Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cache.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <linux/gfp.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 #include <linux/hugetlb.h>
57 #include <linux/module.h>
58
59 #include "book3s.h"
60
61 /* #define EXIT_DEBUG */
62 /* #define EXIT_DEBUG_SIMPLE */
63 /* #define EXIT_DEBUG_INT */
64
65 /* Used to indicate that a guest page fault needs to be handled */
66 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
67
68 /* Used as a "null" value for timebase values */
69 #define TB_NIL  (~(u64)0)
70
71 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
72
73 #if defined(CONFIG_PPC_64K_PAGES)
74 #define MPP_BUFFER_ORDER        0
75 #elif defined(CONFIG_PPC_4K_PAGES)
76 #define MPP_BUFFER_ORDER        3
77 #endif
78
79
80 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
81 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
82
83 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
84 {
85         int me;
86         int cpu = vcpu->cpu;
87         wait_queue_head_t *wqp;
88
89         wqp = kvm_arch_vcpu_wq(vcpu);
90         if (waitqueue_active(wqp)) {
91                 wake_up_interruptible(wqp);
92                 ++vcpu->stat.halt_wakeup;
93         }
94
95         me = get_cpu();
96
97         /* CPU points to the first thread of the core */
98         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
99 #ifdef CONFIG_PPC_ICP_NATIVE
100                 int real_cpu = cpu + vcpu->arch.ptid;
101                 if (paca[real_cpu].kvm_hstate.xics_phys)
102                         xics_wake_cpu(real_cpu);
103                 else
104 #endif
105                 if (cpu_online(cpu))
106                         smp_send_reschedule(cpu);
107         }
108         put_cpu();
109 }
110
111 /*
112  * We use the vcpu_load/put functions to measure stolen time.
113  * Stolen time is counted as time when either the vcpu is able to
114  * run as part of a virtual core, but the task running the vcore
115  * is preempted or sleeping, or when the vcpu needs something done
116  * in the kernel by the task running the vcpu, but that task is
117  * preempted or sleeping.  Those two things have to be counted
118  * separately, since one of the vcpu tasks will take on the job
119  * of running the core, and the other vcpu tasks in the vcore will
120  * sleep waiting for it to do that, but that sleep shouldn't count
121  * as stolen time.
122  *
123  * Hence we accumulate stolen time when the vcpu can run as part of
124  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
125  * needs its task to do other things in the kernel (for example,
126  * service a page fault) in busy_stolen.  We don't accumulate
127  * stolen time for a vcore when it is inactive, or for a vcpu
128  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
129  * a misnomer; it means that the vcpu task is not executing in
130  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
131  * the kernel.  We don't have any way of dividing up that time
132  * between time that the vcpu is genuinely stopped, time that
133  * the task is actively working on behalf of the vcpu, and time
134  * that the task is preempted, so we don't count any of it as
135  * stolen.
136  *
137  * Updates to busy_stolen are protected by arch.tbacct_lock;
138  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
139  * of the vcpu that has taken responsibility for running the vcore
140  * (i.e. vc->runner).  The stolen times are measured in units of
141  * timebase ticks.  (Note that the != TB_NIL checks below are
142  * purely defensive; they should never fail.)
143  */
144
145 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
146 {
147         struct kvmppc_vcore *vc = vcpu->arch.vcore;
148         unsigned long flags;
149
150         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
152             vc->preempt_tb != TB_NIL) {
153                 vc->stolen_tb += mftb() - vc->preempt_tb;
154                 vc->preempt_tb = TB_NIL;
155         }
156         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
157             vcpu->arch.busy_preempt != TB_NIL) {
158                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
159                 vcpu->arch.busy_preempt = TB_NIL;
160         }
161         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
162 }
163
164 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
165 {
166         struct kvmppc_vcore *vc = vcpu->arch.vcore;
167         unsigned long flags;
168
169         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
170         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
171                 vc->preempt_tb = mftb();
172         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
173                 vcpu->arch.busy_preempt = mftb();
174         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
175 }
176
177 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
178 {
179         vcpu->arch.shregs.msr = msr;
180         kvmppc_end_cede(vcpu);
181 }
182
183 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
184 {
185         vcpu->arch.pvr = pvr;
186 }
187
188 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
189 {
190         unsigned long pcr = 0;
191         struct kvmppc_vcore *vc = vcpu->arch.vcore;
192
193         if (arch_compat) {
194                 if (!cpu_has_feature(CPU_FTR_ARCH_206))
195                         return -EINVAL; /* 970 has no compat mode support */
196
197                 switch (arch_compat) {
198                 case PVR_ARCH_205:
199                         /*
200                          * If an arch bit is set in PCR, all the defined
201                          * higher-order arch bits also have to be set.
202                          */
203                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
204                         break;
205                 case PVR_ARCH_206:
206                 case PVR_ARCH_206p:
207                         pcr = PCR_ARCH_206;
208                         break;
209                 case PVR_ARCH_207:
210                         break;
211                 default:
212                         return -EINVAL;
213                 }
214
215                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
216                         /* POWER7 can't emulate POWER8 */
217                         if (!(pcr & PCR_ARCH_206))
218                                 return -EINVAL;
219                         pcr &= ~PCR_ARCH_206;
220                 }
221         }
222
223         spin_lock(&vc->lock);
224         vc->arch_compat = arch_compat;
225         vc->pcr = pcr;
226         spin_unlock(&vc->lock);
227
228         return 0;
229 }
230
231 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
232 {
233         int r;
234
235         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
236         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
237                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
238         for (r = 0; r < 16; ++r)
239                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
240                        r, kvmppc_get_gpr(vcpu, r),
241                        r+16, kvmppc_get_gpr(vcpu, r+16));
242         pr_err("ctr = %.16lx  lr  = %.16lx\n",
243                vcpu->arch.ctr, vcpu->arch.lr);
244         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
245                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
246         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
247                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
248         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
249                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
250         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
251                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
252         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
253         pr_err("fault dar = %.16lx dsisr = %.8x\n",
254                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
255         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
256         for (r = 0; r < vcpu->arch.slb_max; ++r)
257                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
258                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
259         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
260                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
261                vcpu->arch.last_inst);
262 }
263
264 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
265 {
266         int r;
267         struct kvm_vcpu *v, *ret = NULL;
268
269         mutex_lock(&kvm->lock);
270         kvm_for_each_vcpu(r, v, kvm) {
271                 if (v->vcpu_id == id) {
272                         ret = v;
273                         break;
274                 }
275         }
276         mutex_unlock(&kvm->lock);
277         return ret;
278 }
279
280 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
281 {
282         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
283         vpa->yield_count = cpu_to_be32(1);
284 }
285
286 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
287                    unsigned long addr, unsigned long len)
288 {
289         /* check address is cacheline aligned */
290         if (addr & (L1_CACHE_BYTES - 1))
291                 return -EINVAL;
292         spin_lock(&vcpu->arch.vpa_update_lock);
293         if (v->next_gpa != addr || v->len != len) {
294                 v->next_gpa = addr;
295                 v->len = addr ? len : 0;
296                 v->update_pending = 1;
297         }
298         spin_unlock(&vcpu->arch.vpa_update_lock);
299         return 0;
300 }
301
302 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
303 struct reg_vpa {
304         u32 dummy;
305         union {
306                 __be16 hword;
307                 __be32 word;
308         } length;
309 };
310
311 static int vpa_is_registered(struct kvmppc_vpa *vpap)
312 {
313         if (vpap->update_pending)
314                 return vpap->next_gpa != 0;
315         return vpap->pinned_addr != NULL;
316 }
317
318 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
319                                        unsigned long flags,
320                                        unsigned long vcpuid, unsigned long vpa)
321 {
322         struct kvm *kvm = vcpu->kvm;
323         unsigned long len, nb;
324         void *va;
325         struct kvm_vcpu *tvcpu;
326         int err;
327         int subfunc;
328         struct kvmppc_vpa *vpap;
329
330         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
331         if (!tvcpu)
332                 return H_PARAMETER;
333
334         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
335         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
336             subfunc == H_VPA_REG_SLB) {
337                 /* Registering new area - address must be cache-line aligned */
338                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
339                         return H_PARAMETER;
340
341                 /* convert logical addr to kernel addr and read length */
342                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
343                 if (va == NULL)
344                         return H_PARAMETER;
345                 if (subfunc == H_VPA_REG_VPA)
346                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
347                 else
348                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
349                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
350
351                 /* Check length */
352                 if (len > nb || len < sizeof(struct reg_vpa))
353                         return H_PARAMETER;
354         } else {
355                 vpa = 0;
356                 len = 0;
357         }
358
359         err = H_PARAMETER;
360         vpap = NULL;
361         spin_lock(&tvcpu->arch.vpa_update_lock);
362
363         switch (subfunc) {
364         case H_VPA_REG_VPA:             /* register VPA */
365                 if (len < sizeof(struct lppaca))
366                         break;
367                 vpap = &tvcpu->arch.vpa;
368                 err = 0;
369                 break;
370
371         case H_VPA_REG_DTL:             /* register DTL */
372                 if (len < sizeof(struct dtl_entry))
373                         break;
374                 len -= len % sizeof(struct dtl_entry);
375
376                 /* Check that they have previously registered a VPA */
377                 err = H_RESOURCE;
378                 if (!vpa_is_registered(&tvcpu->arch.vpa))
379                         break;
380
381                 vpap = &tvcpu->arch.dtl;
382                 err = 0;
383                 break;
384
385         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
386                 /* Check that they have previously registered a VPA */
387                 err = H_RESOURCE;
388                 if (!vpa_is_registered(&tvcpu->arch.vpa))
389                         break;
390
391                 vpap = &tvcpu->arch.slb_shadow;
392                 err = 0;
393                 break;
394
395         case H_VPA_DEREG_VPA:           /* deregister VPA */
396                 /* Check they don't still have a DTL or SLB buf registered */
397                 err = H_RESOURCE;
398                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
399                     vpa_is_registered(&tvcpu->arch.slb_shadow))
400                         break;
401
402                 vpap = &tvcpu->arch.vpa;
403                 err = 0;
404                 break;
405
406         case H_VPA_DEREG_DTL:           /* deregister DTL */
407                 vpap = &tvcpu->arch.dtl;
408                 err = 0;
409                 break;
410
411         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
412                 vpap = &tvcpu->arch.slb_shadow;
413                 err = 0;
414                 break;
415         }
416
417         if (vpap) {
418                 vpap->next_gpa = vpa;
419                 vpap->len = len;
420                 vpap->update_pending = 1;
421         }
422
423         spin_unlock(&tvcpu->arch.vpa_update_lock);
424
425         return err;
426 }
427
428 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
429 {
430         struct kvm *kvm = vcpu->kvm;
431         void *va;
432         unsigned long nb;
433         unsigned long gpa;
434
435         /*
436          * We need to pin the page pointed to by vpap->next_gpa,
437          * but we can't call kvmppc_pin_guest_page under the lock
438          * as it does get_user_pages() and down_read().  So we
439          * have to drop the lock, pin the page, then get the lock
440          * again and check that a new area didn't get registered
441          * in the meantime.
442          */
443         for (;;) {
444                 gpa = vpap->next_gpa;
445                 spin_unlock(&vcpu->arch.vpa_update_lock);
446                 va = NULL;
447                 nb = 0;
448                 if (gpa)
449                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
450                 spin_lock(&vcpu->arch.vpa_update_lock);
451                 if (gpa == vpap->next_gpa)
452                         break;
453                 /* sigh... unpin that one and try again */
454                 if (va)
455                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
456         }
457
458         vpap->update_pending = 0;
459         if (va && nb < vpap->len) {
460                 /*
461                  * If it's now too short, it must be that userspace
462                  * has changed the mappings underlying guest memory,
463                  * so unregister the region.
464                  */
465                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
466                 va = NULL;
467         }
468         if (vpap->pinned_addr)
469                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
470                                         vpap->dirty);
471         vpap->gpa = gpa;
472         vpap->pinned_addr = va;
473         vpap->dirty = false;
474         if (va)
475                 vpap->pinned_end = va + vpap->len;
476 }
477
478 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
479 {
480         if (!(vcpu->arch.vpa.update_pending ||
481               vcpu->arch.slb_shadow.update_pending ||
482               vcpu->arch.dtl.update_pending))
483                 return;
484
485         spin_lock(&vcpu->arch.vpa_update_lock);
486         if (vcpu->arch.vpa.update_pending) {
487                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
488                 if (vcpu->arch.vpa.pinned_addr)
489                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
490         }
491         if (vcpu->arch.dtl.update_pending) {
492                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
493                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
494                 vcpu->arch.dtl_index = 0;
495         }
496         if (vcpu->arch.slb_shadow.update_pending)
497                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
498         spin_unlock(&vcpu->arch.vpa_update_lock);
499 }
500
501 /*
502  * Return the accumulated stolen time for the vcore up until `now'.
503  * The caller should hold the vcore lock.
504  */
505 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
506 {
507         u64 p;
508
509         /*
510          * If we are the task running the vcore, then since we hold
511          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
512          * can't be updated, so we don't need the tbacct_lock.
513          * If the vcore is inactive, it can't become active (since we
514          * hold the vcore lock), so the vcpu load/put functions won't
515          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
516          */
517         if (vc->vcore_state != VCORE_INACTIVE &&
518             vc->runner->arch.run_task != current) {
519                 spin_lock_irq(&vc->runner->arch.tbacct_lock);
520                 p = vc->stolen_tb;
521                 if (vc->preempt_tb != TB_NIL)
522                         p += now - vc->preempt_tb;
523                 spin_unlock_irq(&vc->runner->arch.tbacct_lock);
524         } else {
525                 p = vc->stolen_tb;
526         }
527         return p;
528 }
529
530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
531                                     struct kvmppc_vcore *vc)
532 {
533         struct dtl_entry *dt;
534         struct lppaca *vpa;
535         unsigned long stolen;
536         unsigned long core_stolen;
537         u64 now;
538
539         dt = vcpu->arch.dtl_ptr;
540         vpa = vcpu->arch.vpa.pinned_addr;
541         now = mftb();
542         core_stolen = vcore_stolen_time(vc, now);
543         stolen = core_stolen - vcpu->arch.stolen_logged;
544         vcpu->arch.stolen_logged = core_stolen;
545         spin_lock_irq(&vcpu->arch.tbacct_lock);
546         stolen += vcpu->arch.busy_stolen;
547         vcpu->arch.busy_stolen = 0;
548         spin_unlock_irq(&vcpu->arch.tbacct_lock);
549         if (!dt || !vpa)
550                 return;
551         memset(dt, 0, sizeof(struct dtl_entry));
552         dt->dispatch_reason = 7;
553         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
554         dt->timebase = cpu_to_be64(now + vc->tb_offset);
555         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
556         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
557         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558         ++dt;
559         if (dt == vcpu->arch.dtl.pinned_end)
560                 dt = vcpu->arch.dtl.pinned_addr;
561         vcpu->arch.dtl_ptr = dt;
562         /* order writing *dt vs. writing vpa->dtl_idx */
563         smp_wmb();
564         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565         vcpu->arch.dtl.dirty = true;
566 }
567
568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
571                 return true;
572         if ((!vcpu->arch.vcore->arch_compat) &&
573             cpu_has_feature(CPU_FTR_ARCH_207S))
574                 return true;
575         return false;
576 }
577
578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
579                              unsigned long resource, unsigned long value1,
580                              unsigned long value2)
581 {
582         switch (resource) {
583         case H_SET_MODE_RESOURCE_SET_CIABR:
584                 if (!kvmppc_power8_compatible(vcpu))
585                         return H_P2;
586                 if (value2)
587                         return H_P4;
588                 if (mflags)
589                         return H_UNSUPPORTED_FLAG_START;
590                 /* Guests can't breakpoint the hypervisor */
591                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
592                         return H_P3;
593                 vcpu->arch.ciabr  = value1;
594                 return H_SUCCESS;
595         case H_SET_MODE_RESOURCE_SET_DAWR:
596                 if (!kvmppc_power8_compatible(vcpu))
597                         return H_P2;
598                 if (mflags)
599                         return H_UNSUPPORTED_FLAG_START;
600                 if (value2 & DABRX_HYP)
601                         return H_P4;
602                 vcpu->arch.dawr  = value1;
603                 vcpu->arch.dawrx = value2;
604                 return H_SUCCESS;
605         default:
606                 return H_TOO_HARD;
607         }
608 }
609
610 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
611 {
612         unsigned long req = kvmppc_get_gpr(vcpu, 3);
613         unsigned long target, ret = H_SUCCESS;
614         struct kvm_vcpu *tvcpu;
615         int idx, rc;
616
617         if (req <= MAX_HCALL_OPCODE &&
618             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
619                 return RESUME_HOST;
620
621         switch (req) {
622         case H_ENTER:
623                 idx = srcu_read_lock(&vcpu->kvm->srcu);
624                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
625                                               kvmppc_get_gpr(vcpu, 5),
626                                               kvmppc_get_gpr(vcpu, 6),
627                                               kvmppc_get_gpr(vcpu, 7));
628                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
629                 break;
630         case H_CEDE:
631                 break;
632         case H_PROD:
633                 target = kvmppc_get_gpr(vcpu, 4);
634                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
635                 if (!tvcpu) {
636                         ret = H_PARAMETER;
637                         break;
638                 }
639                 tvcpu->arch.prodded = 1;
640                 smp_mb();
641                 if (vcpu->arch.ceded) {
642                         if (waitqueue_active(&vcpu->wq)) {
643                                 wake_up_interruptible(&vcpu->wq);
644                                 vcpu->stat.halt_wakeup++;
645                         }
646                 }
647                 break;
648         case H_CONFER:
649                 target = kvmppc_get_gpr(vcpu, 4);
650                 if (target == -1)
651                         break;
652                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
653                 if (!tvcpu) {
654                         ret = H_PARAMETER;
655                         break;
656                 }
657                 kvm_vcpu_yield_to(tvcpu);
658                 break;
659         case H_REGISTER_VPA:
660                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
661                                         kvmppc_get_gpr(vcpu, 5),
662                                         kvmppc_get_gpr(vcpu, 6));
663                 break;
664         case H_RTAS:
665                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
666                         return RESUME_HOST;
667
668                 idx = srcu_read_lock(&vcpu->kvm->srcu);
669                 rc = kvmppc_rtas_hcall(vcpu);
670                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
671
672                 if (rc == -ENOENT)
673                         return RESUME_HOST;
674                 else if (rc == 0)
675                         break;
676
677                 /* Send the error out to userspace via KVM_RUN */
678                 return rc;
679         case H_SET_MODE:
680                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
681                                         kvmppc_get_gpr(vcpu, 5),
682                                         kvmppc_get_gpr(vcpu, 6),
683                                         kvmppc_get_gpr(vcpu, 7));
684                 if (ret == H_TOO_HARD)
685                         return RESUME_HOST;
686                 break;
687         case H_XIRR:
688         case H_CPPR:
689         case H_EOI:
690         case H_IPI:
691         case H_IPOLL:
692         case H_XIRR_X:
693                 if (kvmppc_xics_enabled(vcpu)) {
694                         ret = kvmppc_xics_hcall(vcpu, req);
695                         break;
696                 } /* fallthrough */
697         default:
698                 return RESUME_HOST;
699         }
700         kvmppc_set_gpr(vcpu, 3, ret);
701         vcpu->arch.hcall_needed = 0;
702         return RESUME_GUEST;
703 }
704
705 static int kvmppc_hcall_impl_hv(unsigned long cmd)
706 {
707         switch (cmd) {
708         case H_CEDE:
709         case H_PROD:
710         case H_CONFER:
711         case H_REGISTER_VPA:
712         case H_SET_MODE:
713 #ifdef CONFIG_KVM_XICS
714         case H_XIRR:
715         case H_CPPR:
716         case H_EOI:
717         case H_IPI:
718         case H_IPOLL:
719         case H_XIRR_X:
720 #endif
721                 return 1;
722         }
723
724         /* See if it's in the real-mode table */
725         return kvmppc_hcall_impl_hv_realmode(cmd);
726 }
727
728 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
729                                         struct kvm_vcpu *vcpu)
730 {
731         u32 last_inst;
732
733         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
734                                         EMULATE_DONE) {
735                 /*
736                  * Fetch failed, so return to guest and
737                  * try executing it again.
738                  */
739                 return RESUME_GUEST;
740         }
741
742         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
743                 run->exit_reason = KVM_EXIT_DEBUG;
744                 run->debug.arch.address = kvmppc_get_pc(vcpu);
745                 return RESUME_HOST;
746         } else {
747                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
748                 return RESUME_GUEST;
749         }
750 }
751
752 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
753                                  struct task_struct *tsk)
754 {
755         int r = RESUME_HOST;
756
757         vcpu->stat.sum_exits++;
758
759         run->exit_reason = KVM_EXIT_UNKNOWN;
760         run->ready_for_interrupt_injection = 1;
761         switch (vcpu->arch.trap) {
762         /* We're good on these - the host merely wanted to get our attention */
763         case BOOK3S_INTERRUPT_HV_DECREMENTER:
764                 vcpu->stat.dec_exits++;
765                 r = RESUME_GUEST;
766                 break;
767         case BOOK3S_INTERRUPT_EXTERNAL:
768         case BOOK3S_INTERRUPT_H_DOORBELL:
769                 vcpu->stat.ext_intr_exits++;
770                 r = RESUME_GUEST;
771                 break;
772         case BOOK3S_INTERRUPT_PERFMON:
773                 r = RESUME_GUEST;
774                 break;
775         case BOOK3S_INTERRUPT_MACHINE_CHECK:
776                 /*
777                  * Deliver a machine check interrupt to the guest.
778                  * We have to do this, even if the host has handled the
779                  * machine check, because machine checks use SRR0/1 and
780                  * the interrupt might have trashed guest state in them.
781                  */
782                 kvmppc_book3s_queue_irqprio(vcpu,
783                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
784                 r = RESUME_GUEST;
785                 break;
786         case BOOK3S_INTERRUPT_PROGRAM:
787         {
788                 ulong flags;
789                 /*
790                  * Normally program interrupts are delivered directly
791                  * to the guest by the hardware, but we can get here
792                  * as a result of a hypervisor emulation interrupt
793                  * (e40) getting turned into a 700 by BML RTAS.
794                  */
795                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
796                 kvmppc_core_queue_program(vcpu, flags);
797                 r = RESUME_GUEST;
798                 break;
799         }
800         case BOOK3S_INTERRUPT_SYSCALL:
801         {
802                 /* hcall - punt to userspace */
803                 int i;
804
805                 /* hypercall with MSR_PR has already been handled in rmode,
806                  * and never reaches here.
807                  */
808
809                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
810                 for (i = 0; i < 9; ++i)
811                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
812                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
813                 vcpu->arch.hcall_needed = 1;
814                 r = RESUME_HOST;
815                 break;
816         }
817         /*
818          * We get these next two if the guest accesses a page which it thinks
819          * it has mapped but which is not actually present, either because
820          * it is for an emulated I/O device or because the corresonding
821          * host page has been paged out.  Any other HDSI/HISI interrupts
822          * have been handled already.
823          */
824         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
825                 r = RESUME_PAGE_FAULT;
826                 break;
827         case BOOK3S_INTERRUPT_H_INST_STORAGE:
828                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
829                 vcpu->arch.fault_dsisr = 0;
830                 r = RESUME_PAGE_FAULT;
831                 break;
832         /*
833          * This occurs if the guest executes an illegal instruction.
834          * If the guest debug is disabled, generate a program interrupt
835          * to the guest. If guest debug is enabled, we need to check
836          * whether the instruction is a software breakpoint instruction.
837          * Accordingly return to Guest or Host.
838          */
839         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
840                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
841                         r = kvmppc_emulate_debug_inst(run, vcpu);
842                 } else {
843                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
844                         r = RESUME_GUEST;
845                 }
846                 break;
847         /*
848          * This occurs if the guest (kernel or userspace), does something that
849          * is prohibited by HFSCR.  We just generate a program interrupt to
850          * the guest.
851          */
852         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
853                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
854                 r = RESUME_GUEST;
855                 break;
856         default:
857                 kvmppc_dump_regs(vcpu);
858                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
859                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
860                         vcpu->arch.shregs.msr);
861                 run->hw.hardware_exit_reason = vcpu->arch.trap;
862                 r = RESUME_HOST;
863                 break;
864         }
865
866         return r;
867 }
868
869 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
870                                             struct kvm_sregs *sregs)
871 {
872         int i;
873
874         memset(sregs, 0, sizeof(struct kvm_sregs));
875         sregs->pvr = vcpu->arch.pvr;
876         for (i = 0; i < vcpu->arch.slb_max; i++) {
877                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
878                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
879         }
880
881         return 0;
882 }
883
884 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
885                                             struct kvm_sregs *sregs)
886 {
887         int i, j;
888
889         /* Only accept the same PVR as the host's, since we can't spoof it */
890         if (sregs->pvr != vcpu->arch.pvr)
891                 return -EINVAL;
892
893         j = 0;
894         for (i = 0; i < vcpu->arch.slb_nr; i++) {
895                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
896                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
897                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
898                         ++j;
899                 }
900         }
901         vcpu->arch.slb_max = j;
902
903         return 0;
904 }
905
906 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
907                 bool preserve_top32)
908 {
909         struct kvmppc_vcore *vc = vcpu->arch.vcore;
910         u64 mask;
911
912         spin_lock(&vc->lock);
913         /*
914          * If ILE (interrupt little-endian) has changed, update the
915          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
916          */
917         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
918                 struct kvm *kvm = vcpu->kvm;
919                 struct kvm_vcpu *vcpu;
920                 int i;
921
922                 mutex_lock(&kvm->lock);
923                 kvm_for_each_vcpu(i, vcpu, kvm) {
924                         if (vcpu->arch.vcore != vc)
925                                 continue;
926                         if (new_lpcr & LPCR_ILE)
927                                 vcpu->arch.intr_msr |= MSR_LE;
928                         else
929                                 vcpu->arch.intr_msr &= ~MSR_LE;
930                 }
931                 mutex_unlock(&kvm->lock);
932         }
933
934         /*
935          * Userspace can only modify DPFD (default prefetch depth),
936          * ILE (interrupt little-endian) and TC (translation control).
937          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
938          */
939         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
940         if (cpu_has_feature(CPU_FTR_ARCH_207S))
941                 mask |= LPCR_AIL;
942
943         /* Broken 32-bit version of LPCR must not clear top bits */
944         if (preserve_top32)
945                 mask &= 0xFFFFFFFF;
946         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
947         spin_unlock(&vc->lock);
948 }
949
950 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
951                                  union kvmppc_one_reg *val)
952 {
953         int r = 0;
954         long int i;
955
956         switch (id) {
957         case KVM_REG_PPC_DEBUG_INST:
958                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
959                 break;
960         case KVM_REG_PPC_HIOR:
961                 *val = get_reg_val(id, 0);
962                 break;
963         case KVM_REG_PPC_DABR:
964                 *val = get_reg_val(id, vcpu->arch.dabr);
965                 break;
966         case KVM_REG_PPC_DABRX:
967                 *val = get_reg_val(id, vcpu->arch.dabrx);
968                 break;
969         case KVM_REG_PPC_DSCR:
970                 *val = get_reg_val(id, vcpu->arch.dscr);
971                 break;
972         case KVM_REG_PPC_PURR:
973                 *val = get_reg_val(id, vcpu->arch.purr);
974                 break;
975         case KVM_REG_PPC_SPURR:
976                 *val = get_reg_val(id, vcpu->arch.spurr);
977                 break;
978         case KVM_REG_PPC_AMR:
979                 *val = get_reg_val(id, vcpu->arch.amr);
980                 break;
981         case KVM_REG_PPC_UAMOR:
982                 *val = get_reg_val(id, vcpu->arch.uamor);
983                 break;
984         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
985                 i = id - KVM_REG_PPC_MMCR0;
986                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
987                 break;
988         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
989                 i = id - KVM_REG_PPC_PMC1;
990                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
991                 break;
992         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
993                 i = id - KVM_REG_PPC_SPMC1;
994                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
995                 break;
996         case KVM_REG_PPC_SIAR:
997                 *val = get_reg_val(id, vcpu->arch.siar);
998                 break;
999         case KVM_REG_PPC_SDAR:
1000                 *val = get_reg_val(id, vcpu->arch.sdar);
1001                 break;
1002         case KVM_REG_PPC_SIER:
1003                 *val = get_reg_val(id, vcpu->arch.sier);
1004                 break;
1005         case KVM_REG_PPC_IAMR:
1006                 *val = get_reg_val(id, vcpu->arch.iamr);
1007                 break;
1008         case KVM_REG_PPC_PSPB:
1009                 *val = get_reg_val(id, vcpu->arch.pspb);
1010                 break;
1011         case KVM_REG_PPC_DPDES:
1012                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1013                 break;
1014         case KVM_REG_PPC_DAWR:
1015                 *val = get_reg_val(id, vcpu->arch.dawr);
1016                 break;
1017         case KVM_REG_PPC_DAWRX:
1018                 *val = get_reg_val(id, vcpu->arch.dawrx);
1019                 break;
1020         case KVM_REG_PPC_CIABR:
1021                 *val = get_reg_val(id, vcpu->arch.ciabr);
1022                 break;
1023         case KVM_REG_PPC_CSIGR:
1024                 *val = get_reg_val(id, vcpu->arch.csigr);
1025                 break;
1026         case KVM_REG_PPC_TACR:
1027                 *val = get_reg_val(id, vcpu->arch.tacr);
1028                 break;
1029         case KVM_REG_PPC_TCSCR:
1030                 *val = get_reg_val(id, vcpu->arch.tcscr);
1031                 break;
1032         case KVM_REG_PPC_PID:
1033                 *val = get_reg_val(id, vcpu->arch.pid);
1034                 break;
1035         case KVM_REG_PPC_ACOP:
1036                 *val = get_reg_val(id, vcpu->arch.acop);
1037                 break;
1038         case KVM_REG_PPC_WORT:
1039                 *val = get_reg_val(id, vcpu->arch.wort);
1040                 break;
1041         case KVM_REG_PPC_VPA_ADDR:
1042                 spin_lock(&vcpu->arch.vpa_update_lock);
1043                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1044                 spin_unlock(&vcpu->arch.vpa_update_lock);
1045                 break;
1046         case KVM_REG_PPC_VPA_SLB:
1047                 spin_lock(&vcpu->arch.vpa_update_lock);
1048                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1049                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1050                 spin_unlock(&vcpu->arch.vpa_update_lock);
1051                 break;
1052         case KVM_REG_PPC_VPA_DTL:
1053                 spin_lock(&vcpu->arch.vpa_update_lock);
1054                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1055                 val->vpaval.length = vcpu->arch.dtl.len;
1056                 spin_unlock(&vcpu->arch.vpa_update_lock);
1057                 break;
1058         case KVM_REG_PPC_TB_OFFSET:
1059                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1060                 break;
1061         case KVM_REG_PPC_LPCR:
1062         case KVM_REG_PPC_LPCR_64:
1063                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1064                 break;
1065         case KVM_REG_PPC_PPR:
1066                 *val = get_reg_val(id, vcpu->arch.ppr);
1067                 break;
1068 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1069         case KVM_REG_PPC_TFHAR:
1070                 *val = get_reg_val(id, vcpu->arch.tfhar);
1071                 break;
1072         case KVM_REG_PPC_TFIAR:
1073                 *val = get_reg_val(id, vcpu->arch.tfiar);
1074                 break;
1075         case KVM_REG_PPC_TEXASR:
1076                 *val = get_reg_val(id, vcpu->arch.texasr);
1077                 break;
1078         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1079                 i = id - KVM_REG_PPC_TM_GPR0;
1080                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1081                 break;
1082         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1083         {
1084                 int j;
1085                 i = id - KVM_REG_PPC_TM_VSR0;
1086                 if (i < 32)
1087                         for (j = 0; j < TS_FPRWIDTH; j++)
1088                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1089                 else {
1090                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1091                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1092                         else
1093                                 r = -ENXIO;
1094                 }
1095                 break;
1096         }
1097         case KVM_REG_PPC_TM_CR:
1098                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1099                 break;
1100         case KVM_REG_PPC_TM_LR:
1101                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1102                 break;
1103         case KVM_REG_PPC_TM_CTR:
1104                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1105                 break;
1106         case KVM_REG_PPC_TM_FPSCR:
1107                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1108                 break;
1109         case KVM_REG_PPC_TM_AMR:
1110                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1111                 break;
1112         case KVM_REG_PPC_TM_PPR:
1113                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1114                 break;
1115         case KVM_REG_PPC_TM_VRSAVE:
1116                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1117                 break;
1118         case KVM_REG_PPC_TM_VSCR:
1119                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1120                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1121                 else
1122                         r = -ENXIO;
1123                 break;
1124         case KVM_REG_PPC_TM_DSCR:
1125                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1126                 break;
1127         case KVM_REG_PPC_TM_TAR:
1128                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1129                 break;
1130 #endif
1131         case KVM_REG_PPC_ARCH_COMPAT:
1132                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1133                 break;
1134         default:
1135                 r = -EINVAL;
1136                 break;
1137         }
1138
1139         return r;
1140 }
1141
1142 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1143                                  union kvmppc_one_reg *val)
1144 {
1145         int r = 0;
1146         long int i;
1147         unsigned long addr, len;
1148
1149         switch (id) {
1150         case KVM_REG_PPC_HIOR:
1151                 /* Only allow this to be set to zero */
1152                 if (set_reg_val(id, *val))
1153                         r = -EINVAL;
1154                 break;
1155         case KVM_REG_PPC_DABR:
1156                 vcpu->arch.dabr = set_reg_val(id, *val);
1157                 break;
1158         case KVM_REG_PPC_DABRX:
1159                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1160                 break;
1161         case KVM_REG_PPC_DSCR:
1162                 vcpu->arch.dscr = set_reg_val(id, *val);
1163                 break;
1164         case KVM_REG_PPC_PURR:
1165                 vcpu->arch.purr = set_reg_val(id, *val);
1166                 break;
1167         case KVM_REG_PPC_SPURR:
1168                 vcpu->arch.spurr = set_reg_val(id, *val);
1169                 break;
1170         case KVM_REG_PPC_AMR:
1171                 vcpu->arch.amr = set_reg_val(id, *val);
1172                 break;
1173         case KVM_REG_PPC_UAMOR:
1174                 vcpu->arch.uamor = set_reg_val(id, *val);
1175                 break;
1176         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1177                 i = id - KVM_REG_PPC_MMCR0;
1178                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1179                 break;
1180         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1181                 i = id - KVM_REG_PPC_PMC1;
1182                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1183                 break;
1184         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1185                 i = id - KVM_REG_PPC_SPMC1;
1186                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1187                 break;
1188         case KVM_REG_PPC_SIAR:
1189                 vcpu->arch.siar = set_reg_val(id, *val);
1190                 break;
1191         case KVM_REG_PPC_SDAR:
1192                 vcpu->arch.sdar = set_reg_val(id, *val);
1193                 break;
1194         case KVM_REG_PPC_SIER:
1195                 vcpu->arch.sier = set_reg_val(id, *val);
1196                 break;
1197         case KVM_REG_PPC_IAMR:
1198                 vcpu->arch.iamr = set_reg_val(id, *val);
1199                 break;
1200         case KVM_REG_PPC_PSPB:
1201                 vcpu->arch.pspb = set_reg_val(id, *val);
1202                 break;
1203         case KVM_REG_PPC_DPDES:
1204                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1205                 break;
1206         case KVM_REG_PPC_DAWR:
1207                 vcpu->arch.dawr = set_reg_val(id, *val);
1208                 break;
1209         case KVM_REG_PPC_DAWRX:
1210                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1211                 break;
1212         case KVM_REG_PPC_CIABR:
1213                 vcpu->arch.ciabr = set_reg_val(id, *val);
1214                 /* Don't allow setting breakpoints in hypervisor code */
1215                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1216                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1217                 break;
1218         case KVM_REG_PPC_CSIGR:
1219                 vcpu->arch.csigr = set_reg_val(id, *val);
1220                 break;
1221         case KVM_REG_PPC_TACR:
1222                 vcpu->arch.tacr = set_reg_val(id, *val);
1223                 break;
1224         case KVM_REG_PPC_TCSCR:
1225                 vcpu->arch.tcscr = set_reg_val(id, *val);
1226                 break;
1227         case KVM_REG_PPC_PID:
1228                 vcpu->arch.pid = set_reg_val(id, *val);
1229                 break;
1230         case KVM_REG_PPC_ACOP:
1231                 vcpu->arch.acop = set_reg_val(id, *val);
1232                 break;
1233         case KVM_REG_PPC_WORT:
1234                 vcpu->arch.wort = set_reg_val(id, *val);
1235                 break;
1236         case KVM_REG_PPC_VPA_ADDR:
1237                 addr = set_reg_val(id, *val);
1238                 r = -EINVAL;
1239                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1240                               vcpu->arch.dtl.next_gpa))
1241                         break;
1242                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1243                 break;
1244         case KVM_REG_PPC_VPA_SLB:
1245                 addr = val->vpaval.addr;
1246                 len = val->vpaval.length;
1247                 r = -EINVAL;
1248                 if (addr && !vcpu->arch.vpa.next_gpa)
1249                         break;
1250                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1251                 break;
1252         case KVM_REG_PPC_VPA_DTL:
1253                 addr = val->vpaval.addr;
1254                 len = val->vpaval.length;
1255                 r = -EINVAL;
1256                 if (addr && (len < sizeof(struct dtl_entry) ||
1257                              !vcpu->arch.vpa.next_gpa))
1258                         break;
1259                 len -= len % sizeof(struct dtl_entry);
1260                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1261                 break;
1262         case KVM_REG_PPC_TB_OFFSET:
1263                 /* round up to multiple of 2^24 */
1264                 vcpu->arch.vcore->tb_offset =
1265                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1266                 break;
1267         case KVM_REG_PPC_LPCR:
1268                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1269                 break;
1270         case KVM_REG_PPC_LPCR_64:
1271                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1272                 break;
1273         case KVM_REG_PPC_PPR:
1274                 vcpu->arch.ppr = set_reg_val(id, *val);
1275                 break;
1276 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1277         case KVM_REG_PPC_TFHAR:
1278                 vcpu->arch.tfhar = set_reg_val(id, *val);
1279                 break;
1280         case KVM_REG_PPC_TFIAR:
1281                 vcpu->arch.tfiar = set_reg_val(id, *val);
1282                 break;
1283         case KVM_REG_PPC_TEXASR:
1284                 vcpu->arch.texasr = set_reg_val(id, *val);
1285                 break;
1286         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1287                 i = id - KVM_REG_PPC_TM_GPR0;
1288                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1289                 break;
1290         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1291         {
1292                 int j;
1293                 i = id - KVM_REG_PPC_TM_VSR0;
1294                 if (i < 32)
1295                         for (j = 0; j < TS_FPRWIDTH; j++)
1296                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1297                 else
1298                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1299                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1300                         else
1301                                 r = -ENXIO;
1302                 break;
1303         }
1304         case KVM_REG_PPC_TM_CR:
1305                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1306                 break;
1307         case KVM_REG_PPC_TM_LR:
1308                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1309                 break;
1310         case KVM_REG_PPC_TM_CTR:
1311                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1312                 break;
1313         case KVM_REG_PPC_TM_FPSCR:
1314                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1315                 break;
1316         case KVM_REG_PPC_TM_AMR:
1317                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1318                 break;
1319         case KVM_REG_PPC_TM_PPR:
1320                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1321                 break;
1322         case KVM_REG_PPC_TM_VRSAVE:
1323                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1324                 break;
1325         case KVM_REG_PPC_TM_VSCR:
1326                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1327                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1328                 else
1329                         r = - ENXIO;
1330                 break;
1331         case KVM_REG_PPC_TM_DSCR:
1332                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1333                 break;
1334         case KVM_REG_PPC_TM_TAR:
1335                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1336                 break;
1337 #endif
1338         case KVM_REG_PPC_ARCH_COMPAT:
1339                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1340                 break;
1341         default:
1342                 r = -EINVAL;
1343                 break;
1344         }
1345
1346         return r;
1347 }
1348
1349 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1350 {
1351         struct kvmppc_vcore *vcore;
1352
1353         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1354
1355         if (vcore == NULL)
1356                 return NULL;
1357
1358         INIT_LIST_HEAD(&vcore->runnable_threads);
1359         spin_lock_init(&vcore->lock);
1360         init_waitqueue_head(&vcore->wq);
1361         vcore->preempt_tb = TB_NIL;
1362         vcore->lpcr = kvm->arch.lpcr;
1363         vcore->first_vcpuid = core * threads_per_subcore;
1364         vcore->kvm = kvm;
1365
1366         vcore->mpp_buffer_is_valid = false;
1367
1368         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1369                 vcore->mpp_buffer = (void *)__get_free_pages(
1370                         GFP_KERNEL|__GFP_ZERO,
1371                         MPP_BUFFER_ORDER);
1372
1373         return vcore;
1374 }
1375
1376 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1377                                                    unsigned int id)
1378 {
1379         struct kvm_vcpu *vcpu;
1380         int err = -EINVAL;
1381         int core;
1382         struct kvmppc_vcore *vcore;
1383
1384         core = id / threads_per_subcore;
1385         if (core >= KVM_MAX_VCORES)
1386                 goto out;
1387
1388         err = -ENOMEM;
1389         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1390         if (!vcpu)
1391                 goto out;
1392
1393         err = kvm_vcpu_init(vcpu, kvm, id);
1394         if (err)
1395                 goto free_vcpu;
1396
1397         vcpu->arch.shared = &vcpu->arch.shregs;
1398 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1399         /*
1400          * The shared struct is never shared on HV,
1401          * so we can always use host endianness
1402          */
1403 #ifdef __BIG_ENDIAN__
1404         vcpu->arch.shared_big_endian = true;
1405 #else
1406         vcpu->arch.shared_big_endian = false;
1407 #endif
1408 #endif
1409         vcpu->arch.mmcr[0] = MMCR0_FC;
1410         vcpu->arch.ctrl = CTRL_RUNLATCH;
1411         /* default to host PVR, since we can't spoof it */
1412         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1413         spin_lock_init(&vcpu->arch.vpa_update_lock);
1414         spin_lock_init(&vcpu->arch.tbacct_lock);
1415         vcpu->arch.busy_preempt = TB_NIL;
1416         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1417
1418         kvmppc_mmu_book3s_hv_init(vcpu);
1419
1420         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1421
1422         init_waitqueue_head(&vcpu->arch.cpu_run);
1423
1424         mutex_lock(&kvm->lock);
1425         vcore = kvm->arch.vcores[core];
1426         if (!vcore) {
1427                 vcore = kvmppc_vcore_create(kvm, core);
1428                 kvm->arch.vcores[core] = vcore;
1429                 kvm->arch.online_vcores++;
1430         }
1431         mutex_unlock(&kvm->lock);
1432
1433         if (!vcore)
1434                 goto free_vcpu;
1435
1436         spin_lock(&vcore->lock);
1437         ++vcore->num_threads;
1438         spin_unlock(&vcore->lock);
1439         vcpu->arch.vcore = vcore;
1440         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1441
1442         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1443         kvmppc_sanity_check(vcpu);
1444
1445         return vcpu;
1446
1447 free_vcpu:
1448         kmem_cache_free(kvm_vcpu_cache, vcpu);
1449 out:
1450         return ERR_PTR(err);
1451 }
1452
1453 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1454 {
1455         if (vpa->pinned_addr)
1456                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1457                                         vpa->dirty);
1458 }
1459
1460 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1461 {
1462         spin_lock(&vcpu->arch.vpa_update_lock);
1463         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1464         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1465         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1466         spin_unlock(&vcpu->arch.vpa_update_lock);
1467         kvm_vcpu_uninit(vcpu);
1468         kmem_cache_free(kvm_vcpu_cache, vcpu);
1469 }
1470
1471 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1472 {
1473         /* Indicate we want to get back into the guest */
1474         return 1;
1475 }
1476
1477 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1478 {
1479         unsigned long dec_nsec, now;
1480
1481         now = get_tb();
1482         if (now > vcpu->arch.dec_expires) {
1483                 /* decrementer has already gone negative */
1484                 kvmppc_core_queue_dec(vcpu);
1485                 kvmppc_core_prepare_to_enter(vcpu);
1486                 return;
1487         }
1488         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1489                    / tb_ticks_per_sec;
1490         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1491                       HRTIMER_MODE_REL);
1492         vcpu->arch.timer_running = 1;
1493 }
1494
1495 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1496 {
1497         vcpu->arch.ceded = 0;
1498         if (vcpu->arch.timer_running) {
1499                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1500                 vcpu->arch.timer_running = 0;
1501         }
1502 }
1503
1504 extern void __kvmppc_vcore_entry(void);
1505
1506 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1507                                    struct kvm_vcpu *vcpu)
1508 {
1509         u64 now;
1510
1511         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1512                 return;
1513         spin_lock_irq(&vcpu->arch.tbacct_lock);
1514         now = mftb();
1515         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1516                 vcpu->arch.stolen_logged;
1517         vcpu->arch.busy_preempt = now;
1518         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1519         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1520         --vc->n_runnable;
1521         list_del(&vcpu->arch.run_list);
1522 }
1523
1524 static int kvmppc_grab_hwthread(int cpu)
1525 {
1526         struct paca_struct *tpaca;
1527         long timeout = 10000;
1528
1529         tpaca = &paca[cpu];
1530
1531         /* Ensure the thread won't go into the kernel if it wakes */
1532         tpaca->kvm_hstate.hwthread_req = 1;
1533         tpaca->kvm_hstate.kvm_vcpu = NULL;
1534
1535         /*
1536          * If the thread is already executing in the kernel (e.g. handling
1537          * a stray interrupt), wait for it to get back to nap mode.
1538          * The smp_mb() is to ensure that our setting of hwthread_req
1539          * is visible before we look at hwthread_state, so if this
1540          * races with the code at system_reset_pSeries and the thread
1541          * misses our setting of hwthread_req, we are sure to see its
1542          * setting of hwthread_state, and vice versa.
1543          */
1544         smp_mb();
1545         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1546                 if (--timeout <= 0) {
1547                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1548                         return -EBUSY;
1549                 }
1550                 udelay(1);
1551         }
1552         return 0;
1553 }
1554
1555 static void kvmppc_release_hwthread(int cpu)
1556 {
1557         struct paca_struct *tpaca;
1558
1559         tpaca = &paca[cpu];
1560         tpaca->kvm_hstate.hwthread_req = 0;
1561         tpaca->kvm_hstate.kvm_vcpu = NULL;
1562 }
1563
1564 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1565 {
1566         int cpu;
1567         struct paca_struct *tpaca;
1568         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1569
1570         if (vcpu->arch.timer_running) {
1571                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1572                 vcpu->arch.timer_running = 0;
1573         }
1574         cpu = vc->pcpu + vcpu->arch.ptid;
1575         tpaca = &paca[cpu];
1576         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1577         tpaca->kvm_hstate.kvm_vcore = vc;
1578         tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1579         vcpu->cpu = vc->pcpu;
1580         smp_wmb();
1581 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1582         if (cpu != smp_processor_id()) {
1583                 xics_wake_cpu(cpu);
1584                 if (vcpu->arch.ptid)
1585                         ++vc->n_woken;
1586         }
1587 #endif
1588 }
1589
1590 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1591 {
1592         int i;
1593
1594         HMT_low();
1595         i = 0;
1596         while (vc->nap_count < vc->n_woken) {
1597                 if (++i >= 1000000) {
1598                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1599                                vc->nap_count, vc->n_woken);
1600                         break;
1601                 }
1602                 cpu_relax();
1603         }
1604         HMT_medium();
1605 }
1606
1607 /*
1608  * Check that we are on thread 0 and that any other threads in
1609  * this core are off-line.  Then grab the threads so they can't
1610  * enter the kernel.
1611  */
1612 static int on_primary_thread(void)
1613 {
1614         int cpu = smp_processor_id();
1615         int thr;
1616
1617         /* Are we on a primary subcore? */
1618         if (cpu_thread_in_subcore(cpu))
1619                 return 0;
1620
1621         thr = 0;
1622         while (++thr < threads_per_subcore)
1623                 if (cpu_online(cpu + thr))
1624                         return 0;
1625
1626         /* Grab all hw threads so they can't go into the kernel */
1627         for (thr = 1; thr < threads_per_subcore; ++thr) {
1628                 if (kvmppc_grab_hwthread(cpu + thr)) {
1629                         /* Couldn't grab one; let the others go */
1630                         do {
1631                                 kvmppc_release_hwthread(cpu + thr);
1632                         } while (--thr > 0);
1633                         return 0;
1634                 }
1635         }
1636         return 1;
1637 }
1638
1639 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1640 {
1641         phys_addr_t phy_addr, mpp_addr;
1642
1643         phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1644         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1645
1646         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1647         logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1648
1649         vc->mpp_buffer_is_valid = true;
1650 }
1651
1652 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1653 {
1654         phys_addr_t phy_addr, mpp_addr;
1655
1656         phy_addr = virt_to_phys(vc->mpp_buffer);
1657         mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1658
1659         /* We must abort any in-progress save operations to ensure
1660          * the table is valid so that prefetch engine knows when to
1661          * stop prefetching. */
1662         logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1663         mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1664 }
1665
1666 /*
1667  * Run a set of guest threads on a physical core.
1668  * Called with vc->lock held.
1669  */
1670 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1671 {
1672         struct kvm_vcpu *vcpu, *vnext;
1673         long ret;
1674         u64 now;
1675         int i, need_vpa_update;
1676         int srcu_idx;
1677         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1678
1679         /* don't start if any threads have a signal pending */
1680         need_vpa_update = 0;
1681         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1682                 if (signal_pending(vcpu->arch.run_task))
1683                         return;
1684                 if (vcpu->arch.vpa.update_pending ||
1685                     vcpu->arch.slb_shadow.update_pending ||
1686                     vcpu->arch.dtl.update_pending)
1687                         vcpus_to_update[need_vpa_update++] = vcpu;
1688         }
1689
1690         /*
1691          * Initialize *vc, in particular vc->vcore_state, so we can
1692          * drop the vcore lock if necessary.
1693          */
1694         vc->n_woken = 0;
1695         vc->nap_count = 0;
1696         vc->entry_exit_count = 0;
1697         vc->vcore_state = VCORE_STARTING;
1698         vc->in_guest = 0;
1699         vc->napping_threads = 0;
1700
1701         /*
1702          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1703          * which can't be called with any spinlocks held.
1704          */
1705         if (need_vpa_update) {
1706                 spin_unlock(&vc->lock);
1707                 for (i = 0; i < need_vpa_update; ++i)
1708                         kvmppc_update_vpas(vcpus_to_update[i]);
1709                 spin_lock(&vc->lock);
1710         }
1711
1712         /*
1713          * Make sure we are running on primary threads, and that secondary
1714          * threads are offline.  Also check if the number of threads in this
1715          * guest are greater than the current system threads per guest.
1716          */
1717         if ((threads_per_core > 1) &&
1718             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1719                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1720                         vcpu->arch.ret = -EBUSY;
1721                 goto out;
1722         }
1723
1724
1725         vc->pcpu = smp_processor_id();
1726         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1727                 kvmppc_start_thread(vcpu);
1728                 kvmppc_create_dtl_entry(vcpu, vc);
1729         }
1730
1731         /* Set this explicitly in case thread 0 doesn't have a vcpu */
1732         get_paca()->kvm_hstate.kvm_vcore = vc;
1733         get_paca()->kvm_hstate.ptid = 0;
1734
1735         vc->vcore_state = VCORE_RUNNING;
1736         preempt_disable();
1737         spin_unlock(&vc->lock);
1738
1739         kvm_guest_enter();
1740
1741         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1742
1743         if (vc->mpp_buffer_is_valid)
1744                 kvmppc_start_restoring_l2_cache(vc);
1745
1746         __kvmppc_vcore_entry();
1747
1748         spin_lock(&vc->lock);
1749
1750         if (vc->mpp_buffer)
1751                 kvmppc_start_saving_l2_cache(vc);
1752
1753         /* disable sending of IPIs on virtual external irqs */
1754         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1755                 vcpu->cpu = -1;
1756         /* wait for secondary threads to finish writing their state to memory */
1757         if (vc->nap_count < vc->n_woken)
1758                 kvmppc_wait_for_nap(vc);
1759         for (i = 0; i < threads_per_subcore; ++i)
1760                 kvmppc_release_hwthread(vc->pcpu + i);
1761         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1762         vc->vcore_state = VCORE_EXITING;
1763         spin_unlock(&vc->lock);
1764
1765         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1766
1767         /* make sure updates to secondary vcpu structs are visible now */
1768         smp_mb();
1769         kvm_guest_exit();
1770
1771         preempt_enable();
1772         cond_resched();
1773
1774         spin_lock(&vc->lock);
1775         now = get_tb();
1776         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1777                 /* cancel pending dec exception if dec is positive */
1778                 if (now < vcpu->arch.dec_expires &&
1779                     kvmppc_core_pending_dec(vcpu))
1780                         kvmppc_core_dequeue_dec(vcpu);
1781
1782                 ret = RESUME_GUEST;
1783                 if (vcpu->arch.trap)
1784                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1785                                                     vcpu->arch.run_task);
1786
1787                 vcpu->arch.ret = ret;
1788                 vcpu->arch.trap = 0;
1789
1790                 if (vcpu->arch.ceded) {
1791                         if (!is_kvmppc_resume_guest(ret))
1792                                 kvmppc_end_cede(vcpu);
1793                         else
1794                                 kvmppc_set_timer(vcpu);
1795                 }
1796         }
1797
1798  out:
1799         vc->vcore_state = VCORE_INACTIVE;
1800         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1801                                  arch.run_list) {
1802                 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1803                         kvmppc_remove_runnable(vc, vcpu);
1804                         wake_up(&vcpu->arch.cpu_run);
1805                 }
1806         }
1807 }
1808
1809 /*
1810  * Wait for some other vcpu thread to execute us, and
1811  * wake us up when we need to handle something in the host.
1812  */
1813 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1814 {
1815         DEFINE_WAIT(wait);
1816
1817         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1818         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1819                 schedule();
1820         finish_wait(&vcpu->arch.cpu_run, &wait);
1821 }
1822
1823 /*
1824  * All the vcpus in this vcore are idle, so wait for a decrementer
1825  * or external interrupt to one of the vcpus.  vc->lock is held.
1826  */
1827 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1828 {
1829         DEFINE_WAIT(wait);
1830
1831         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1832         vc->vcore_state = VCORE_SLEEPING;
1833         spin_unlock(&vc->lock);
1834         schedule();
1835         finish_wait(&vc->wq, &wait);
1836         spin_lock(&vc->lock);
1837         vc->vcore_state = VCORE_INACTIVE;
1838 }
1839
1840 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1841 {
1842         int n_ceded;
1843         struct kvmppc_vcore *vc;
1844         struct kvm_vcpu *v, *vn;
1845
1846         kvm_run->exit_reason = 0;
1847         vcpu->arch.ret = RESUME_GUEST;
1848         vcpu->arch.trap = 0;
1849         kvmppc_update_vpas(vcpu);
1850
1851         /*
1852          * Synchronize with other threads in this virtual core
1853          */
1854         vc = vcpu->arch.vcore;
1855         spin_lock(&vc->lock);
1856         vcpu->arch.ceded = 0;
1857         vcpu->arch.run_task = current;
1858         vcpu->arch.kvm_run = kvm_run;
1859         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1860         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1861         vcpu->arch.busy_preempt = TB_NIL;
1862         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1863         ++vc->n_runnable;
1864
1865         /*
1866          * This happens the first time this is called for a vcpu.
1867          * If the vcore is already running, we may be able to start
1868          * this thread straight away and have it join in.
1869          */
1870         if (!signal_pending(current)) {
1871                 if (vc->vcore_state == VCORE_RUNNING &&
1872                     VCORE_EXIT_COUNT(vc) == 0) {
1873                         kvmppc_create_dtl_entry(vcpu, vc);
1874                         kvmppc_start_thread(vcpu);
1875                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1876                         wake_up(&vc->wq);
1877                 }
1878
1879         }
1880
1881         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1882                !signal_pending(current)) {
1883                 if (vc->vcore_state != VCORE_INACTIVE) {
1884                         spin_unlock(&vc->lock);
1885                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1886                         spin_lock(&vc->lock);
1887                         continue;
1888                 }
1889                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1890                                          arch.run_list) {
1891                         kvmppc_core_prepare_to_enter(v);
1892                         if (signal_pending(v->arch.run_task)) {
1893                                 kvmppc_remove_runnable(vc, v);
1894                                 v->stat.signal_exits++;
1895                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1896                                 v->arch.ret = -EINTR;
1897                                 wake_up(&v->arch.cpu_run);
1898                         }
1899                 }
1900                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1901                         break;
1902                 vc->runner = vcpu;
1903                 n_ceded = 0;
1904                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1905                         if (!v->arch.pending_exceptions)
1906                                 n_ceded += v->arch.ceded;
1907                         else
1908                                 v->arch.ceded = 0;
1909                 }
1910                 if (n_ceded == vc->n_runnable)
1911                         kvmppc_vcore_blocked(vc);
1912                 else
1913                         kvmppc_run_core(vc);
1914                 vc->runner = NULL;
1915         }
1916
1917         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1918                (vc->vcore_state == VCORE_RUNNING ||
1919                 vc->vcore_state == VCORE_EXITING)) {
1920                 spin_unlock(&vc->lock);
1921                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1922                 spin_lock(&vc->lock);
1923         }
1924
1925         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1926                 kvmppc_remove_runnable(vc, vcpu);
1927                 vcpu->stat.signal_exits++;
1928                 kvm_run->exit_reason = KVM_EXIT_INTR;
1929                 vcpu->arch.ret = -EINTR;
1930         }
1931
1932         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1933                 /* Wake up some vcpu to run the core */
1934                 v = list_first_entry(&vc->runnable_threads,
1935                                      struct kvm_vcpu, arch.run_list);
1936                 wake_up(&v->arch.cpu_run);
1937         }
1938
1939         spin_unlock(&vc->lock);
1940         return vcpu->arch.ret;
1941 }
1942
1943 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1944 {
1945         int r;
1946         int srcu_idx;
1947
1948         if (!vcpu->arch.sane) {
1949                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1950                 return -EINVAL;
1951         }
1952
1953         kvmppc_core_prepare_to_enter(vcpu);
1954
1955         /* No need to go into the guest when all we'll do is come back out */
1956         if (signal_pending(current)) {
1957                 run->exit_reason = KVM_EXIT_INTR;
1958                 return -EINTR;
1959         }
1960
1961         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1962         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1963         smp_mb();
1964
1965         /* On the first time here, set up HTAB and VRMA or RMA */
1966         if (!vcpu->kvm->arch.rma_setup_done) {
1967                 r = kvmppc_hv_setup_htab_rma(vcpu);
1968                 if (r)
1969                         goto out;
1970         }
1971
1972         flush_fp_to_thread(current);
1973         flush_altivec_to_thread(current);
1974         flush_vsx_to_thread(current);
1975         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1976         vcpu->arch.pgdir = current->mm->pgd;
1977         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1978
1979         do {
1980                 r = kvmppc_run_vcpu(run, vcpu);
1981
1982                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1983                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1984                         r = kvmppc_pseries_do_hcall(vcpu);
1985                         kvmppc_core_prepare_to_enter(vcpu);
1986                 } else if (r == RESUME_PAGE_FAULT) {
1987                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1988                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1989                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1990                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1991                 }
1992         } while (is_kvmppc_resume_guest(r));
1993
1994  out:
1995         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1996         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1997         return r;
1998 }
1999
2000
2001 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
2002    Assumes POWER7 or PPC970. */
2003 static inline int lpcr_rmls(unsigned long rma_size)
2004 {
2005         switch (rma_size) {
2006         case 32ul << 20:        /* 32 MB */
2007                 if (cpu_has_feature(CPU_FTR_ARCH_206))
2008                         return 8;       /* only supported on POWER7 */
2009                 return -1;
2010         case 64ul << 20:        /* 64 MB */
2011                 return 3;
2012         case 128ul << 20:       /* 128 MB */
2013                 return 7;
2014         case 256ul << 20:       /* 256 MB */
2015                 return 4;
2016         case 1ul << 30:         /* 1 GB */
2017                 return 2;
2018         case 16ul << 30:        /* 16 GB */
2019                 return 1;
2020         case 256ul << 30:       /* 256 GB */
2021                 return 0;
2022         default:
2023                 return -1;
2024         }
2025 }
2026
2027 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2028 {
2029         struct page *page;
2030         struct kvm_rma_info *ri = vma->vm_file->private_data;
2031
2032         if (vmf->pgoff >= kvm_rma_pages)
2033                 return VM_FAULT_SIGBUS;
2034
2035         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
2036         get_page(page);
2037         vmf->page = page;
2038         return 0;
2039 }
2040
2041 static const struct vm_operations_struct kvm_rma_vm_ops = {
2042         .fault = kvm_rma_fault,
2043 };
2044
2045 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
2046 {
2047         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2048         vma->vm_ops = &kvm_rma_vm_ops;
2049         return 0;
2050 }
2051
2052 static int kvm_rma_release(struct inode *inode, struct file *filp)
2053 {
2054         struct kvm_rma_info *ri = filp->private_data;
2055
2056         kvm_release_rma(ri);
2057         return 0;
2058 }
2059
2060 static const struct file_operations kvm_rma_fops = {
2061         .mmap           = kvm_rma_mmap,
2062         .release        = kvm_rma_release,
2063 };
2064
2065 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
2066                                       struct kvm_allocate_rma *ret)
2067 {
2068         long fd;
2069         struct kvm_rma_info *ri;
2070         /*
2071          * Only do this on PPC970 in HV mode
2072          */
2073         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2074             !cpu_has_feature(CPU_FTR_ARCH_201))
2075                 return -EINVAL;
2076
2077         if (!kvm_rma_pages)
2078                 return -EINVAL;
2079
2080         ri = kvm_alloc_rma();
2081         if (!ri)
2082                 return -ENOMEM;
2083
2084         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
2085         if (fd < 0)
2086                 kvm_release_rma(ri);
2087
2088         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
2089         return fd;
2090 }
2091
2092 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2093                                      int linux_psize)
2094 {
2095         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2096
2097         if (!def->shift)
2098                 return;
2099         (*sps)->page_shift = def->shift;
2100         (*sps)->slb_enc = def->sllp;
2101         (*sps)->enc[0].page_shift = def->shift;
2102         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2103         /*
2104          * Add 16MB MPSS support if host supports it
2105          */
2106         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2107                 (*sps)->enc[1].page_shift = 24;
2108                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2109         }
2110         (*sps)++;
2111 }
2112
2113 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2114                                          struct kvm_ppc_smmu_info *info)
2115 {
2116         struct kvm_ppc_one_seg_page_size *sps;
2117
2118         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2119         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2120                 info->flags |= KVM_PPC_1T_SEGMENTS;
2121         info->slb_size = mmu_slb_size;
2122
2123         /* We only support these sizes for now, and no muti-size segments */
2124         sps = &info->sps[0];
2125         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2126         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2127         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2128
2129         return 0;
2130 }
2131
2132 /*
2133  * Get (and clear) the dirty memory log for a memory slot.
2134  */
2135 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2136                                          struct kvm_dirty_log *log)
2137 {
2138         struct kvm_memory_slot *memslot;
2139         int r;
2140         unsigned long n;
2141
2142         mutex_lock(&kvm->slots_lock);
2143
2144         r = -EINVAL;
2145         if (log->slot >= KVM_USER_MEM_SLOTS)
2146                 goto out;
2147
2148         memslot = id_to_memslot(kvm->memslots, log->slot);
2149         r = -ENOENT;
2150         if (!memslot->dirty_bitmap)
2151                 goto out;
2152
2153         n = kvm_dirty_bitmap_bytes(memslot);
2154         memset(memslot->dirty_bitmap, 0, n);
2155
2156         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2157         if (r)
2158                 goto out;
2159
2160         r = -EFAULT;
2161         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2162                 goto out;
2163
2164         r = 0;
2165 out:
2166         mutex_unlock(&kvm->slots_lock);
2167         return r;
2168 }
2169
2170 static void unpin_slot(struct kvm_memory_slot *memslot)
2171 {
2172         unsigned long *physp;
2173         unsigned long j, npages, pfn;
2174         struct page *page;
2175
2176         physp = memslot->arch.slot_phys;
2177         npages = memslot->npages;
2178         if (!physp)
2179                 return;
2180         for (j = 0; j < npages; j++) {
2181                 if (!(physp[j] & KVMPPC_GOT_PAGE))
2182                         continue;
2183                 pfn = physp[j] >> PAGE_SHIFT;
2184                 page = pfn_to_page(pfn);
2185                 SetPageDirty(page);
2186                 put_page(page);
2187         }
2188 }
2189
2190 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2191                                         struct kvm_memory_slot *dont)
2192 {
2193         if (!dont || free->arch.rmap != dont->arch.rmap) {
2194                 vfree(free->arch.rmap);
2195                 free->arch.rmap = NULL;
2196         }
2197         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
2198                 unpin_slot(free);
2199                 vfree(free->arch.slot_phys);
2200                 free->arch.slot_phys = NULL;
2201         }
2202 }
2203
2204 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2205                                          unsigned long npages)
2206 {
2207         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2208         if (!slot->arch.rmap)
2209                 return -ENOMEM;
2210         slot->arch.slot_phys = NULL;
2211
2212         return 0;
2213 }
2214
2215 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2216                                         struct kvm_memory_slot *memslot,
2217                                         struct kvm_userspace_memory_region *mem)
2218 {
2219         unsigned long *phys;
2220
2221         /* Allocate a slot_phys array if needed */
2222         phys = memslot->arch.slot_phys;
2223         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
2224                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
2225                 if (!phys)
2226                         return -ENOMEM;
2227                 memslot->arch.slot_phys = phys;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2234                                 struct kvm_userspace_memory_region *mem,
2235                                 const struct kvm_memory_slot *old)
2236 {
2237         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2238         struct kvm_memory_slot *memslot;
2239
2240         if (npages && old->npages) {
2241                 /*
2242                  * If modifying a memslot, reset all the rmap dirty bits.
2243                  * If this is a new memslot, we don't need to do anything
2244                  * since the rmap array starts out as all zeroes,
2245                  * i.e. no pages are dirty.
2246                  */
2247                 memslot = id_to_memslot(kvm->memslots, mem->slot);
2248                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2249         }
2250 }
2251
2252 /*
2253  * Update LPCR values in kvm->arch and in vcores.
2254  * Caller must hold kvm->lock.
2255  */
2256 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2257 {
2258         long int i;
2259         u32 cores_done = 0;
2260
2261         if ((kvm->arch.lpcr & mask) == lpcr)
2262                 return;
2263
2264         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2265
2266         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2267                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2268                 if (!vc)
2269                         continue;
2270                 spin_lock(&vc->lock);
2271                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2272                 spin_unlock(&vc->lock);
2273                 if (++cores_done >= kvm->arch.online_vcores)
2274                         break;
2275         }
2276 }
2277
2278 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2279 {
2280         return;
2281 }
2282
2283 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2284 {
2285         int err = 0;
2286         struct kvm *kvm = vcpu->kvm;
2287         struct kvm_rma_info *ri = NULL;
2288         unsigned long hva;
2289         struct kvm_memory_slot *memslot;
2290         struct vm_area_struct *vma;
2291         unsigned long lpcr = 0, senc;
2292         unsigned long lpcr_mask = 0;
2293         unsigned long psize, porder;
2294         unsigned long rma_size;
2295         unsigned long rmls;
2296         unsigned long *physp;
2297         unsigned long i, npages;
2298         int srcu_idx;
2299
2300         mutex_lock(&kvm->lock);
2301         if (kvm->arch.rma_setup_done)
2302                 goto out;       /* another vcpu beat us to it */
2303
2304         /* Allocate hashed page table (if not done already) and reset it */
2305         if (!kvm->arch.hpt_virt) {
2306                 err = kvmppc_alloc_hpt(kvm, NULL);
2307                 if (err) {
2308                         pr_err("KVM: Couldn't alloc HPT\n");
2309                         goto out;
2310                 }
2311         }
2312
2313         /* Look up the memslot for guest physical address 0 */
2314         srcu_idx = srcu_read_lock(&kvm->srcu);
2315         memslot = gfn_to_memslot(kvm, 0);
2316
2317         /* We must have some memory at 0 by now */
2318         err = -EINVAL;
2319         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2320                 goto out_srcu;
2321
2322         /* Look up the VMA for the start of this memory slot */
2323         hva = memslot->userspace_addr;
2324         down_read(&current->mm->mmap_sem);
2325         vma = find_vma(current->mm, hva);
2326         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2327                 goto up_out;
2328
2329         psize = vma_kernel_pagesize(vma);
2330         porder = __ilog2(psize);
2331
2332         /* Is this one of our preallocated RMAs? */
2333         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2334             hva == vma->vm_start)
2335                 ri = vma->vm_file->private_data;
2336
2337         up_read(&current->mm->mmap_sem);
2338
2339         if (!ri) {
2340                 /* On POWER7, use VRMA; on PPC970, give up */
2341                 err = -EPERM;
2342                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2343                         pr_err("KVM: CPU requires an RMO\n");
2344                         goto out_srcu;
2345                 }
2346
2347                 /* We can handle 4k, 64k or 16M pages in the VRMA */
2348                 err = -EINVAL;
2349                 if (!(psize == 0x1000 || psize == 0x10000 ||
2350                       psize == 0x1000000))
2351                         goto out_srcu;
2352
2353                 /* Update VRMASD field in the LPCR */
2354                 senc = slb_pgsize_encoding(psize);
2355                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2356                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2357                 lpcr_mask = LPCR_VRMASD;
2358                 /* the -4 is to account for senc values starting at 0x10 */
2359                 lpcr = senc << (LPCR_VRMASD_SH - 4);
2360
2361                 /* Create HPTEs in the hash page table for the VRMA */
2362                 kvmppc_map_vrma(vcpu, memslot, porder);
2363
2364         } else {
2365                 /* Set up to use an RMO region */
2366                 rma_size = kvm_rma_pages;
2367                 if (rma_size > memslot->npages)
2368                         rma_size = memslot->npages;
2369                 rma_size <<= PAGE_SHIFT;
2370                 rmls = lpcr_rmls(rma_size);
2371                 err = -EINVAL;
2372                 if ((long)rmls < 0) {
2373                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2374                         goto out_srcu;
2375                 }
2376                 atomic_inc(&ri->use_count);
2377                 kvm->arch.rma = ri;
2378
2379                 /* Update LPCR and RMOR */
2380                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2381                         /* PPC970; insert RMLS value (split field) in HID4 */
2382                         lpcr_mask = (1ul << HID4_RMLS0_SH) |
2383                                 (3ul << HID4_RMLS2_SH) | HID4_RMOR;
2384                         lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2385                                 ((rmls & 3) << HID4_RMLS2_SH);
2386                         /* RMOR is also in HID4 */
2387                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2388                                 << HID4_RMOR_SH;
2389                 } else {
2390                         /* POWER7 */
2391                         lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2392                         lpcr = rmls << LPCR_RMLS_SH;
2393                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2394                 }
2395                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2396                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2397
2398                 /* Initialize phys addrs of pages in RMO */
2399                 npages = kvm_rma_pages;
2400                 porder = __ilog2(npages);
2401                 physp = memslot->arch.slot_phys;
2402                 if (physp) {
2403                         if (npages > memslot->npages)
2404                                 npages = memslot->npages;
2405                         spin_lock(&kvm->arch.slot_phys_lock);
2406                         for (i = 0; i < npages; ++i)
2407                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2408                                         porder;
2409                         spin_unlock(&kvm->arch.slot_phys_lock);
2410                 }
2411         }
2412
2413         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2414
2415         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2416         smp_wmb();
2417         kvm->arch.rma_setup_done = 1;
2418         err = 0;
2419  out_srcu:
2420         srcu_read_unlock(&kvm->srcu, srcu_idx);
2421  out:
2422         mutex_unlock(&kvm->lock);
2423         return err;
2424
2425  up_out:
2426         up_read(&current->mm->mmap_sem);
2427         goto out_srcu;
2428 }
2429
2430 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2431 {
2432         unsigned long lpcr, lpid;
2433
2434         /* Allocate the guest's logical partition ID */
2435
2436         lpid = kvmppc_alloc_lpid();
2437         if ((long)lpid < 0)
2438                 return -ENOMEM;
2439         kvm->arch.lpid = lpid;
2440
2441         /*
2442          * Since we don't flush the TLB when tearing down a VM,
2443          * and this lpid might have previously been used,
2444          * make sure we flush on each core before running the new VM.
2445          */
2446         cpumask_setall(&kvm->arch.need_tlb_flush);
2447
2448         /* Start out with the default set of hcalls enabled */
2449         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2450                sizeof(kvm->arch.enabled_hcalls));
2451
2452         kvm->arch.rma = NULL;
2453
2454         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2455
2456         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2457                 /* PPC970; HID4 is effectively the LPCR */
2458                 kvm->arch.host_lpid = 0;
2459                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2460                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2461                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2462                         ((lpid & 0xf) << HID4_LPID5_SH);
2463         } else {
2464                 /* POWER7; init LPCR for virtual RMA mode */
2465                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2466                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2467                 lpcr &= LPCR_PECE | LPCR_LPES;
2468                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2469                         LPCR_VPM0 | LPCR_VPM1;
2470                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2471                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2472                 /* On POWER8 turn on online bit to enable PURR/SPURR */
2473                 if (cpu_has_feature(CPU_FTR_ARCH_207S))
2474                         lpcr |= LPCR_ONL;
2475         }
2476         kvm->arch.lpcr = lpcr;
2477
2478         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2479         spin_lock_init(&kvm->arch.slot_phys_lock);
2480
2481         /*
2482          * Track that we now have a HV mode VM active. This blocks secondary
2483          * CPU threads from coming online.
2484          */
2485         kvm_hv_vm_activated();
2486
2487         return 0;
2488 }
2489
2490 static void kvmppc_free_vcores(struct kvm *kvm)
2491 {
2492         long int i;
2493
2494         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2495                 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2496                         struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2497                         free_pages((unsigned long)vc->mpp_buffer,
2498                                    MPP_BUFFER_ORDER);
2499                 }
2500                 kfree(kvm->arch.vcores[i]);
2501         }
2502         kvm->arch.online_vcores = 0;
2503 }
2504
2505 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2506 {
2507         kvm_hv_vm_deactivated();
2508
2509         kvmppc_free_vcores(kvm);
2510         if (kvm->arch.rma) {
2511                 kvm_release_rma(kvm->arch.rma);
2512                 kvm->arch.rma = NULL;
2513         }
2514
2515         kvmppc_free_hpt(kvm);
2516 }
2517
2518 /* We don't need to emulate any privileged instructions or dcbz */
2519 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2520                                      unsigned int inst, int *advance)
2521 {
2522         return EMULATE_FAIL;
2523 }
2524
2525 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2526                                         ulong spr_val)
2527 {
2528         return EMULATE_FAIL;
2529 }
2530
2531 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2532                                         ulong *spr_val)
2533 {
2534         return EMULATE_FAIL;
2535 }
2536
2537 static int kvmppc_core_check_processor_compat_hv(void)
2538 {
2539         if (!cpu_has_feature(CPU_FTR_HVMODE))
2540                 return -EIO;
2541         return 0;
2542 }
2543
2544 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2545                                  unsigned int ioctl, unsigned long arg)
2546 {
2547         struct kvm *kvm __maybe_unused = filp->private_data;
2548         void __user *argp = (void __user *)arg;
2549         long r;
2550
2551         switch (ioctl) {
2552
2553         case KVM_ALLOCATE_RMA: {
2554                 struct kvm_allocate_rma rma;
2555                 struct kvm *kvm = filp->private_data;
2556
2557                 r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2558                 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2559                         r = -EFAULT;
2560                 break;
2561         }
2562
2563         case KVM_PPC_ALLOCATE_HTAB: {
2564                 u32 htab_order;
2565
2566                 r = -EFAULT;
2567                 if (get_user(htab_order, (u32 __user *)argp))
2568                         break;
2569                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2570                 if (r)
2571                         break;
2572                 r = -EFAULT;
2573                 if (put_user(htab_order, (u32 __user *)argp))
2574                         break;
2575                 r = 0;
2576                 break;
2577         }
2578
2579         case KVM_PPC_GET_HTAB_FD: {
2580                 struct kvm_get_htab_fd ghf;
2581
2582                 r = -EFAULT;
2583                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2584                         break;
2585                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2586                 break;
2587         }
2588
2589         default:
2590                 r = -ENOTTY;
2591         }
2592
2593         return r;
2594 }
2595
2596 /*
2597  * List of hcall numbers to enable by default.
2598  * For compatibility with old userspace, we enable by default
2599  * all hcalls that were implemented before the hcall-enabling
2600  * facility was added.  Note this list should not include H_RTAS.
2601  */
2602 static unsigned int default_hcall_list[] = {
2603         H_REMOVE,
2604         H_ENTER,
2605         H_READ,
2606         H_PROTECT,
2607         H_BULK_REMOVE,
2608         H_GET_TCE,
2609         H_PUT_TCE,
2610         H_SET_DABR,
2611         H_SET_XDABR,
2612         H_CEDE,
2613         H_PROD,
2614         H_CONFER,
2615         H_REGISTER_VPA,
2616 #ifdef CONFIG_KVM_XICS
2617         H_EOI,
2618         H_CPPR,
2619         H_IPI,
2620         H_IPOLL,
2621         H_XIRR,
2622         H_XIRR_X,
2623 #endif
2624         0
2625 };
2626
2627 static void init_default_hcalls(void)
2628 {
2629         int i;
2630         unsigned int hcall;
2631
2632         for (i = 0; default_hcall_list[i]; ++i) {
2633                 hcall = default_hcall_list[i];
2634                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2635                 __set_bit(hcall / 4, default_enabled_hcalls);
2636         }
2637 }
2638
2639 static struct kvmppc_ops kvm_ops_hv = {
2640         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2641         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2642         .get_one_reg = kvmppc_get_one_reg_hv,
2643         .set_one_reg = kvmppc_set_one_reg_hv,
2644         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2645         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2646         .set_msr     = kvmppc_set_msr_hv,
2647         .vcpu_run    = kvmppc_vcpu_run_hv,
2648         .vcpu_create = kvmppc_core_vcpu_create_hv,
2649         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2650         .check_requests = kvmppc_core_check_requests_hv,
2651         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2652         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2653         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2654         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2655         .unmap_hva = kvm_unmap_hva_hv,
2656         .unmap_hva_range = kvm_unmap_hva_range_hv,
2657         .age_hva  = kvm_age_hva_hv,
2658         .test_age_hva = kvm_test_age_hva_hv,
2659         .set_spte_hva = kvm_set_spte_hva_hv,
2660         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2661         .free_memslot = kvmppc_core_free_memslot_hv,
2662         .create_memslot = kvmppc_core_create_memslot_hv,
2663         .init_vm =  kvmppc_core_init_vm_hv,
2664         .destroy_vm = kvmppc_core_destroy_vm_hv,
2665         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2666         .emulate_op = kvmppc_core_emulate_op_hv,
2667         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2668         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2669         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2670         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2671         .hcall_implemented = kvmppc_hcall_impl_hv,
2672 };
2673
2674 static int kvmppc_book3s_init_hv(void)
2675 {
2676         int r;
2677         /*
2678          * FIXME!! Do we need to check on all cpus ?
2679          */
2680         r = kvmppc_core_check_processor_compat_hv();
2681         if (r < 0)
2682                 return -ENODEV;
2683
2684         kvm_ops_hv.owner = THIS_MODULE;
2685         kvmppc_hv_ops = &kvm_ops_hv;
2686
2687         init_default_hcalls();
2688
2689         r = kvmppc_mmu_hv_init();
2690         return r;
2691 }
2692
2693 static void kvmppc_book3s_exit_hv(void)
2694 {
2695         kvmppc_hv_ops = NULL;
2696 }
2697
2698 module_init(kvmppc_book3s_init_hv);
2699 module_exit(kvmppc_book3s_exit_hv);
2700 MODULE_LICENSE("GPL");
2701 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2702 MODULE_ALIAS("devname:kvm");