kvm->arch.lpid = lpid;
4653
4654         kvmppc_alloc_host_rm_ops();
4655
4656         kvmhv_vm_nested_init(kvm);
4657
4658         /*
4659          * Since we don't flush the TLB when tearing down a VM,
4660          * and this lpid might have previously been used,
4661          * make sure we flush on each core before running the new VM.
4662          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4663          * does this flush for us.
4664          */
4665         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4666                 cpumask_setall(&kvm->arch.need_tlb_flush);
4667
4668         /* Start out with the default set of hcalls enabled */
4669         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4670                sizeof(kvm->arch.enabled_hcalls));
4671
4672         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4673                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4674
4675         /* Init LPCR for virtual RMA mode */
4676         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4677                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4678                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4679                 lpcr &= LPCR_PECE | LPCR_LPES;
4680         } else {
4681                 lpcr = 0;
4682         }
4683         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4684                 LPCR_VPM0 | LPCR_VPM1;
4685         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4686                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4687         /* On POWER8 turn on online bit to enable PURR/SPURR */
4688         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4689                 lpcr |= LPCR_ONL;
4690         /*
4691          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4692          * Set HVICE bit to enable hypervisor virtualization interrupts.
4693          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4694          * be unnecessary but better safe than sorry in case we re-enable
4695          * EE in HV mode with this LPCR still set)
4696          */
4697         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4698                 lpcr &= ~LPCR_VPM0;
4699                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4700
4701                 /*
4702                  * If xive is enabled, we route 0x500 interrupts directly
4703                  * to the guest.
4704                  */
4705                 if (xive_enabled())
4706                         lpcr |= LPCR_LPES;
4707         }
4708
4709         /*
4710          * If the host uses radix, the guest starts out as radix.
4711          */
4712         if (radix_enabled()) {
4713                 kvm->arch.radix = 1;
4714                 kvm->arch.mmu_ready = 1;
4715                 lpcr &= ~LPCR_VPM1;
4716                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4717                 ret = kvmppc_init_vm_radix(kvm);
4718                 if (ret) {
4719                         kvmppc_free_lpid(kvm->arch.lpid);
4720                         return ret;
4721                 }
4722                 kvmppc_setup_partition_table(kvm);
4723         }
4724
4725         kvm->arch.lpcr = lpcr;
4726
4727         /* Initialization for future HPT resizes */
4728         kvm->arch.resize_hpt = NULL;
4729
4730         /*
4731          * Work out how many sets the TLB has, for the use of
4732          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4733          */
4734         if (radix_enabled())
4735                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4736         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4737                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4738         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4739                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4740         else
4741                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4742
4743         /*
4744          * Track that we now have a HV mode VM active. This blocks secondary
4745          * CPU threads from coming online.
4746          * On POWER9, we only need to do this if the "indep_threads_mode"
4747          * module parameter has been set to N.
4748          */
4749         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4750                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4751                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4752                         kvm->arch.threads_indep = true;
4753                 } else {
4754                         kvm->arch.threads_indep = indep_threads_mode;
4755                 }
4756         }
4757         if (!kvm->arch.threads_indep)
4758                 kvm_hv_vm_activated();
4759
4760         /*
4761          * Initialize smt_mode depending on processor.
4762          * POWER8 and earlier have to use "strict" threading, where
4763          * all vCPUs in a vcore have to run on the same (sub)core,
4764          * whereas on POWER9 the threads can each run a different
4765          * guest.
4766          */
4767         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4768                 kvm->arch.smt_mode = threads_per_subcore;
4769         else
4770                 kvm->arch.smt_mode = 1;
4771         kvm->arch.emul_smt_mode = 1;
4772
4773         /*
4774          * Create a debugfs directory for the VM
4775          */
4776         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4777         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4778         kvmppc_mmu_debugfs_init(kvm);
4779         if (radix_enabled())
4780                 kvmhv_radix_debugfs_init(kvm);
4781
4782         return 0;
4783 }
4784
4785 static void kvmppc_free_vcores(struct kvm *kvm)
4786 {
4787         long int i;
4788
4789         for (i = 0; i < KVM_MAX_VCORES; ++i)
4790                 kfree(kvm->arch.vcores[i]);
4791         kvm->arch.online_vcores = 0;
4792 }
4793
4794 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4795 {
4796         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4797
4798         if (!kvm->arch.threads_indep)
4799                 kvm_hv_vm_deactivated();
4800
4801         kvmppc_free_vcores(kvm);
4802
4803
4804         if (kvm_is_radix(kvm))
4805                 kvmppc_free_radix(kvm);
4806         else
4807                 kvmppc_free_hpt(&kvm->arch.hpt);
4808
4809         /* Perform global invalidation and return lpid to the pool */
4810         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4811                 if (nesting_enabled(kvm))
4812                         kvmhv_release_all_nested(kvm);
4813                 kvm->arch.process_table = 0;
4814                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4815         }
4816         kvmppc_free_lpid(kvm->arch.lpid);
4817
4818         kvmppc_free_pimap(kvm);
4819 }
4820
4821 /* We don't need to emulate any privileged instructions or dcbz */
4822 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4823                                      unsigned int inst, int *advance)
4824 {
4825         return EMULATE_FAIL;
4826 }
4827
4828 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4829                                         ulong spr_val)
4830 {
4831         return EMULATE_FAIL;
4832 }
4833
4834 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4835                                         ulong *spr_val)
4836 {
4837         return EMULATE_FAIL;
4838 }
4839
4840 static int kvmppc_core_check_processor_compat_hv(void)
4841 {
4842         if (cpu_has_feature(CPU_FTR_HVMODE) &&
4843             cpu_has_feature(CPU_FTR_ARCH_206))
4844                 return 0;
4845
4846         /* POWER9 in radix mode is capable of being a nested hypervisor. */
4847         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4848                 return 0;
4849
4850         return -EIO;
4851 }
4852
4853 #ifdef CONFIG_KVM_XICS
4854
4855 void kvmppc_free_pimap(struct kvm *kvm)
4856 {
4857         kfree(kvm->arch.pimap);
4858 }
4859
4860 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4861 {
4862         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4863 }
4864
4865 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4866 {
4867         struct irq_desc *desc;
4868         struct kvmppc_irq_map *irq_map;
4869         struct kvmppc_passthru_irqmap *pimap;
4870         struct irq_chip *chip;
4871         int i, rc = 0;
4872
4873         if (!kvm_irq_bypass)
4874                 return 1;
4875
4876         desc = irq_to_desc(host_irq);
4877         if (!desc)
4878                 return -EIO;
4879
4880         mutex_lock(&kvm->lock);
4881
4882         pimap = kvm->arch.pimap;
4883         if (pimap == NULL) {
4884                 /* First call, allocate structure to hold IRQ map */
4885                 pimap = kvmppc_alloc_pimap();
4886                 if (pimap == NULL) {
4887                         mutex_unlock(&kvm->lock);
4888                         return -ENOMEM;
4889                 }
4890                 kvm->arch.pimap = pimap;
4891         }
4892
4893         /*
4894          * For now, we only support interrupts for which the EOI operation
4895          * is an OPAL call followed by a write to XIRR, since that's
4896          * what our real-mode EOI code does, or a XIVE interrupt
4897          */
4898         chip = irq_data_get_irq_chip(&desc->irq_data);
4899         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4900                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4901                         host_irq, guest_gsi);
4902                 mutex_unlock(&kvm->lock);
4903                 return -ENOENT;
4904         }
4905
4906         /*
4907          * See if we already have an entry for this guest IRQ number.
4908          * If it's mapped to a hardware IRQ number, that's an error,
4909          * otherwise re-use this entry.
4910          */
4911         for (i = 0; i < pimap->n_mapped; i++) {
4912                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4913                         if (pimap->mapped[i].r_hwirq) {
4914                                 mutex_unlock(&kvm->lock);
4915                                 return -EINVAL;
4916                         }
4917                         break;
4918                 }
4919         }
4920
4921         if (i == KVMPPC_PIRQ_MAPPED) {
4922                 mutex_unlock(&kvm->lock);
4923                 return -EAGAIN;         /* table is full */
4924         }
4925
4926         irq_map = &pimap->mapped[i];
4927
4928         irq_map->v_hwirq = guest_gsi;
4929         irq_map->desc = desc;
4930
4931         /*
4932          * Order the above two stores before the next to serialize with
4933          * the KVM real mode handler.
4934          */
4935         smp_wmb();
4936         irq_map->r_hwirq = desc->irq_data.hwirq;
4937
4938         if (i == pimap->n_mapped)
4939                 pimap->n_mapped++;
4940
4941         if (xive_enabled())
4942                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4943         else
4944                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4945         if (rc)
4946                 irq_map->r_hwirq = 0;
4947
4948         mutex_unlock(&kvm->lock);
4949
4950         return 0;
4951 }
4952
4953 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4954 {
4955         struct irq_desc *desc;
4956         struct kvmppc_passthru_irqmap *pimap;
4957         int i, rc = 0;
4958
4959         if (!kvm_irq_bypass)
4960                 return 0;
4961
4962         desc = irq_to_desc(host_irq);
4963         if (!desc)
4964                 return -EIO;
4965
4966         mutex_lock(&kvm->lock);
4967         if (!kvm->arch.pimap)
4968                 goto unlock;
4969
4970         pimap = kvm->arch.pimap;
4971
4972         for (i = 0; i < pimap->n_mapped; i++) {
4973                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4974                         break;
4975         }
4976
4977         if (i == pimap->n_mapped) {
4978                 mutex_unlock(&kvm->lock);
4979                 return -ENODEV;
4980         }
4981
4982         if (xive_enabled())
4983                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4984         else
4985                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4986
4987         /* invalidate the entry (what do do on error from the above ?) */
4988         pimap->mapped[i].r_hwirq = 0;
4989
4990         /*
4991          * We don't free this structure even when the count goes to
4992          * zero. The structure is freed when we destroy the VM.
4993          */
4994  unlock:
4995         mutex_unlock(&kvm->lock);
4996         return rc;
4997 }
4998
4999 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5000                                              struct irq_bypass_producer *prod)
5001 {
5002         int ret = 0;
5003         struct kvm_kernel_irqfd *irqfd =
5004                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5005
5006         irqfd->producer = prod;
5007
5008         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5009         if (ret)
5010                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5011                         prod->irq, irqfd->gsi, ret);
5012
5013         return ret;
5014 }
5015
5016 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5017                                               struct irq_bypass_producer *prod)
5018 {
5019         int ret;
5020         struct kvm_kernel_irqfd *irqfd =
5021                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5022
5023         irqfd->producer = NULL;
5024
5025         /*
5026          * When producer of consumer is unregistered, we change back to
5027          * default external interrupt handling mode - KVM real mode
5028          * will switch back to host.
5029          */
5030         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5031         if (ret)
5032                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5033                         prod->irq, irqfd->gsi, ret);
5034 }
5035 #endif
5036
5037 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5038                                  unsigned int ioctl, unsigned long arg)
5039 {
5040         struct kvm *kvm __maybe_unused = filp->private_data;
5041         void __user *argp = (void __user *)arg;
5042         long r;
5043
5044         switch (ioctl) {
5045
5046         case KVM_PPC_ALLOCATE_HTAB: {
5047                 u32 htab_order;
5048
5049                 r = -EFAULT;
5050                 if (get_user(htab_order, (u32 __user *)argp))
5051                         break;
5052                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5053                 if (r)
5054                         break;
5055                 r = 0;
5056                 break;
5057         }
5058
5059         case KVM_PPC_GET_HTAB_FD: {
5060                 struct kvm_get_htab_fd ghf;
5061
5062                 r = -EFAULT;
5063                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5064                         break;
5065                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5066                 break;
5067         }
5068
5069         case KVM_PPC_RESIZE_HPT_PREPARE: {
5070                 struct kvm_ppc_resize_hpt rhpt;
5071
5072                 r = -EFAULT;
5073                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5074                         break;
5075
5076                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5077                 break;
5078         }
5079
5080         case KVM_PPC_RESIZE_HPT_COMMIT: {
5081                 struct kvm_ppc_resize_hpt rhpt;
5082
5083                 r = -EFAULT;
5084                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5085                         break;
5086
5087                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5088                 break;
5089         }
5090
5091         default:
5092                 r = -ENOTTY;
5093         }
5094
5095         return r;
5096 }
5097
5098 /*
5099  * List of hcall numbers to enable by default.
5100  * For compatibility with old userspace, we enable by default
5101  * all hcalls that were implemented before the hcall-enabling
5102  * facility was added.  Note this list should not include H_RTAS.
5103  */
5104 static unsigned int default_hcall_list[] = {
5105         H_REMOVE,
5106         H_ENTER,
5107         H_READ,
5108         H_PROTECT,
5109         H_BULK_REMOVE,
5110         H_GET_TCE,
5111         H_PUT_TCE,
5112         H_SET_DABR,
5113         H_SET_XDABR,
5114         H_CEDE,
5115         H_PROD,
5116         H_CONFER,
5117         H_REGISTER_VPA,
5118 #ifdef CONFIG_KVM_XICS
5119         H_EOI,
5120         H_CPPR,
5121         H_IPI,
5122         H_IPOLL,
5123         H_XIRR,
5124         H_XIRR_X,
5125 #endif
5126         0
5127 };
5128
5129 static void init_default_hcalls(void)
5130 {
5131         int i;
5132         unsigned int hcall;
5133
5134         for (i = 0; default_hcall_list[i]; ++i) {
5135                 hcall = default_hcall_list[i];
5136                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5137                 __set_bit(hcall / 4, default_enabled_hcalls);
5138         }
5139 }
5140
5141 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5142 {
5143         unsigned long lpcr;
5144         int radix;
5145         int err;
5146
5147         /* If not on a POWER9, reject it */
5148         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5149                 return -ENODEV;
5150
5151         /* If any unknown flags set, reject it */
5152         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5153                 return -EINVAL;
5154
5155         /* GR (guest radix) bit in process_table field must match */
5156         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5157         if (!!(cfg->process_table & PATB_GR) != radix)
5158                 return -EINVAL;
5159
5160         /* Process table size field must be reasonable, i.e. <= 24 */
5161         if ((cfg->process_table & PRTS_MASK) > 24)
5162                 return -EINVAL;
5163
5164         /* We can change a guest to/from radix now, if the host is radix */
5165         if (radix && !radix_enabled())
5166                 return -EINVAL;
5167
5168         /* If we're a nested hypervisor, we currently only support radix */
5169         if (kvmhv_on_pseries() && !radix)
5170                 return -EINVAL;
5171
5172         mutex_lock(&kvm->lock);
5173         if (radix != kvm_is_radix(kvm)) {
5174                 if (kvm->arch.mmu_ready) {
5175                         kvm->arch.mmu_ready = 0;
5176                         /* order mmu_ready vs. vcpus_running */
5177                         smp_mb();
5178                         if (atomic_read(&kvm->arch.vcpus_running)) {
5179                                 kvm->arch.mmu_ready = 1;
5180                                 err = -EBUSY;
5181                                 goto out_unlock;
5182                         }
5183                 }
5184                 if (radix)
5185                         err = kvmppc_switch_mmu_to_radix(kvm);
5186                 else
5187                         err = kvmppc_switch_mmu_to_hpt(kvm);
5188                 if (err)
5189                         goto out_unlock;
5190         }
5191
5192         kvm->arch.process_table = cfg->process_table;
5193         kvmppc_setup_partition_table(kvm);
5194
5195         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5196         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5197         err = 0;
5198
5199  out_unlock:
5200         mutex_unlock(&kvm->lock);
5201         return err;
5202 }
5203
5204 static int kvmhv_enable_nested(struct kvm *kvm)
5205 {
5206         if (!nested)
5207                 return -EPERM;
5208         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5209                 return -ENODEV;
5210
5211         /* kvm == NULL means the caller is testing if the capability exists */
5212         if (kvm)
5213                 kvm->arch.nested_enable = true;
5214         return 0;
5215 }
5216
5217 static struct kvmppc_ops kvm_ops_hv = {
5218         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5219         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5220         .get_one_reg = kvmppc_get_one_reg_hv,
5221         .set_one_reg = kvmppc_set_one_reg_hv,
5222         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5223         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5224         .set_msr     = kvmppc_set_msr_hv,
5225         .vcpu_run    = kvmppc_vcpu_run_hv,
5226         .vcpu_create = kvmppc_core_vcpu_create_hv,
5227         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5228         .check_requests = kvmppc_core_check_requests_hv,
5229         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5230         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5231         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5232         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5233         .unmap_hva_range = kvm_unmap_hva_range_hv,
5234         .age_hva  = kvm_age_hva_hv,
5235         .test_age_hva = kvm_test_age_hva_hv,
5236         .set_spte_hva = kvm_set_spte_hva_hv,
5237         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5238         .free_memslot = kvmppc_core_free_memslot_hv,
5239         .create_memslot = kvmppc_core_create_memslot_hv,
5240         .init_vm =  kvmppc_core_init_vm_hv,
5241         .destroy_vm = kvmppc_core_destroy_vm_hv,
5242         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5243         .emulate_op = kvmppc_core_emulate_op_hv,
5244         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5245         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5246         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5247         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5248         .hcall_implemented = kvmppc_hcall_impl_hv,
5249 #ifdef CONFIG_KVM_XICS
5250         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5251         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5252 #endif
5253         .configure_mmu = kvmhv_configure_mmu,
5254         .get_rmmu_info = kvmhv_get_rmmu_info,
5255         .set_smt_mode = kvmhv_set_smt_mode,
5256         .enable_nested = kvmhv_enable_nested,
5257 };
5258
5259 static int kvm_init_subcore_bitmap(void)
5260 {
5261         int i, j;
5262         int nr_cores = cpu_nr_cores();
5263         struct sibling_subcore_state *sibling_subcore_state;
5264
5265         for (i = 0; i < nr_cores; i++) {
5266                 int first_cpu = i * threads_per_core;
5267                 int node = cpu_to_node(first_cpu);
5268
5269                 /* Ignore if it is already allocated. */
5270                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5271                         continue;
5272
5273                 sibling_subcore_state =
5274                         kmalloc_node(sizeof(struct sibling_subcore_state),
5275                                                         GFP_KERNEL, node);
5276                 if (!sibling_subcore_state)
5277                         return -ENOMEM;
5278
5279                 memset(sibling_subcore_state, 0,
5280                                 sizeof(struct sibling_subcore_state));
5281
5282                 for (j = 0; j < threads_per_core; j++) {
5283                         int cpu = first_cpu + j;
5284
5285                         paca_ptrs[cpu]->sibling_subcore_state =
5286                                                 sibling_subcore_state;
5287                 }
5288         }
5289         return 0;
5290 }
5291
5292 static int kvmppc_radix_possible(void)
5293 {
5294         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5295 }
5296
5297 static int kvmppc_book3s_init_hv(void)
5298 {
5299         int r;
5300         /*
5301          * FIXME!! Do we need to check on all cpus ?
5302          */
5303         r = kvmppc_core_check_processor_compat_hv();
5304         if (r < 0)
5305                 return -ENODEV;
5306
5307         r = kvmhv_nested_init();
5308         if (r)
5309                 return r;
5310
5311         r = kvm_init_subcore_bitmap();
5312         if (r)
5313                 return r;
5314
5315         /*
5316          * We need a way of accessing the XICS interrupt controller,
5317          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5318          * indirectly, via OPAL.
5319          */
5320 #ifdef CONFIG_SMP
5321         if (!xive_enabled() && !kvmhv_on_pseries() &&
5322             !local_paca->kvm_hstate.xics_phys) {
5323                 struct device_node *np;
5324
5325                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5326                 if (!np) {
5327                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5328                         return -ENODEV;
5329                 }
5330                 /* presence of intc confirmed - node can be dropped again */
5331                 of_node_put(np);
5332         }
5333 #endif
5334
5335         kvm_ops_hv.owner = THIS_MODULE;
5336         kvmppc_hv_ops = &kvm_ops_hv;
5337
5338         init_default_hcalls();
5339
5340         init_vcore_lists();
5341
5342         r = kvmppc_mmu_hv_init();
5343         if (r)
5344                 return r;
5345
5346         if (kvmppc_radix_possible())
5347                 r = kvmppc_radix_init();
5348
5349         /*
5350          * POWER9 chips before version 2.02 can't have some threads in
5351          * HPT mode and some in radix mode on the same core.
5352          */
5353         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5354                 unsigned int pvr = mfspr(SPRN_PVR);
5355                 if ((pvr >> 16) == PVR_POWER9 &&
5356                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5357                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5358                         no_mixing_hpt_and_radix = true;
5359         }
5360
5361         return r;
5362 }
5363
5364 static void kvmppc_book3s_exit_hv(void)
5365 {
5366         kvmppc_free_host_rm_ops();
5367         if (kvmppc_radix_possible())
5368                 kvmppc_radix_exit();
5369         kvmppc_hv_ops = NULL;
5370         kvmhv_nested_exit();
5371 }
5372
5373 module_init(kvmppc_book3s_init_hv);
5374 module_exit(kvmppc_book3s_exit_hv);
5375 MODULE_LICENSE("GPL");
5376 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5377 MODULE_ALIAS("devname:kvm");