Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/ftrace.h>
50 #include <asm/reg.h>
51 #include <asm/ppc-opcode.h>
52 #include <asm/asm-prototypes.h>
53 #include <asm/archrandom.h>
54 #include <asm/debug.h>
55 #include <asm/disassemble.h>
56 #include <asm/cputable.h>
57 #include <asm/cacheflush.h>
58 #include <linux/uaccess.h>
59 #include <asm/io.h>
60 #include <asm/kvm_ppc.h>
61 #include <asm/kvm_book3s.h>
62 #include <asm/mmu_context.h>
63 #include <asm/lppaca.h>
64 #include <asm/processor.h>
65 #include <asm/cputhreads.h>
66 #include <asm/page.h>
67 #include <asm/hvcall.h>
68 #include <asm/switch_to.h>
69 #include <asm/smp.h>
70 #include <asm/dbell.h>
71 #include <asm/hmi.h>
72 #include <asm/pnv-pci.h>
73 #include <asm/mmu.h>
74 #include <asm/opal.h>
75 #include <asm/xics.h>
76 #include <asm/xive.h>
77
78 #include "book3s.h"
79
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
91
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL  (~(u64)0)
94
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114         .set = param_set_int,
115         .get = param_get_int,
116 };
117
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132         return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137
138 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142  * RWMR values for POWER8.  These control the rate at which PURR
143  * and SPURR count and should be set according to the number of
144  * online threads in the vcore being run.
145  */
146 #define RWMR_RPA_P8_1THREAD     0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD     0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD     0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD     0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD     0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD     0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD     0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD     0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156         RWMR_RPA_P8_1THREAD,
157         RWMR_RPA_P8_1THREAD,
158         RWMR_RPA_P8_2THREAD,
159         RWMR_RPA_P8_3THREAD,
160         RWMR_RPA_P8_4THREAD,
161         RWMR_RPA_P8_5THREAD,
162         RWMR_RPA_P8_6THREAD,
163         RWMR_RPA_P8_7THREAD,
164         RWMR_RPA_P8_8THREAD,
165 };
166
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168                 int *ip)
169 {
170         int i = *ip;
171         struct kvm_vcpu *vcpu;
172
173         while (++i < MAX_SMT_THREADS) {
174                 vcpu = READ_ONCE(vc->runnable_threads[i]);
175                 if (vcpu) {
176                         *ip = i;
177                         return vcpu;
178                 }
179         }
180         return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
187 static bool kvmppc_ipi_thread(int cpu)
188 {
189         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191         /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192         if (kvmhv_on_pseries())
193                 return false;
194
195         /* On POWER9 we can use msgsnd to IPI any cpu */
196         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197                 msg |= get_hard_smp_processor_id(cpu);
198                 smp_mb();
199                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200                 return true;
201         }
202
203         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205                 preempt_disable();
206                 if (cpu_first_thread_sibling(cpu) ==
207                     cpu_first_thread_sibling(smp_processor_id())) {
208                         msg |= cpu_thread_in_core(cpu);
209                         smp_mb();
210                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211                         preempt_enable();
212                         return true;
213                 }
214                 preempt_enable();
215         }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218         if (cpu >= 0 && cpu < nr_cpu_ids) {
219                 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220                         xics_wake_cpu(cpu);
221                         return true;
222                 }
223                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224                 return true;
225         }
226 #endif
227
228         return false;
229 }
230
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233         int cpu;
234         struct swait_queue_head *wqp;
235
236         wqp = kvm_arch_vcpu_wq(vcpu);
237         if (swq_has_sleeper(wqp)) {
238                 swake_up_one(wqp);
239                 ++vcpu->stat.halt_wakeup;
240         }
241
242         cpu = READ_ONCE(vcpu->arch.thread_cpu);
243         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
244                 return;
245
246         /* CPU points to the first thread of the core */
247         cpu = vcpu->cpu;
248         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
249                 smp_send_reschedule(cpu);
250 }
251
252 /*
253  * We use the vcpu_load/put functions to measure stolen time.
254  * Stolen time is counted as time when either the vcpu is able to
255  * run as part of a virtual core, but the task running the vcore
256  * is preempted or sleeping, or when the vcpu needs something done
257  * in the kernel by the task running the vcpu, but that task is
258  * preempted or sleeping.  Those two things have to be counted
259  * separately, since one of the vcpu tasks will take on the job
260  * of running the core, and the other vcpu tasks in the vcore will
261  * sleep waiting for it to do that, but that sleep shouldn't count
262  * as stolen time.
263  *
264  * Hence we accumulate stolen time when the vcpu can run as part of
265  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
266  * needs its task to do other things in the kernel (for example,
267  * service a page fault) in busy_stolen.  We don't accumulate
268  * stolen time for a vcore when it is inactive, or for a vcpu
269  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
270  * a misnomer; it means that the vcpu task is not executing in
271  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
272  * the kernel.  We don't have any way of dividing up that time
273  * between time that the vcpu is genuinely stopped, time that
274  * the task is actively working on behalf of the vcpu, and time
275  * that the task is preempted, so we don't count any of it as
276  * stolen.
277  *
278  * Updates to busy_stolen are protected by arch.tbacct_lock;
279  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
280  * lock.  The stolen times are measured in units of timebase ticks.
281  * (Note that the != TB_NIL checks below are purely defensive;
282  * they should never fail.)
283  */
284
285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
286 {
287         unsigned long flags;
288
289         spin_lock_irqsave(&vc->stoltb_lock, flags);
290         vc->preempt_tb = mftb();
291         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 }
293
294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
295 {
296         unsigned long flags;
297
298         spin_lock_irqsave(&vc->stoltb_lock, flags);
299         if (vc->preempt_tb != TB_NIL) {
300                 vc->stolen_tb += mftb() - vc->preempt_tb;
301                 vc->preempt_tb = TB_NIL;
302         }
303         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 }
305
306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
307 {
308         struct kvmppc_vcore *vc = vcpu->arch.vcore;
309         unsigned long flags;
310
311         /*
312          * We can test vc->runner without taking the vcore lock,
313          * because only this task ever sets vc->runner to this
314          * vcpu, and once it is set to this vcpu, only this task
315          * ever sets it to NULL.
316          */
317         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318                 kvmppc_core_end_stolen(vc);
319
320         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322             vcpu->arch.busy_preempt != TB_NIL) {
323                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
324                 vcpu->arch.busy_preempt = TB_NIL;
325         }
326         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331         struct kvmppc_vcore *vc = vcpu->arch.vcore;
332         unsigned long flags;
333
334         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
335                 kvmppc_core_start_stolen(vc);
336
337         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
338         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
339                 vcpu->arch.busy_preempt = mftb();
340         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 }
342
343 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
344 {
345         /*
346          * Check for illegal transactional state bit combination
347          * and if we find it, force the TS field to a safe state.
348          */
349         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
350                 msr &= ~MSR_TS_MASK;
351         vcpu->arch.shregs.msr = msr;
352         kvmppc_end_cede(vcpu);
353 }
354
355 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
356 {
357         vcpu->arch.pvr = pvr;
358 }
359
360 /* Dummy value used in computing PCR value below */
361 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
362
363 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
364 {
365         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
366         struct kvmppc_vcore *vc = vcpu->arch.vcore;
367
368         /* We can (emulate) our own architecture version and anything older */
369         if (cpu_has_feature(CPU_FTR_ARCH_300))
370                 host_pcr_bit = PCR_ARCH_300;
371         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
372                 host_pcr_bit = PCR_ARCH_207;
373         else if (cpu_has_feature(CPU_FTR_ARCH_206))
374                 host_pcr_bit = PCR_ARCH_206;
375         else
376                 host_pcr_bit = PCR_ARCH_205;
377
378         /* Determine lowest PCR bit needed to run guest in given PVR level */
379         guest_pcr_bit = host_pcr_bit;
380         if (arch_compat) {
381                 switch (arch_compat) {
382                 case PVR_ARCH_205:
383                         guest_pcr_bit = PCR_ARCH_205;
384                         break;
385                 case PVR_ARCH_206:
386                 case PVR_ARCH_206p:
387                         guest_pcr_bit = PCR_ARCH_206;
388                         break;
389                 case PVR_ARCH_207:
390                         guest_pcr_bit = PCR_ARCH_207;
391                         break;
392                 case PVR_ARCH_300:
393                         guest_pcr_bit = PCR_ARCH_300;
394                         break;
395                 default:
396                         return -EINVAL;
397                 }
398         }
399
400         /* Check requested PCR bits don't exceed our capabilities */
401         if (guest_pcr_bit > host_pcr_bit)
402                 return -EINVAL;
403
404         spin_lock(&vc->lock);
405         vc->arch_compat = arch_compat;
406         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
407         vc->pcr = host_pcr_bit - guest_pcr_bit;
408         spin_unlock(&vc->lock);
409
410         return 0;
411 }
412
413 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
414 {
415         int r;
416
417         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
418         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
419                vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
420         for (r = 0; r < 16; ++r)
421                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
422                        r, kvmppc_get_gpr(vcpu, r),
423                        r+16, kvmppc_get_gpr(vcpu, r+16));
424         pr_err("ctr = %.16lx  lr  = %.16lx\n",
425                vcpu->arch.regs.ctr, vcpu->arch.regs.link);
426         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
427                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
428         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
429                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
430         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
431                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
432         pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
433                vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
434         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
435         pr_err("fault dar = %.16lx dsisr = %.8x\n",
436                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
437         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
438         for (r = 0; r < vcpu->arch.slb_max; ++r)
439                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
440                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
441         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
442                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
443                vcpu->arch.last_inst);
444 }
445
446 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
447 {
448         struct kvm_vcpu *ret;
449
450         mutex_lock(&kvm->lock);
451         ret = kvm_get_vcpu_by_id(kvm, id);
452         mutex_unlock(&kvm->lock);
453         return ret;
454 }
455
456 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
457 {
458         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
459         vpa->yield_count = cpu_to_be32(1);
460 }
461
462 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
463                    unsigned long addr, unsigned long len)
464 {
465         /* check address is cacheline aligned */
466         if (addr & (L1_CACHE_BYTES - 1))
467                 return -EINVAL;
468         spin_lock(&vcpu->arch.vpa_update_lock);
469         if (v->next_gpa != addr || v->len != len) {
470                 v->next_gpa = addr;
471                 v->len = addr ? len : 0;
472                 v->update_pending = 1;
473         }
474         spin_unlock(&vcpu->arch.vpa_update_lock);
475         return 0;
476 }
477
478 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
479 struct reg_vpa {
480         u32 dummy;
481         union {
482                 __be16 hword;
483                 __be32 word;
484         } length;
485 };
486
487 static int vpa_is_registered(struct kvmppc_vpa *vpap)
488 {
489         if (vpap->update_pending)
490                 return vpap->next_gpa != 0;
491         return vpap->pinned_addr != NULL;
492 }
493
494 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
495                                        unsigned long flags,
496                                        unsigned long vcpuid, unsigned long vpa)
497 {
498         struct kvm *kvm = vcpu->kvm;
499         unsigned long len, nb;
500         void *va;
501         struct kvm_vcpu *tvcpu;
502         int err;
503         int subfunc;
504         struct kvmppc_vpa *vpap;
505
506         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
507         if (!tvcpu)
508                 return H_PARAMETER;
509
510         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
511         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
512             subfunc == H_VPA_REG_SLB) {
513                 /* Registering new area - address must be cache-line aligned */
514                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
515                         return H_PARAMETER;
516
517                 /* convert logical addr to kernel addr and read length */
518                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
519                 if (va == NULL)
520                         return H_PARAMETER;
521                 if (subfunc == H_VPA_REG_VPA)
522                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
523                 else
524                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
525                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
526
527                 /* Check length */
528                 if (len > nb || len < sizeof(struct reg_vpa))
529                         return H_PARAMETER;
530         } else {
531                 vpa = 0;
532                 len = 0;
533         }
534
535         err = H_PARAMETER;
536         vpap = NULL;
537         spin_lock(&tvcpu->arch.vpa_update_lock);
538
539         switch (subfunc) {
540         case H_VPA_REG_VPA:             /* register VPA */
541                 /*
542                  * The size of our lppaca is 1kB because of the way we align
543                  * it for the guest to avoid crossing a 4kB boundary. We only
544                  * use 640 bytes of the structure though, so we should accept
545                  * clients that set a size of 640.
546                  */
547                 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
548                 if (len < sizeof(struct lppaca))
549                         break;
550                 vpap = &tvcpu->arch.vpa;
551                 err = 0;
552                 break;
553
554         case H_VPA_REG_DTL:             /* register DTL */
555                 if (len < sizeof(struct dtl_entry))
556                         break;
557                 len -= len % sizeof(struct dtl_entry);
558
559                 /* Check that they have previously registered a VPA */
560                 err = H_RESOURCE;
561                 if (!vpa_is_registered(&tvcpu->arch.vpa))
562                         break;
563
564                 vpap = &tvcpu->arch.dtl;
565                 err = 0;
566                 break;
567
568         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
569                 /* Check that they have previously registered a VPA */
570                 err = H_RESOURCE;
571                 if (!vpa_is_registered(&tvcpu->arch.vpa))
572                         break;
573
574                 vpap = &tvcpu->arch.slb_shadow;
575                 err = 0;
576                 break;
577
578         case H_VPA_DEREG_VPA:           /* deregister VPA */
579                 /* Check they don't still have a DTL or SLB buf registered */
580                 err = H_RESOURCE;
581                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
582                     vpa_is_registered(&tvcpu->arch.slb_shadow))
583                         break;
584
585                 vpap = &tvcpu->arch.vpa;
586                 err = 0;
587                 break;
588
589         case H_VPA_DEREG_DTL:           /* deregister DTL */
590                 vpap = &tvcpu->arch.dtl;
591                 err = 0;
592                 break;
593
594         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
595                 vpap = &tvcpu->arch.slb_shadow;
596                 err = 0;
597                 break;
598         }
599
600         if (vpap) {
601                 vpap->next_gpa = vpa;
602                 vpap->len = len;
603                 vpap->update_pending = 1;
604         }
605
606         spin_unlock(&tvcpu->arch.vpa_update_lock);
607
608         return err;
609 }
610
611 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
612 {
613         struct kvm *kvm = vcpu->kvm;
614         void *va;
615         unsigned long nb;
616         unsigned long gpa;
617
618         /*
619          * We need to pin the page pointed to by vpap->next_gpa,
620          * but we can't call kvmppc_pin_guest_page under the lock
621          * as it does get_user_pages() and down_read().  So we
622          * have to drop the lock, pin the page, then get the lock
623          * again and check that a new area didn't get registered
624          * in the meantime.
625          */
626         for (;;) {
627                 gpa = vpap->next_gpa;
628                 spin_unlock(&vcpu->arch.vpa_update_lock);
629                 va = NULL;
630                 nb = 0;
631                 if (gpa)
632                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
633                 spin_lock(&vcpu->arch.vpa_update_lock);
634                 if (gpa == vpap->next_gpa)
635                         break;
636                 /* sigh... unpin that one and try again */
637                 if (va)
638                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
639         }
640
641         vpap->update_pending = 0;
642         if (va && nb < vpap->len) {
643                 /*
644                  * If it's now too short, it must be that userspace
645                  * has changed the mappings underlying guest memory,
646                  * so unregister the region.
647                  */
648                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
649                 va = NULL;
650         }
651         if (vpap->pinned_addr)
652                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
653                                         vpap->dirty);
654         vpap->gpa = gpa;
655         vpap->pinned_addr = va;
656         vpap->dirty = false;
657         if (va)
658                 vpap->pinned_end = va + vpap->len;
659 }
660
661 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
662 {
663         if (!(vcpu->arch.vpa.update_pending ||
664               vcpu->arch.slb_shadow.update_pending ||
665               vcpu->arch.dtl.update_pending))
666                 return;
667
668         spin_lock(&vcpu->arch.vpa_update_lock);
669         if (vcpu->arch.vpa.update_pending) {
670                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
671                 if (vcpu->arch.vpa.pinned_addr)
672                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
673         }
674         if (vcpu->arch.dtl.update_pending) {
675                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
676                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
677                 vcpu->arch.dtl_index = 0;
678         }
679         if (vcpu->arch.slb_shadow.update_pending)
680                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
681         spin_unlock(&vcpu->arch.vpa_update_lock);
682 }
683
684 /*
685  * Return the accumulated stolen time for the vcore up until `now'.
686  * The caller should hold the vcore lock.
687  */
688 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
689 {
690         u64 p;
691         unsigned long flags;
692
693         spin_lock_irqsave(&vc->stoltb_lock, flags);
694         p = vc->stolen_tb;
695         if (vc->vcore_state != VCORE_INACTIVE &&
696             vc->preempt_tb != TB_NIL)
697                 p += now - vc->preempt_tb;
698         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
699         return p;
700 }
701
702 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
703                                     struct kvmppc_vcore *vc)
704 {
705         struct dtl_entry *dt;
706         struct lppaca *vpa;
707         unsigned long stolen;
708         unsigned long core_stolen;
709         u64 now;
710         unsigned long flags;
711
712         dt = vcpu->arch.dtl_ptr;
713         vpa = vcpu->arch.vpa.pinned_addr;
714         now = mftb();
715         core_stolen = vcore_stolen_time(vc, now);
716         stolen = core_stolen - vcpu->arch.stolen_logged;
717         vcpu->arch.stolen_logged = core_stolen;
718         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
719         stolen += vcpu->arch.busy_stolen;
720         vcpu->arch.busy_stolen = 0;
721         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
722         if (!dt || !vpa)
723                 return;
724         memset(dt, 0, sizeof(struct dtl_entry));
725         dt->dispatch_reason = 7;
726         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
727         dt->timebase = cpu_to_be64(now + vc->tb_offset);
728         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
729         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
730         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
731         ++dt;
732         if (dt == vcpu->arch.dtl.pinned_end)
733                 dt = vcpu->arch.dtl.pinned_addr;
734         vcpu->arch.dtl_ptr = dt;
735         /* order writing *dt vs. writing vpa->dtl_idx */
736         smp_wmb();
737         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
738         vcpu->arch.dtl.dirty = true;
739 }
740
741 /* See if there is a doorbell interrupt pending for a vcpu */
742 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
743 {
744         int thr;
745         struct kvmppc_vcore *vc;
746
747         if (vcpu->arch.doorbell_request)
748                 return true;
749         /*
750          * Ensure that the read of vcore->dpdes comes after the read
751          * of vcpu->doorbell_request.  This barrier matches the
752          * smb_wmb() in kvmppc_guest_entry_inject().
753          */
754         smp_rmb();
755         vc = vcpu->arch.vcore;
756         thr = vcpu->vcpu_id - vc->first_vcpuid;
757         return !!(vc->dpdes & (1 << thr));
758 }
759
760 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
761 {
762         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
763                 return true;
764         if ((!vcpu->arch.vcore->arch_compat) &&
765             cpu_has_feature(CPU_FTR_ARCH_207S))
766                 return true;
767         return false;
768 }
769
770 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
771                              unsigned long resource, unsigned long value1,
772                              unsigned long value2)
773 {
774         switch (resource) {
775         case H_SET_MODE_RESOURCE_SET_CIABR:
776                 if (!kvmppc_power8_compatible(vcpu))
777                         return H_P2;
778                 if (value2)
779                         return H_P4;
780                 if (mflags)
781                         return H_UNSUPPORTED_FLAG_START;
782                 /* Guests can't breakpoint the hypervisor */
783                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
784                         return H_P3;
785                 vcpu->arch.ciabr  = value1;
786                 return H_SUCCESS;
787         case H_SET_MODE_RESOURCE_SET_DAWR:
788                 if (!kvmppc_power8_compatible(vcpu))
789                         return H_P2;
790                 if (!ppc_breakpoint_available())
791                         return H_P2;
792                 if (mflags)
793                         return H_UNSUPPORTED_FLAG_START;
794                 if (value2 & DABRX_HYP)
795                         return H_P4;
796                 vcpu->arch.dawr  = value1;
797                 vcpu->arch.dawrx = value2;
798                 return H_SUCCESS;
799         default:
800                 return H_TOO_HARD;
801         }
802 }
803
804 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
805 {
806         struct kvmppc_vcore *vcore = target->arch.vcore;
807
808         /*
809          * We expect to have been called by the real mode handler
810          * (kvmppc_rm_h_confer()) which would have directly returned
811          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
812          * have useful work to do and should not confer) so we don't
813          * recheck that here.
814          */
815
816         spin_lock(&vcore->lock);
817         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
818             vcore->vcore_state != VCORE_INACTIVE &&
819             vcore->runner)
820                 target = vcore->runner;
821         spin_unlock(&vcore->lock);
822
823         return kvm_vcpu_yield_to(target);
824 }
825
826 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
827 {
828         int yield_count = 0;
829         struct lppaca *lppaca;
830
831         spin_lock(&vcpu->arch.vpa_update_lock);
832         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
833         if (lppaca)
834                 yield_count = be32_to_cpu(lppaca->yield_count);
835         spin_unlock(&vcpu->arch.vpa_update_lock);
836         return yield_count;
837 }
838
839 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
840 {
841         unsigned long req = kvmppc_get_gpr(vcpu, 3);
842         unsigned long target, ret = H_SUCCESS;
843         int yield_count;
844         struct kvm_vcpu *tvcpu;
845         int idx, rc;
846
847         if (req <= MAX_HCALL_OPCODE &&
848             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
849                 return RESUME_HOST;
850
851         switch (req) {
852         case H_CEDE:
853                 break;
854         case H_PROD:
855                 target = kvmppc_get_gpr(vcpu, 4);
856                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
857                 if (!tvcpu) {
858                         ret = H_PARAMETER;
859                         break;
860                 }
861                 tvcpu->arch.prodded = 1;
862                 smp_mb();
863                 if (tvcpu->arch.ceded)
864                         kvmppc_fast_vcpu_kick_hv(tvcpu);
865                 break;
866         case H_CONFER:
867                 target = kvmppc_get_gpr(vcpu, 4);
868                 if (target == -1)
869                         break;
870                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
871                 if (!tvcpu) {
872                         ret = H_PARAMETER;
873                         break;
874                 }
875                 yield_count = kvmppc_get_gpr(vcpu, 5);
876                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
877                         break;
878                 kvm_arch_vcpu_yield_to(tvcpu);
879                 break;
880         case H_REGISTER_VPA:
881                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
882                                         kvmppc_get_gpr(vcpu, 5),
883                                         kvmppc_get_gpr(vcpu, 6));
884                 break;
885         case H_RTAS:
886                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
887                         return RESUME_HOST;
888
889                 idx = srcu_read_lock(&vcpu->kvm->srcu);
890                 rc = kvmppc_rtas_hcall(vcpu);
891                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
892
893                 if (rc == -ENOENT)
894                         return RESUME_HOST;
895                 else if (rc == 0)
896                         break;
897
898                 /* Send the error out to userspace via KVM_RUN */
899                 return rc;
900         case H_LOGICAL_CI_LOAD:
901                 ret = kvmppc_h_logical_ci_load(vcpu);
902                 if (ret == H_TOO_HARD)
903                         return RESUME_HOST;
904                 break;
905         case H_LOGICAL_CI_STORE:
906                 ret = kvmppc_h_logical_ci_store(vcpu);
907                 if (ret == H_TOO_HARD)
908                         return RESUME_HOST;
909                 break;
910         case H_SET_MODE:
911                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
912                                         kvmppc_get_gpr(vcpu, 5),
913                                         kvmppc_get_gpr(vcpu, 6),
914                                         kvmppc_get_gpr(vcpu, 7));
915                 if (ret == H_TOO_HARD)
916                         return RESUME_HOST;
917                 break;
918         case H_XIRR:
919         case H_CPPR:
920         case H_EOI:
921         case H_IPI:
922         case H_IPOLL:
923         case H_XIRR_X:
924                 if (kvmppc_xics_enabled(vcpu)) {
925                         if (xics_on_xive()) {
926                                 ret = H_NOT_AVAILABLE;
927                                 return RESUME_GUEST;
928                         }
929                         ret = kvmppc_xics_hcall(vcpu, req);
930                         break;
931                 }
932                 return RESUME_HOST;
933         case H_SET_DABR:
934                 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
935                 break;
936         case H_SET_XDABR:
937                 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
938                                                 kvmppc_get_gpr(vcpu, 5));
939                 break;
940 #ifdef CONFIG_SPAPR_TCE_IOMMU
941         case H_GET_TCE:
942                 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
943                                                 kvmppc_get_gpr(vcpu, 5));
944                 if (ret == H_TOO_HARD)
945                         return RESUME_HOST;
946                 break;
947         case H_PUT_TCE:
948                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
949                                                 kvmppc_get_gpr(vcpu, 5),
950                                                 kvmppc_get_gpr(vcpu, 6));
951                 if (ret == H_TOO_HARD)
952                         return RESUME_HOST;
953                 break;
954         case H_PUT_TCE_INDIRECT:
955                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
956                                                 kvmppc_get_gpr(vcpu, 5),
957                                                 kvmppc_get_gpr(vcpu, 6),
958                                                 kvmppc_get_gpr(vcpu, 7));
959                 if (ret == H_TOO_HARD)
960                         return RESUME_HOST;
961                 break;
962         case H_STUFF_TCE:
963                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
964                                                 kvmppc_get_gpr(vcpu, 5),
965                                                 kvmppc_get_gpr(vcpu, 6),
966                                                 kvmppc_get_gpr(vcpu, 7));
967                 if (ret == H_TOO_HARD)
968                         return RESUME_HOST;
969                 break;
970 #endif
971         case H_RANDOM:
972                 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
973                         ret = H_HARDWARE;
974                 break;
975
976         case H_SET_PARTITION_TABLE:
977                 ret = H_FUNCTION;
978                 if (nesting_enabled(vcpu->kvm))
979                         ret = kvmhv_set_partition_table(vcpu);
980                 break;
981         case H_ENTER_NESTED:
982                 ret = H_FUNCTION;
983                 if (!nesting_enabled(vcpu->kvm))
984                         break;
985                 ret = kvmhv_enter_nested_guest(vcpu);
986                 if (ret == H_INTERRUPT) {
987                         kvmppc_set_gpr(vcpu, 3, 0);
988                         vcpu->arch.hcall_needed = 0;
989                         return -EINTR;
990                 } else if (ret == H_TOO_HARD) {
991                         kvmppc_set_gpr(vcpu, 3, 0);
992                         vcpu->arch.hcall_needed = 0;
993                         return RESUME_HOST;
994                 }
995                 break;
996         case H_TLB_INVALIDATE:
997                 ret = H_FUNCTION;
998                 if (nesting_enabled(vcpu->kvm))
999                         ret = kvmhv_do_nested_tlbie(vcpu);
1000                 break;
1001         case H_COPY_TOFROM_GUEST:
1002                 ret = H_FUNCTION;
1003                 if (nesting_enabled(vcpu->kvm))
1004                         ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1005                 break;
1006         default:
1007                 return RESUME_HOST;
1008         }
1009         kvmppc_set_gpr(vcpu, 3, ret);
1010         vcpu->arch.hcall_needed = 0;
1011         return RESUME_GUEST;
1012 }
1013
1014 /*
1015  * Handle H_CEDE in the nested virtualization case where we haven't
1016  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1017  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1018  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1019  */
1020 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1021 {
1022         vcpu->arch.shregs.msr |= MSR_EE;
1023         vcpu->arch.ceded = 1;
1024         smp_mb();
1025         if (vcpu->arch.prodded) {
1026                 vcpu->arch.prodded = 0;
1027                 smp_mb();
1028                 vcpu->arch.ceded = 0;
1029         }
1030 }
1031
1032 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1033 {
1034         switch (cmd) {
1035         case H_CEDE:
1036         case H_PROD:
1037         case H_CONFER:
1038         case H_REGISTER_VPA:
1039         case H_SET_MODE:
1040         case H_LOGICAL_CI_LOAD:
1041         case H_LOGICAL_CI_STORE:
1042 #ifdef CONFIG_KVM_XICS
1043         case H_XIRR:
1044         case H_CPPR:
1045         case H_EOI:
1046         case H_IPI:
1047         case H_IPOLL:
1048         case H_XIRR_X:
1049 #endif
1050                 return 1;
1051         }
1052
1053         /* See if it's in the real-mode table */
1054         return kvmppc_hcall_impl_hv_realmode(cmd);
1055 }
1056
1057 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1058                                         struct kvm_vcpu *vcpu)
1059 {
1060         u32 last_inst;
1061
1062         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1063                                         EMULATE_DONE) {
1064                 /*
1065                  * Fetch failed, so return to guest and
1066                  * try executing it again.
1067                  */
1068                 return RESUME_GUEST;
1069         }
1070
1071         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1072                 run->exit_reason = KVM_EXIT_DEBUG;
1073                 run->debug.arch.address = kvmppc_get_pc(vcpu);
1074                 return RESUME_HOST;
1075         } else {
1076                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1077                 return RESUME_GUEST;
1078         }
1079 }
1080
1081 static void do_nothing(void *x)
1082 {
1083 }
1084
1085 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1086 {
1087         int thr, cpu, pcpu, nthreads;
1088         struct kvm_vcpu *v;
1089         unsigned long dpdes;
1090
1091         nthreads = vcpu->kvm->arch.emul_smt_mode;
1092         dpdes = 0;
1093         cpu = vcpu->vcpu_id & ~(nthreads - 1);
1094         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1095                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1096                 if (!v)
1097                         continue;
1098                 /*
1099                  * If the vcpu is currently running on a physical cpu thread,
1100                  * interrupt it in order to pull it out of the guest briefly,
1101                  * which will update its vcore->dpdes value.
1102                  */
1103                 pcpu = READ_ONCE(v->cpu);
1104                 if (pcpu >= 0)
1105                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
1106                 if (kvmppc_doorbell_pending(v))
1107                         dpdes |= 1 << thr;
1108         }
1109         return dpdes;
1110 }
1111
1112 /*
1113  * On POWER9, emulate doorbell-related instructions in order to
1114  * give the guest the illusion of running on a multi-threaded core.
1115  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1116  * and mfspr DPDES.
1117  */
1118 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1119 {
1120         u32 inst, rb, thr;
1121         unsigned long arg;
1122         struct kvm *kvm = vcpu->kvm;
1123         struct kvm_vcpu *tvcpu;
1124
1125         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1126                 return RESUME_GUEST;
1127         if (get_op(inst) != 31)
1128                 return EMULATE_FAIL;
1129         rb = get_rb(inst);
1130         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1131         switch (get_xop(inst)) {
1132         case OP_31_XOP_MSGSNDP:
1133                 arg = kvmppc_get_gpr(vcpu, rb);
1134                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1135                         break;
1136                 arg &= 0x3f;
1137                 if (arg >= kvm->arch.emul_smt_mode)
1138                         break;
1139                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1140                 if (!tvcpu)
1141                         break;
1142                 if (!tvcpu->arch.doorbell_request) {
1143                         tvcpu->arch.doorbell_request = 1;
1144                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1145                 }
1146                 break;
1147         case OP_31_XOP_MSGCLRP:
1148                 arg = kvmppc_get_gpr(vcpu, rb);
1149                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1150                         break;
1151                 vcpu->arch.vcore->dpdes = 0;
1152                 vcpu->arch.doorbell_request = 0;
1153                 break;
1154         case OP_31_XOP_MFSPR:
1155                 switch (get_sprn(inst)) {
1156                 case SPRN_TIR:
1157                         arg = thr;
1158                         break;
1159                 case SPRN_DPDES:
1160                         arg = kvmppc_read_dpdes(vcpu);
1161                         break;
1162                 default:
1163                         return EMULATE_FAIL;
1164                 }
1165                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1166                 break;
1167         default:
1168                 return EMULATE_FAIL;
1169         }
1170         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1171         return RESUME_GUEST;
1172 }
1173
1174 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1175                                  struct task_struct *tsk)
1176 {
1177         int r = RESUME_HOST;
1178
1179         vcpu->stat.sum_exits++;
1180
1181         /*
1182          * This can happen if an interrupt occurs in the last stages
1183          * of guest entry or the first stages of guest exit (i.e. after
1184          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1185          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1186          * That can happen due to a bug, or due to a machine check
1187          * occurring at just the wrong time.
1188          */
1189         if (vcpu->arch.shregs.msr & MSR_HV) {
1190                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1191                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1192                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1193                         vcpu->arch.shregs.msr);
1194                 kvmppc_dump_regs(vcpu);
1195                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1196                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1197                 return RESUME_HOST;
1198         }
1199         run->exit_reason = KVM_EXIT_UNKNOWN;
1200         run->ready_for_interrupt_injection = 1;
1201         switch (vcpu->arch.trap) {
1202         /* We're good on these - the host merely wanted to get our attention */
1203         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1204                 vcpu->stat.dec_exits++;
1205                 r = RESUME_GUEST;
1206                 break;
1207         case BOOK3S_INTERRUPT_EXTERNAL:
1208         case BOOK3S_INTERRUPT_H_DOORBELL:
1209         case BOOK3S_INTERRUPT_H_VIRT:
1210                 vcpu->stat.ext_intr_exits++;
1211                 r = RESUME_GUEST;
1212                 break;
1213         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1214         case BOOK3S_INTERRUPT_HMI:
1215         case BOOK3S_INTERRUPT_PERFMON:
1216         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1217                 r = RESUME_GUEST;
1218                 break;
1219         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1220                 /* Print the MCE event to host console. */
1221                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1222
1223                 /*
1224                  * If the guest can do FWNMI, exit to userspace so it can
1225                  * deliver a FWNMI to the guest.
1226                  * Otherwise we synthesize a machine check for the guest
1227                  * so that it knows that the machine check occurred.
1228                  */
1229                 if (!vcpu->kvm->arch.fwnmi_enabled) {
1230                         ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1231                         kvmppc_core_queue_machine_check(vcpu, flags);
1232                         r = RESUME_GUEST;
1233                         break;
1234                 }
1235
1236                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1237                 run->exit_reason = KVM_EXIT_NMI;
1238                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1239                 /* Clear out the old NMI status from run->flags */
1240                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1241                 /* Now set the NMI status */
1242                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1243                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1244                 else
1245                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1246
1247                 r = RESUME_HOST;
1248                 break;
1249         case BOOK3S_INTERRUPT_PROGRAM:
1250         {
1251                 ulong flags;
1252                 /*
1253                  * Normally program interrupts are delivered directly
1254                  * to the guest by the hardware, but we can get here
1255                  * as a result of a hypervisor emulation interrupt
1256                  * (e40) getting turned into a 700 by BML RTAS.
1257                  */
1258                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1259                 kvmppc_core_queue_program(vcpu, flags);
1260                 r = RESUME_GUEST;
1261                 break;
1262         }
1263         case BOOK3S_INTERRUPT_SYSCALL:
1264         {
1265                 /* hcall - punt to userspace */
1266                 int i;
1267
1268                 /* hypercall with MSR_PR has already been handled in rmode,
1269                  * and never reaches here.
1270                  */
1271
1272                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1273                 for (i = 0; i < 9; ++i)
1274                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1275                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1276                 vcpu->arch.hcall_needed = 1;
1277                 r = RESUME_HOST;
1278                 break;
1279         }
1280         /*
1281          * We get these next two if the guest accesses a page which it thinks
1282          * it has mapped but which is not actually present, either because
1283          * it is for an emulated I/O device or because the corresonding
1284          * host page has been paged out.  Any other HDSI/HISI interrupts
1285          * have been handled already.
1286          */
1287         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1288                 r = RESUME_PAGE_FAULT;
1289                 break;
1290         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1291                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1292                 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1293                         DSISR_SRR1_MATCH_64S;
1294                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1295                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1296                 r = RESUME_PAGE_FAULT;
1297                 break;
1298         /*
1299          * This occurs if the guest executes an illegal instruction.
1300          * If the guest debug is disabled, generate a program interrupt
1301          * to the guest. If guest debug is enabled, we need to check
1302          * whether the instruction is a software breakpoint instruction.
1303          * Accordingly return to Guest or Host.
1304          */
1305         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1306                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1307                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1308                                 swab32(vcpu->arch.emul_inst) :
1309                                 vcpu->arch.emul_inst;
1310                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1311                         r = kvmppc_emulate_debug_inst(run, vcpu);
1312                 } else {
1313                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1314                         r = RESUME_GUEST;
1315                 }
1316                 break;
1317         /*
1318          * This occurs if the guest (kernel or userspace), does something that
1319          * is prohibited by HFSCR.
1320          * On POWER9, this could be a doorbell instruction that we need
1321          * to emulate.
1322          * Otherwise, we just generate a program interrupt to the guest.
1323          */
1324         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1325                 r = EMULATE_FAIL;
1326                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1327                     cpu_has_feature(CPU_FTR_ARCH_300))
1328                         r = kvmppc_emulate_doorbell_instr(vcpu);
1329                 if (r == EMULATE_FAIL) {
1330                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1331                         r = RESUME_GUEST;
1332                 }
1333                 break;
1334
1335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1336         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1337                 /*
1338                  * This occurs for various TM-related instructions that
1339                  * we need to emulate on POWER9 DD2.2.  We have already
1340                  * handled the cases where the guest was in real-suspend
1341                  * mode and was transitioning to transactional state.
1342                  */
1343                 r = kvmhv_p9_tm_emulation(vcpu);
1344                 break;
1345 #endif
1346
1347         case BOOK3S_INTERRUPT_HV_RM_HARD:
1348                 r = RESUME_PASSTHROUGH;
1349                 break;
1350         default:
1351                 kvmppc_dump_regs(vcpu);
1352                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1353                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1354                         vcpu->arch.shregs.msr);
1355                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1356                 r = RESUME_HOST;
1357                 break;
1358         }
1359
1360         return r;
1361 }
1362
1363 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1364 {
1365         int r;
1366         int srcu_idx;
1367
1368         vcpu->stat.sum_exits++;
1369
1370         /*
1371          * This can happen if an interrupt occurs in the last stages
1372          * of guest entry or the first stages of guest exit (i.e. after
1373          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1374          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1375          * That can happen due to a bug, or due to a machine check
1376          * occurring at just the wrong time.
1377          */
1378         if (vcpu->arch.shregs.msr & MSR_HV) {
1379                 pr_emerg("KVM trap in HV mode while nested!\n");
1380                 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1381                          vcpu->arch.trap, kvmppc_get_pc(vcpu),
1382                          vcpu->arch.shregs.msr);
1383                 kvmppc_dump_regs(vcpu);
1384                 return RESUME_HOST;
1385         }
1386         switch (vcpu->arch.trap) {
1387         /* We're good on these - the host merely wanted to get our attention */
1388         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1389                 vcpu->stat.dec_exits++;
1390                 r = RESUME_GUEST;
1391                 break;
1392         case BOOK3S_INTERRUPT_EXTERNAL:
1393                 vcpu->stat.ext_intr_exits++;
1394                 r = RESUME_HOST;
1395                 break;
1396         case BOOK3S_INTERRUPT_H_DOORBELL:
1397         case BOOK3S_INTERRUPT_H_VIRT:
1398                 vcpu->stat.ext_intr_exits++;
1399                 r = RESUME_GUEST;
1400                 break;
1401         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1402         case BOOK3S_INTERRUPT_HMI:
1403         case BOOK3S_INTERRUPT_PERFMON:
1404         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1405                 r = RESUME_GUEST;
1406                 break;
1407         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1408                 /* Pass the machine check to the L1 guest */
1409                 r = RESUME_HOST;
1410                 /* Print the MCE event to host console. */
1411                 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1412                 break;
1413         /*
1414          * We get these next two if the guest accesses a page which it thinks
1415          * it has mapped but which is not actually present, either because
1416          * it is for an emulated I/O device or because the corresonding
1417          * host page has been paged out.
1418          */
1419         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1420                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1421                 r = kvmhv_nested_page_fault(run, vcpu);
1422                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1423                 break;
1424         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1425                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1426                 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1427                                          DSISR_SRR1_MATCH_64S;
1428                 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1429                         vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1430                 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1431                 r = kvmhv_nested_page_fault(run, vcpu);
1432                 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1433                 break;
1434
1435 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1436         case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1437                 /*
1438                  * This occurs for various TM-related instructions that
1439                  * we need to emulate on POWER9 DD2.2.  We have already
1440                  * handled the cases where the guest was in real-suspend
1441                  * mode and was transitioning to transactional state.
1442                  */
1443                 r = kvmhv_p9_tm_emulation(vcpu);
1444                 break;
1445 #endif
1446
1447         case BOOK3S_INTERRUPT_HV_RM_HARD:
1448                 vcpu->arch.trap = 0;
1449                 r = RESUME_GUEST;
1450                 if (!xics_on_xive())
1451                         kvmppc_xics_rm_complete(vcpu, 0);
1452                 break;
1453         default:
1454                 r = RESUME_HOST;
1455                 break;
1456         }
1457
1458         return r;
1459 }
1460
1461 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1462                                             struct kvm_sregs *sregs)
1463 {
1464         int i;
1465
1466         memset(sregs, 0, sizeof(struct kvm_sregs));
1467         sregs->pvr = vcpu->arch.pvr;
1468         for (i = 0; i < vcpu->arch.slb_max; i++) {
1469                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1470                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1471         }
1472
1473         return 0;
1474 }
1475
1476 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1477                                             struct kvm_sregs *sregs)
1478 {
1479         int i, j;
1480
1481         /* Only accept the same PVR as the host's, since we can't spoof it */
1482         if (sregs->pvr != vcpu->arch.pvr)
1483                 return -EINVAL;
1484
1485         j = 0;
1486         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1487                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1488                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1489                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1490                         ++j;
1491                 }
1492         }
1493         vcpu->arch.slb_max = j;
1494
1495         return 0;
1496 }
1497
1498 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1499                 bool preserve_top32)
1500 {
1501         struct kvm *kvm = vcpu->kvm;
1502         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1503         u64 mask;
1504
1505         mutex_lock(&kvm->lock);
1506         spin_lock(&vc->lock);
1507         /*
1508          * If ILE (interrupt little-endian) has changed, update the
1509          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1510          */
1511         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1512                 struct kvm_vcpu *vcpu;
1513                 int i;
1514
1515                 kvm_for_each_vcpu(i, vcpu, kvm) {
1516                         if (vcpu->arch.vcore != vc)
1517                                 continue;
1518                         if (new_lpcr & LPCR_ILE)
1519                                 vcpu->arch.intr_msr |= MSR_LE;
1520                         else
1521                                 vcpu->arch.intr_msr &= ~MSR_LE;
1522                 }
1523         }
1524
1525         /*
1526          * Userspace can only modify DPFD (default prefetch depth),
1527          * ILE (interrupt little-endian) and TC (translation control).
1528          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1529          */
1530         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1531         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1532                 mask |= LPCR_AIL;
1533         /*
1534          * On POWER9, allow userspace to enable large decrementer for the
1535          * guest, whether or not the host has it enabled.
1536          */
1537         if (cpu_has_feature(CPU_FTR_ARCH_300))
1538                 mask |= LPCR_LD;
1539
1540         /* Broken 32-bit version of LPCR must not clear top bits */
1541         if (preserve_top32)
1542                 mask &= 0xFFFFFFFF;
1543         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1544         spin_unlock(&vc->lock);
1545         mutex_unlock(&kvm->lock);
1546 }
1547
1548 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1549                                  union kvmppc_one_reg *val)
1550 {
1551         int r = 0;
1552         long int i;
1553
1554         switch (id) {
1555         case KVM_REG_PPC_DEBUG_INST:
1556                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1557                 break;
1558         case KVM_REG_PPC_HIOR:
1559                 *val = get_reg_val(id, 0);
1560                 break;
1561         case KVM_REG_PPC_DABR:
1562                 *val = get_reg_val(id, vcpu->arch.dabr);
1563                 break;
1564         case KVM_REG_PPC_DABRX:
1565                 *val = get_reg_val(id, vcpu->arch.dabrx);
1566                 break;
1567         case KVM_REG_PPC_DSCR:
1568                 *val = get_reg_val(id, vcpu->arch.dscr);
1569                 break;
1570         case KVM_REG_PPC_PURR:
1571                 *val = get_reg_val(id, vcpu->arch.purr);
1572                 break;
1573         case KVM_REG_PPC_SPURR:
1574                 *val = get_reg_val(id, vcpu->arch.spurr);
1575                 break;
1576         case KVM_REG_PPC_AMR:
1577                 *val = get_reg_val(id, vcpu->arch.amr);
1578                 break;
1579         case KVM_REG_PPC_UAMOR:
1580                 *val = get_reg_val(id, vcpu->arch.uamor);
1581                 break;
1582         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1583                 i = id - KVM_REG_PPC_MMCR0;
1584                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1585                 break;
1586         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1587                 i = id - KVM_REG_PPC_PMC1;
1588                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1589                 break;
1590         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1591                 i = id - KVM_REG_PPC_SPMC1;
1592                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1593                 break;
1594         case KVM_REG_PPC_SIAR:
1595                 *val = get_reg_val(id, vcpu->arch.siar);
1596                 break;
1597         case KVM_REG_PPC_SDAR:
1598                 *val = get_reg_val(id, vcpu->arch.sdar);
1599                 break;
1600         case KVM_REG_PPC_SIER:
1601                 *val = get_reg_val(id, vcpu->arch.sier);
1602                 break;
1603         case KVM_REG_PPC_IAMR:
1604                 *val = get_reg_val(id, vcpu->arch.iamr);
1605                 break;
1606         case KVM_REG_PPC_PSPB:
1607                 *val = get_reg_val(id, vcpu->arch.pspb);
1608                 break;
1609         case KVM_REG_PPC_DPDES:
1610                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1611                 break;
1612         case KVM_REG_PPC_VTB:
1613                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1614                 break;
1615         case KVM_REG_PPC_DAWR:
1616                 *val = get_reg_val(id, vcpu->arch.dawr);
1617                 break;
1618         case KVM_REG_PPC_DAWRX:
1619                 *val = get_reg_val(id, vcpu->arch.dawrx);
1620                 break;
1621         case KVM_REG_PPC_CIABR:
1622                 *val = get_reg_val(id, vcpu->arch.ciabr);
1623                 break;
1624         case KVM_REG_PPC_CSIGR:
1625                 *val = get_reg_val(id, vcpu->arch.csigr);
1626                 break;
1627         case KVM_REG_PPC_TACR:
1628                 *val = get_reg_val(id, vcpu->arch.tacr);
1629                 break;
1630         case KVM_REG_PPC_TCSCR:
1631                 *val = get_reg_val(id, vcpu->arch.tcscr);
1632                 break;
1633         case KVM_REG_PPC_PID:
1634                 *val = get_reg_val(id, vcpu->arch.pid);
1635                 break;
1636         case KVM_REG_PPC_ACOP:
1637                 *val = get_reg_val(id, vcpu->arch.acop);
1638                 break;
1639         case KVM_REG_PPC_WORT:
1640                 *val = get_reg_val(id, vcpu->arch.wort);
1641                 break;
1642         case KVM_REG_PPC_TIDR:
1643                 *val = get_reg_val(id, vcpu->arch.tid);
1644                 break;
1645         case KVM_REG_PPC_PSSCR:
1646                 *val = get_reg_val(id, vcpu->arch.psscr);
1647                 break;
1648         case KVM_REG_PPC_VPA_ADDR:
1649                 spin_lock(&vcpu->arch.vpa_update_lock);
1650                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1651                 spin_unlock(&vcpu->arch.vpa_update_lock);
1652                 break;
1653         case KVM_REG_PPC_VPA_SLB:
1654                 spin_lock(&vcpu->arch.vpa_update_lock);
1655                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1656                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1657                 spin_unlock(&vcpu->arch.vpa_update_lock);
1658                 break;
1659         case KVM_REG_PPC_VPA_DTL:
1660                 spin_lock(&vcpu->arch.vpa_update_lock);
1661                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1662                 val->vpaval.length = vcpu->arch.dtl.len;
1663                 spin_unlock(&vcpu->arch.vpa_update_lock);
1664                 break;
1665         case KVM_REG_PPC_TB_OFFSET:
1666                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1667                 break;
1668         case KVM_REG_PPC_LPCR:
1669         case KVM_REG_PPC_LPCR_64:
1670                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1671                 break;
1672         case KVM_REG_PPC_PPR:
1673                 *val = get_reg_val(id, vcpu->arch.ppr);
1674                 break;
1675 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1676         case KVM_REG_PPC_TFHAR:
1677                 *val = get_reg_val(id, vcpu->arch.tfhar);
1678                 break;
1679         case KVM_REG_PPC_TFIAR:
1680                 *val = get_reg_val(id, vcpu->arch.tfiar);
1681                 break;
1682         case KVM_REG_PPC_TEXASR:
1683                 *val = get_reg_val(id, vcpu->arch.texasr);
1684                 break;
1685         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1686                 i = id - KVM_REG_PPC_TM_GPR0;
1687                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1688                 break;
1689         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1690         {
1691                 int j;
1692                 i = id - KVM_REG_PPC_TM_VSR0;
1693                 if (i < 32)
1694                         for (j = 0; j < TS_FPRWIDTH; j++)
1695                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1696                 else {
1697                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1698                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1699                         else
1700                                 r = -ENXIO;
1701                 }
1702                 break;
1703         }
1704         case KVM_REG_PPC_TM_CR:
1705                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1706                 break;
1707         case KVM_REG_PPC_TM_XER:
1708                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1709                 break;
1710         case KVM_REG_PPC_TM_LR:
1711                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1712                 break;
1713         case KVM_REG_PPC_TM_CTR:
1714                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1715                 break;
1716         case KVM_REG_PPC_TM_FPSCR:
1717                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1718                 break;
1719         case KVM_REG_PPC_TM_AMR:
1720                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1721                 break;
1722         case KVM_REG_PPC_TM_PPR:
1723                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1724                 break;
1725         case KVM_REG_PPC_TM_VRSAVE:
1726                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1727                 break;
1728         case KVM_REG_PPC_TM_VSCR:
1729                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1730                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1731                 else
1732                         r = -ENXIO;
1733                 break;
1734         case KVM_REG_PPC_TM_DSCR:
1735                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1736                 break;
1737         case KVM_REG_PPC_TM_TAR:
1738                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1739                 break;
1740 #endif
1741         case KVM_REG_PPC_ARCH_COMPAT:
1742                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1743                 break;
1744         case KVM_REG_PPC_DEC_EXPIRY:
1745                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1746                                    vcpu->arch.vcore->tb_offset);
1747                 break;
1748         case KVM_REG_PPC_ONLINE:
1749                 *val = get_reg_val(id, vcpu->arch.online);
1750                 break;
1751         case KVM_REG_PPC_PTCR:
1752                 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1753                 break;
1754         default:
1755                 r = -EINVAL;
1756                 break;
1757         }
1758
1759         return r;
1760 }
1761
1762 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1763                                  union kvmppc_one_reg *val)
1764 {
1765         int r = 0;
1766         long int i;
1767         unsigned long addr, len;
1768
1769         switch (id) {
1770         case KVM_REG_PPC_HIOR:
1771                 /* Only allow this to be set to zero */
1772                 if (set_reg_val(id, *val))
1773                         r = -EINVAL;
1774                 break;
1775         case KVM_REG_PPC_DABR:
1776                 vcpu->arch.dabr = set_reg_val(id, *val);
1777                 break;
1778         case KVM_REG_PPC_DABRX:
1779                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1780                 break;
1781         case KVM_REG_PPC_DSCR:
1782                 vcpu->arch.dscr = set_reg_val(id, *val);
1783                 break;
1784         case KVM_REG_PPC_PURR:
1785                 vcpu->arch.purr = set_reg_val(id, *val);
1786                 break;
1787         case KVM_REG_PPC_SPURR:
1788                 vcpu->arch.spurr = set_reg_val(id, *val);
1789                 break;
1790         case KVM_REG_PPC_AMR:
1791                 vcpu->arch.amr = set_reg_val(id, *val);
1792                 break;
1793         case KVM_REG_PPC_UAMOR:
1794                 vcpu->arch.uamor = set_reg_val(id, *val);
1795                 break;
1796         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1797                 i = id - KVM_REG_PPC_MMCR0;
1798                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1799                 break;
1800         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1801                 i = id - KVM_REG_PPC_PMC1;
1802                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1803                 break;
1804         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1805                 i = id - KVM_REG_PPC_SPMC1;
1806                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1807                 break;
1808         case KVM_REG_PPC_SIAR:
1809                 vcpu->arch.siar = set_reg_val(id, *val);
1810                 break;
1811         case KVM_REG_PPC_SDAR:
1812                 vcpu->arch.sdar = set_reg_val(id, *val);
1813                 break;
1814         case KVM_REG_PPC_SIER:
1815                 vcpu->arch.sier = set_reg_val(id, *val);
1816                 break;
1817         case KVM_REG_PPC_IAMR:
1818                 vcpu->arch.iamr = set_reg_val(id, *val);
1819                 break;
1820         case KVM_REG_PPC_PSPB:
1821                 vcpu->arch.pspb = set_reg_val(id, *val);
1822                 break;
1823         case KVM_REG_PPC_DPDES:
1824                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1825                 break;
1826         case KVM_REG_PPC_VTB:
1827                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1828                 break;
1829         case KVM_REG_PPC_DAWR:
1830                 vcpu->arch.dawr = set_reg_val(id, *val);
1831                 break;
1832         case KVM_REG_PPC_DAWRX:
1833                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1834                 break;
1835         case KVM_REG_PPC_CIABR:
1836                 vcpu->arch.ciabr = set_reg_val(id, *val);
1837                 /* Don't allow setting breakpoints in hypervisor code */
1838                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1839                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1840                 break;
1841         case KVM_REG_PPC_CSIGR:
1842                 vcpu->arch.csigr = set_reg_val(id, *val);
1843                 break;
1844         case KVM_REG_PPC_TACR:
1845                 vcpu->arch.tacr = set_reg_val(id, *val);
1846                 break;
1847         case KVM_REG_PPC_TCSCR:
1848                 vcpu->arch.tcscr = set_reg_val(id, *val);
1849                 break;
1850         case KVM_REG_PPC_PID:
1851                 vcpu->arch.pid = set_reg_val(id, *val);
1852                 break;
1853         case KVM_REG_PPC_ACOP:
1854                 vcpu->arch.acop = set_reg_val(id, *val);
1855                 break;
1856         case KVM_REG_PPC_WORT:
1857                 vcpu->arch.wort = set_reg_val(id, *val);
1858                 break;
1859         case KVM_REG_PPC_TIDR:
1860                 vcpu->arch.tid = set_reg_val(id, *val);
1861                 break;
1862         case KVM_REG_PPC_PSSCR:
1863                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1864                 break;
1865         case KVM_REG_PPC_VPA_ADDR:
1866                 addr = set_reg_val(id, *val);
1867                 r = -EINVAL;
1868                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1869                               vcpu->arch.dtl.next_gpa))
1870                         break;
1871                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1872                 break;
1873         case KVM_REG_PPC_VPA_SLB:
1874                 addr = val->vpaval.addr;
1875                 len = val->vpaval.length;
1876                 r = -EINVAL;
1877                 if (addr && !vcpu->arch.vpa.next_gpa)
1878                         break;
1879                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1880                 break;
1881         case KVM_REG_PPC_VPA_DTL:
1882                 addr = val->vpaval.addr;
1883                 len = val->vpaval.length;
1884                 r = -EINVAL;
1885                 if (addr && (len < sizeof(struct dtl_entry) ||
1886                              !vcpu->arch.vpa.next_gpa))
1887                         break;
1888                 len -= len % sizeof(struct dtl_entry);
1889                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1890                 break;
1891         case KVM_REG_PPC_TB_OFFSET:
1892                 /* round up to multiple of 2^24 */
1893                 vcpu->arch.vcore->tb_offset =
1894                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1895                 break;
1896         case KVM_REG_PPC_LPCR:
1897                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1898                 break;
1899         case KVM_REG_PPC_LPCR_64:
1900                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1901                 break;
1902         case KVM_REG_PPC_PPR:
1903                 vcpu->arch.ppr = set_reg_val(id, *val);
1904                 break;
1905 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1906         case KVM_REG_PPC_TFHAR:
1907                 vcpu->arch.tfhar = set_reg_val(id, *val);
1908                 break;
1909         case KVM_REG_PPC_TFIAR:
1910                 vcpu->arch.tfiar = set_reg_val(id, *val);
1911                 break;
1912         case KVM_REG_PPC_TEXASR:
1913                 vcpu->arch.texasr = set_reg_val(id, *val);
1914                 break;
1915         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1916                 i = id - KVM_REG_PPC_TM_GPR0;
1917                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1918                 break;
1919         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1920         {
1921                 int j;
1922                 i = id - KVM_REG_PPC_TM_VSR0;
1923                 if (i < 32)
1924                         for (j = 0; j < TS_FPRWIDTH; j++)
1925                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1926                 else
1927                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1928                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1929                         else
1930                                 r = -ENXIO;
1931                 break;
1932         }
1933         case KVM_REG_PPC_TM_CR:
1934                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1935                 break;
1936         case KVM_REG_PPC_TM_XER:
1937                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1938                 break;
1939         case KVM_REG_PPC_TM_LR:
1940                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1941                 break;
1942         case KVM_REG_PPC_TM_CTR:
1943                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1944                 break;
1945         case KVM_REG_PPC_TM_FPSCR:
1946                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1947                 break;
1948         case KVM_REG_PPC_TM_AMR:
1949                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1950                 break;
1951         case KVM_REG_PPC_TM_PPR:
1952                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1953                 break;
1954         case KVM_REG_PPC_TM_VRSAVE:
1955                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1956                 break;
1957         case KVM_REG_PPC_TM_VSCR:
1958                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1959                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1960                 else
1961                         r = - ENXIO;
1962                 break;
1963         case KVM_REG_PPC_TM_DSCR:
1964                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1965                 break;
1966         case KVM_REG_PPC_TM_TAR:
1967                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1968                 break;
1969 #endif
1970         case KVM_REG_PPC_ARCH_COMPAT:
1971                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1972                 break;
1973         case KVM_REG_PPC_DEC_EXPIRY:
1974                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1975                         vcpu->arch.vcore->tb_offset;
1976                 break;
1977         case KVM_REG_PPC_ONLINE:
1978                 i = set_reg_val(id, *val);
1979                 if (i && !vcpu->arch.online)
1980                         atomic_inc(&vcpu->arch.vcore->online_count);
1981                 else if (!i && vcpu->arch.online)
1982                         atomic_dec(&vcpu->arch.vcore->online_count);
1983                 vcpu->arch.online = i;
1984                 break;
1985         case KVM_REG_PPC_PTCR:
1986                 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
1987                 break;
1988         default:
1989                 r = -EINVAL;
1990                 break;
1991         }
1992
1993         return r;
1994 }
1995
1996 /*
1997  * On POWER9, threads are independent and can be in different partitions.
1998  * Therefore we consider each thread to be a subcore.
1999  * There is a restriction that all threads have to be in the same
2000  * MMU mode (radix or HPT), unfortunately, but since we only support
2001  * HPT guests on a HPT host so far, that isn't an impediment yet.
2002  */
2003 static int threads_per_vcore(struct kvm *kvm)
2004 {
2005         if (kvm->arch.threads_indep)
2006                 return 1;
2007         return threads_per_subcore;
2008 }
2009
2010 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2011 {
2012         struct kvmppc_vcore *vcore;
2013
2014         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2015
2016         if (vcore == NULL)
2017                 return NULL;
2018
2019         spin_lock_init(&vcore->lock);
2020         spin_lock_init(&vcore->stoltb_lock);
2021         init_swait_queue_head(&vcore->wq);
2022         vcore->preempt_tb = TB_NIL;
2023         vcore->lpcr = kvm->arch.lpcr;
2024         vcore->first_vcpuid = id;
2025         vcore->kvm = kvm;
2026         INIT_LIST_HEAD(&vcore->preempt_list);
2027
2028         return vcore;
2029 }
2030
2031 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2032 static struct debugfs_timings_element {
2033         const char *name;
2034         size_t offset;
2035 } timings[] = {
2036         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
2037         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
2038         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
2039         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
2040         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
2041 };
2042
2043 #define N_TIMINGS       (ARRAY_SIZE(timings))
2044
2045 struct debugfs_timings_state {
2046         struct kvm_vcpu *vcpu;
2047         unsigned int    buflen;
2048         char            buf[N_TIMINGS * 100];
2049 };
2050
2051 static int debugfs_timings_open(struct inode *inode, struct file *file)
2052 {
2053         struct kvm_vcpu *vcpu = inode->i_private;
2054         struct debugfs_timings_state *p;
2055
2056         p = kzalloc(sizeof(*p), GFP_KERNEL);
2057         if (!p)
2058                 return -ENOMEM;
2059
2060         kvm_get_kvm(vcpu->kvm);
2061         p->vcpu = vcpu;
2062         file->private_data = p;
2063
2064         return nonseekable_open(inode, file);
2065 }
2066
2067 static int debugfs_timings_release(struct inode *inode, struct file *file)
2068 {
2069         struct debugfs_timings_state *p = file->private_data;
2070
2071         kvm_put_kvm(p->vcpu->kvm);
2072         kfree(p);
2073         return 0;
2074 }
2075
2076 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2077                                     size_t len, loff_t *ppos)
2078 {
2079         struct debugfs_timings_state *p = file->private_data;
2080         struct kvm_vcpu *vcpu = p->vcpu;
2081         char *s, *buf_end;
2082         struct kvmhv_tb_accumulator tb;
2083         u64 count;
2084         loff_t pos;
2085         ssize_t n;
2086         int i, loops;
2087         bool ok;
2088
2089         if (!p->buflen) {
2090                 s = p->buf;
2091                 buf_end = s + sizeof(p->buf);
2092                 for (i = 0; i < N_TIMINGS; ++i) {
2093                         struct kvmhv_tb_accumulator *acc;
2094
2095                         acc = (struct kvmhv_tb_accumulator *)
2096                                 ((unsigned long)vcpu + timings[i].offset);
2097                         ok = false;
2098                         for (loops = 0; loops < 1000; ++loops) {
2099                                 count = acc->seqcount;
2100                                 if (!(count & 1)) {
2101                                         smp_rmb();
2102                                         tb = *acc;
2103                                         smp_rmb();
2104                                         if (count == acc->seqcount) {
2105                                                 ok = true;
2106                                                 break;
2107                                         }
2108                                 }
2109                                 udelay(1);
2110                         }
2111                         if (!ok)
2112                                 snprintf(s, buf_end - s, "%s: stuck\n",
2113                                         timings[i].name);
2114                         else
2115                                 snprintf(s, buf_end - s,
2116                                         "%s: %llu %llu %llu %llu\n",
2117                                         timings[i].name, count / 2,
2118                                         tb_to_ns(tb.tb_total),
2119                                         tb_to_ns(tb.tb_min),
2120                                         tb_to_ns(tb.tb_max));
2121                         s += strlen(s);
2122                 }
2123                 p->buflen = s - p->buf;
2124         }
2125
2126         pos = *ppos;
2127         if (pos >= p->buflen)
2128                 return 0;
2129         if (len > p->buflen - pos)
2130                 len = p->buflen - pos;
2131         n = copy_to_user(buf, p->buf + pos, len);
2132         if (n) {
2133                 if (n == len)
2134                         return -EFAULT;
2135                 len -= n;
2136         }
2137         *ppos = pos + len;
2138         return len;
2139 }
2140
2141 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2142                                      size_t len, loff_t *ppos)
2143 {
2144         return -EACCES;
2145 }
2146
2147 static const struct file_operations debugfs_timings_ops = {
2148         .owner   = THIS_MODULE,
2149         .open    = debugfs_timings_open,
2150         .release = debugfs_timings_release,
2151         .read    = debugfs_timings_read,
2152         .write   = debugfs_timings_write,
2153         .llseek  = generic_file_llseek,
2154 };
2155
2156 /* Create a debugfs directory for the vcpu */
2157 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2158 {
2159         char buf[16];
2160         struct kvm *kvm = vcpu->kvm;
2161
2162         snprintf(buf, sizeof(buf), "vcpu%u", id);
2163         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2164                 return;
2165         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2166         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2167                 return;
2168         vcpu->arch.debugfs_timings =
2169                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2170                                     vcpu, &debugfs_timings_ops);
2171 }
2172
2173 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2174 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2175 {
2176 }
2177 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2178
2179 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2180                                                    unsigned int id)
2181 {
2182         struct kvm_vcpu *vcpu;
2183         int err;
2184         int core;
2185         struct kvmppc_vcore *vcore;
2186
2187         err = -ENOMEM;
2188         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2189         if (!vcpu)
2190                 goto out;
2191
2192         err = kvm_vcpu_init(vcpu, kvm, id);
2193         if (err)
2194                 goto free_vcpu;
2195
2196         vcpu->arch.shared = &vcpu->arch.shregs;
2197 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2198         /*
2199          * The shared struct is never shared on HV,
2200          * so we can always use host endianness
2201          */
2202 #ifdef __BIG_ENDIAN__
2203         vcpu->arch.shared_big_endian = true;
2204 #else
2205         vcpu->arch.shared_big_endian = false;
2206 #endif
2207 #endif
2208         vcpu->arch.mmcr[0] = MMCR0_FC;
2209         vcpu->arch.ctrl = CTRL_RUNLATCH;
2210         /* default to host PVR, since we can't spoof it */
2211         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2212         spin_lock_init(&vcpu->arch.vpa_update_lock);
2213         spin_lock_init(&vcpu->arch.tbacct_lock);
2214         vcpu->arch.busy_preempt = TB_NIL;
2215         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2216
2217         /*
2218          * Set the default HFSCR for the guest from the host value.
2219          * This value is only used on POWER9.
2220          * On POWER9, we want to virtualize the doorbell facility, so we
2221          * don't set the HFSCR_MSGP bit, and that causes those instructions
2222          * to trap and then we emulate them.
2223          */
2224         vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2225                 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2226         if (cpu_has_feature(CPU_FTR_HVMODE)) {
2227                 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2228                 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2229                         vcpu->arch.hfscr |= HFSCR_TM;
2230         }
2231         if (cpu_has_feature(CPU_FTR_TM_COMP))
2232                 vcpu->arch.hfscr |= HFSCR_TM;
2233
2234         kvmppc_mmu_book3s_hv_init(vcpu);
2235
2236         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2237
2238         init_waitqueue_head(&vcpu->arch.cpu_run);
2239
2240         mutex_lock(&kvm->lock);
2241         vcore = NULL;
2242         err = -EINVAL;
2243         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2244                 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2245                         pr_devel("KVM: VCPU ID too high\n");
2246                         core = KVM_MAX_VCORES;
2247                 } else {
2248                         BUG_ON(kvm->arch.smt_mode != 1);
2249                         core = kvmppc_pack_vcpu_id(kvm, id);
2250                 }
2251         } else {
2252                 core = id / kvm->arch.smt_mode;
2253         }
2254         if (core < KVM_MAX_VCORES) {
2255                 vcore = kvm->arch.vcores[core];
2256                 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2257                         pr_devel("KVM: collision on id %u", id);
2258                         vcore = NULL;
2259                 } else if (!vcore) {
2260                         err = -ENOMEM;
2261                         vcore = kvmppc_vcore_create(kvm,
2262                                         id & ~(kvm->arch.smt_mode - 1));
2263                         kvm->arch.vcores[core] = vcore;
2264                         kvm->arch.online_vcores++;
2265                 }
2266         }
2267         mutex_unlock(&kvm->lock);
2268
2269         if (!vcore)
2270                 goto free_vcpu;
2271
2272         spin_lock(&vcore->lock);
2273         ++vcore->num_threads;
2274         spin_unlock(&vcore->lock);
2275         vcpu->arch.vcore = vcore;
2276         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2277         vcpu->arch.thread_cpu = -1;
2278         vcpu->arch.prev_cpu = -1;
2279
2280         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2281         kvmppc_sanity_check(vcpu);
2282
2283         debugfs_vcpu_init(vcpu, id);
2284
2285         return vcpu;
2286
2287 free_vcpu:
2288         kmem_cache_free(kvm_vcpu_cache, vcpu);
2289 out:
2290         return ERR_PTR(err);
2291 }
2292
2293 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2294                               unsigned long flags)
2295 {
2296         int err;
2297         int esmt = 0;
2298
2299         if (flags)
2300                 return -EINVAL;
2301         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2302                 return -EINVAL;
2303         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2304                 /*
2305                  * On POWER8 (or POWER7), the threading mode is "strict",
2306                  * so we pack smt_mode vcpus per vcore.
2307                  */
2308                 if (smt_mode > threads_per_subcore)
2309                         return -EINVAL;
2310         } else {
2311                 /*
2312                  * On POWER9, the threading mode is "loose",
2313                  * so each vcpu gets its own vcore.
2314                  */
2315                 esmt = smt_mode;
2316                 smt_mode = 1;
2317         }
2318         mutex_lock(&kvm->lock);
2319         err = -EBUSY;
2320         if (!kvm->arch.online_vcores) {
2321                 kvm->arch.smt_mode = smt_mode;
2322                 kvm->arch.emul_smt_mode = esmt;
2323                 err = 0;
2324         }
2325         mutex_unlock(&kvm->lock);
2326
2327         return err;
2328 }
2329
2330 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2331 {
2332         if (vpa->pinned_addr)
2333                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2334                                         vpa->dirty);
2335 }
2336
2337 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2338 {
2339         spin_lock(&vcpu->arch.vpa_update_lock);
2340         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2341         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2342         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2343         spin_unlock(&vcpu->arch.vpa_update_lock);
2344         kvm_vcpu_uninit(vcpu);
2345         kmem_cache_free(kvm_vcpu_cache, vcpu);
2346 }
2347
2348 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2349 {
2350         /* Indicate we want to get back into the guest */
2351         return 1;
2352 }
2353
2354 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2355 {
2356         unsigned long dec_nsec, now;
2357
2358         now = get_tb();
2359         if (now > vcpu->arch.dec_expires) {
2360                 /* decrementer has already gone negative */
2361                 kvmppc_core_queue_dec(vcpu);
2362                 kvmppc_core_prepare_to_enter(vcpu);
2363                 return;
2364         }
2365         dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2366         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2367         vcpu->arch.timer_running = 1;
2368 }
2369
2370 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2371 {
2372         vcpu->arch.ceded = 0;
2373         if (vcpu->arch.timer_running) {
2374                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2375                 vcpu->arch.timer_running = 0;
2376         }
2377 }
2378
2379 extern int __kvmppc_vcore_entry(void);
2380
2381 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2382                                    struct kvm_vcpu *vcpu)
2383 {
2384         u64 now;
2385
2386         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2387                 return;
2388         spin_lock_irq(&vcpu->arch.tbacct_lock);
2389         now = mftb();
2390         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2391                 vcpu->arch.stolen_logged;
2392         vcpu->arch.busy_preempt = now;
2393         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2394         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2395         --vc->n_runnable;
2396         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2397 }
2398
2399 static int kvmppc_grab_hwthread(int cpu)
2400 {
2401         struct paca_struct *tpaca;
2402         long timeout = 10000;
2403
2404         tpaca = paca_ptrs[cpu];
2405
2406         /* Ensure the thread won't go into the kernel if it wakes */
2407         tpaca->kvm_hstate.kvm_vcpu = NULL;
2408         tpaca->kvm_hstate.kvm_vcore = NULL;
2409         tpaca->kvm_hstate.napping = 0;
2410         smp_wmb();
2411         tpaca->kvm_hstate.hwthread_req = 1;
2412
2413         /*
2414          * If the thread is already executing in the kernel (e.g. handling
2415          * a stray interrupt), wait for it to get back to nap mode.
2416          * The smp_mb() is to ensure that our setting of hwthread_req
2417          * is visible before we look at hwthread_state, so if this
2418          * races with the code at system_reset_pSeries and the thread
2419          * misses our setting of hwthread_req, we are sure to see its
2420          * setting of hwthread_state, and vice versa.
2421          */
2422         smp_mb();
2423         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2424                 if (--timeout <= 0) {
2425                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2426                         return -EBUSY;
2427                 }
2428                 udelay(1);
2429         }
2430         return 0;
2431 }
2432
2433 static void kvmppc_release_hwthread(int cpu)
2434 {
2435         struct paca_struct *tpaca;
2436
2437         tpaca = paca_ptrs[cpu];
2438         tpaca->kvm_hstate.hwthread_req = 0;
2439         tpaca->kvm_hstate.kvm_vcpu = NULL;
2440         tpaca->kvm_hstate.kvm_vcore = NULL;
2441         tpaca->kvm_hstate.kvm_split_mode = NULL;
2442 }
2443
2444 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2445 {
2446         struct kvm_nested_guest *nested = vcpu->arch.nested;
2447         cpumask_t *cpu_in_guest;
2448         int i;
2449
2450         cpu = cpu_first_thread_sibling(cpu);
2451         if (nested) {
2452                 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2453                 cpu_in_guest = &nested->cpu_in_guest;
2454         } else {
2455                 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2456                 cpu_in_guest = &kvm->arch.cpu_in_guest;
2457         }
2458         /*
2459          * Make sure setting of bit in need_tlb_flush precedes
2460          * testing of cpu_in_guest bits.  The matching barrier on
2461          * the other side is the first smp_mb() in kvmppc_run_core().
2462          */
2463         smp_mb();
2464         for (i = 0; i < threads_per_core; ++i)
2465                 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2466                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2467 }
2468
2469 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2470 {
2471         struct kvm_nested_guest *nested = vcpu->arch.nested;
2472         struct kvm *kvm = vcpu->kvm;
2473         int prev_cpu;
2474
2475         if (!cpu_has_feature(CPU_FTR_HVMODE))
2476                 return;
2477
2478         if (nested)
2479                 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2480         else
2481                 prev_cpu = vcpu->arch.prev_cpu;
2482
2483         /*
2484          * With radix, the guest can do TLB invalidations itself,
2485          * and it could choose to use the local form (tlbiel) if
2486          * it is invalidating a translation that has only ever been
2487          * used on one vcpu.  However, that doesn't mean it has
2488          * only ever been used on one physical cpu, since vcpus
2489          * can move around between pcpus.  To cope with this, when
2490          * a vcpu moves from one pcpu to another, we need to tell
2491          * any vcpus running on the same core as this vcpu previously
2492          * ran to flush the TLB.  The TLB is shared between threads,
2493          * so we use a single bit in .need_tlb_flush for all 4 threads.
2494          */
2495         if (prev_cpu != pcpu) {
2496                 if (prev_cpu >= 0 &&
2497                     cpu_first_thread_sibling(prev_cpu) !=
2498                     cpu_first_thread_sibling(pcpu))
2499                         radix_flush_cpu(kvm, prev_cpu, vcpu);
2500                 if (nested)
2501                         nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2502                 else
2503                         vcpu->arch.prev_cpu = pcpu;
2504         }
2505 }
2506
2507 static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu,
2508                                               struct kvm_nested_guest *nested)
2509 {
2510         cpumask_t *need_tlb_flush;
2511         int lpid;
2512
2513         if (!cpu_has_feature(CPU_FTR_HVMODE))
2514                 return;
2515
2516         if (cpu_has_feature(CPU_FTR_ARCH_300))
2517                 pcpu &= ~0x3UL;
2518
2519         if (nested) {
2520                 lpid = nested->shadow_lpid;
2521                 need_tlb_flush = &nested->need_tlb_flush;
2522         } else {
2523                 lpid = kvm->arch.lpid;
2524                 need_tlb_flush = &kvm->arch.need_tlb_flush;
2525         }
2526
2527         mtspr(SPRN_LPID, lpid);
2528         isync();
2529         smp_mb();
2530
2531         if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
2532                 radix__local_flush_tlb_lpid_guest(lpid);
2533                 /* Clear the bit after the TLB flush */
2534                 cpumask_clear_cpu(pcpu, need_tlb_flush);
2535         }
2536 }
2537
2538 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2539 {
2540         int cpu;
2541         struct paca_struct *tpaca;
2542         struct kvm *kvm = vc->kvm;
2543
2544         cpu = vc->pcpu;
2545         if (vcpu) {
2546                 if (vcpu->arch.timer_running) {
2547                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2548                         vcpu->arch.timer_running = 0;
2549                 }
2550                 cpu += vcpu->arch.ptid;
2551                 vcpu->cpu = vc->pcpu;
2552                 vcpu->arch.thread_cpu = cpu;
2553                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2554         }
2555         tpaca = paca_ptrs[cpu];
2556         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2557         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2558         tpaca->kvm_hstate.fake_suspend = 0;
2559         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2560         smp_wmb();
2561         tpaca->kvm_hstate.kvm_vcore = vc;
2562         if (cpu != smp_processor_id())
2563                 kvmppc_ipi_thread(cpu);
2564 }
2565
2566 static void kvmppc_wait_for_nap(int n_threads)
2567 {
2568         int cpu = smp_processor_id();
2569         int i, loops;
2570
2571         if (n_threads <= 1)
2572                 return;
2573         for (loops = 0; loops < 1000000; ++loops) {
2574                 /*
2575                  * Check if all threads are finished.
2576                  * We set the vcore pointer when starting a thread
2577                  * and the thread clears it when finished, so we look
2578                  * for any threads that still have a non-NULL vcore ptr.
2579                  */
2580                 for (i = 1; i < n_threads; ++i)
2581                         if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2582                                 break;
2583                 if (i == n_threads) {
2584                         HMT_medium();
2585                         return;
2586                 }
2587                 HMT_low();
2588         }
2589         HMT_medium();
2590         for (i = 1; i < n_threads; ++i)
2591                 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2592                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2593 }
2594
2595 /*
2596  * Check that we are on thread 0 and that any other threads in
2597  * this core are off-line.  Then grab the threads so they can't
2598  * enter the kernel.
2599  */
2600 static int on_primary_thread(void)
2601 {
2602         int cpu = smp_processor_id();
2603         int thr;
2604
2605         /* Are we on a primary subcore? */
2606         if (cpu_thread_in_subcore(cpu))
2607                 return 0;
2608
2609         thr = 0;
2610         while (++thr < threads_per_subcore)
2611                 if (cpu_online(cpu + thr))
2612                         return 0;
2613
2614         /* Grab all hw threads so they can't go into the kernel */
2615         for (thr = 1; thr < threads_per_subcore; ++thr) {
2616                 if (kvmppc_grab_hwthread(cpu + thr)) {
2617                         /* Couldn't grab one; let the others go */
2618                         do {
2619                                 kvmppc_release_hwthread(cpu + thr);
2620                         } while (--thr > 0);
2621                         return 0;
2622                 }
2623         }
2624         return 1;
2625 }
2626
2627 /*
2628  * A list of virtual cores for each physical CPU.
2629  * These are vcores that could run but their runner VCPU tasks are
2630  * (or may be) preempted.
2631  */
2632 struct preempted_vcore_list {
2633         struct list_head        list;
2634         spinlock_t              lock;
2635 };
2636
2637 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2638
2639 static void init_vcore_lists(void)
2640 {
2641         int cpu;
2642
2643         for_each_possible_cpu(cpu) {
2644                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2645                 spin_lock_init(&lp->lock);
2646                 INIT_LIST_HEAD(&lp->list);
2647         }
2648 }
2649
2650 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2651 {
2652         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2653
2654         vc->vcore_state = VCORE_PREEMPT;
2655         vc->pcpu = smp_processor_id();
2656         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2657                 spin_lock(&lp->lock);
2658                 list_add_tail(&vc->preempt_list, &lp->list);
2659                 spin_unlock(&lp->lock);
2660         }
2661
2662         /* Start accumulating stolen time */
2663         kvmppc_core_start_stolen(vc);
2664 }
2665
2666 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2667 {
2668         struct preempted_vcore_list *lp;
2669
2670         kvmppc_core_end_stolen(vc);
2671         if (!list_empty(&vc->preempt_list)) {
2672                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2673                 spin_lock(&lp->lock);
2674                 list_del_init(&vc->preempt_list);
2675                 spin_unlock(&lp->lock);
2676         }
2677         vc->vcore_state = VCORE_INACTIVE;
2678 }
2679
2680 /*
2681  * This stores information about the virtual cores currently
2682  * assigned to a physical core.
2683  */
2684 struct core_info {
2685         int             n_subcores;
2686         int             max_subcore_threads;
2687         int             total_threads;
2688         int             subcore_threads[MAX_SUBCORES];
2689         struct kvmppc_vcore *vc[MAX_SUBCORES];
2690 };
2691
2692 /*
2693  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2694  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2695  */
2696 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2697
2698 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2699 {
2700         memset(cip, 0, sizeof(*cip));
2701         cip->n_subcores = 1;
2702         cip->max_subcore_threads = vc->num_threads;
2703         cip->total_threads = vc->num_threads;
2704         cip->subcore_threads[0] = vc->num_threads;
2705         cip->vc[0] = vc;
2706 }
2707
2708 static bool subcore_config_ok(int n_subcores, int n_threads)
2709 {
2710         /*
2711          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2712          * split-core mode, with one thread per subcore.
2713          */
2714         if (cpu_has_feature(CPU_FTR_ARCH_300))
2715                 return n_subcores <= 4 && n_threads == 1;
2716
2717         /* On POWER8, can only dynamically split if unsplit to begin with */
2718         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2719                 return false;
2720         if (n_subcores > MAX_SUBCORES)
2721                 return false;
2722         if (n_subcores > 1) {
2723                 if (!(dynamic_mt_modes & 2))
2724                         n_subcores = 4;
2725                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2726                         return false;
2727         }
2728
2729         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2730 }
2731
2732 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2733 {
2734         vc->entry_exit_map = 0;
2735         vc->in_guest = 0;
2736         vc->napping_threads = 0;
2737         vc->conferring_threads = 0;
2738         vc->tb_offset_applied = 0;
2739 }
2740
2741 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2742 {
2743         int n_threads = vc->num_threads;
2744         int sub;
2745
2746         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2747                 return false;
2748
2749         /* In one_vm_per_core mode, require all vcores to be from the same vm */
2750         if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2751                 return false;
2752
2753         /* Some POWER9 chips require all threads to be in the same MMU mode */
2754         if (no_mixing_hpt_and_radix &&
2755             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2756                 return false;
2757
2758         if (n_threads < cip->max_subcore_threads)
2759                 n_threads = cip->max_subcore_threads;
2760         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2761                 return false;
2762         cip->max_subcore_threads = n_threads;
2763
2764         sub = cip->n_subcores;
2765         ++cip->n_subcores;
2766         cip->total_threads += vc->num_threads;
2767         cip->subcore_threads[sub] = vc->num_threads;
2768         cip->vc[sub] = vc;
2769         init_vcore_to_run(vc);
2770         list_del_init(&vc->preempt_list);
2771
2772         return true;
2773 }
2774
2775 /*
2776  * Work out whether it is possible to piggyback the execution of
2777  * vcore *pvc onto the execution of the other vcores described in *cip.
2778  */
2779 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2780                           int target_threads)
2781 {
2782         if (cip->total_threads + pvc->num_threads > target_threads)
2783                 return false;
2784
2785         return can_dynamic_split(pvc, cip);
2786 }
2787
2788 static void prepare_threads(struct kvmppc_vcore *vc)
2789 {
2790         int i;
2791         struct kvm_vcpu *vcpu;
2792
2793         for_each_runnable_thread(i, vcpu, vc) {
2794                 if (signal_pending(vcpu->arch.run_task))
2795                         vcpu->arch.ret = -EINTR;
2796                 else if (vcpu->arch.vpa.update_pending ||
2797                          vcpu->arch.slb_shadow.update_pending ||
2798                          vcpu->arch.dtl.update_pending)
2799                         vcpu->arch.ret = RESUME_GUEST;
2800                 else
2801                         continue;
2802                 kvmppc_remove_runnable(vc, vcpu);
2803                 wake_up(&vcpu->arch.cpu_run);
2804         }
2805 }
2806
2807 static void collect_piggybacks(struct core_info *cip, int target_threads)
2808 {
2809         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2810         struct kvmppc_vcore *pvc, *vcnext;
2811
2812         spin_lock(&lp->lock);
2813         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2814                 if (!spin_trylock(&pvc->lock))
2815                         continue;
2816                 prepare_threads(pvc);
2817                 if (!pvc->n_runnable) {
2818                         list_del_init(&pvc->preempt_list);
2819                         if (pvc->runner == NULL) {
2820                                 pvc->vcore_state = VCORE_INACTIVE;
2821                                 kvmppc_core_end_stolen(pvc);
2822                         }
2823                         spin_unlock(&pvc->lock);
2824                         continue;
2825                 }
2826                 if (!can_piggyback(pvc, cip, target_threads)) {
2827                         spin_unlock(&pvc->lock);
2828                         continue;
2829                 }
2830                 kvmppc_core_end_stolen(pvc);
2831                 pvc->vcore_state = VCORE_PIGGYBACK;
2832                 if (cip->total_threads >= target_threads)
2833                         break;
2834         }
2835         spin_unlock(&lp->lock);
2836 }
2837
2838 static bool recheck_signals(struct core_info *cip)
2839 {
2840         int sub, i;
2841         struct kvm_vcpu *vcpu;
2842
2843         for (sub = 0; sub < cip->n_subcores; ++sub)
2844                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2845                         if (signal_pending(vcpu->arch.run_task))
2846                                 return true;
2847         return false;
2848 }
2849
2850 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2851 {
2852         int still_running = 0, i;
2853         u64 now;
2854         long ret;
2855         struct kvm_vcpu *vcpu;
2856
2857         spin_lock(&vc->lock);
2858         now = get_tb();
2859         for_each_runnable_thread(i, vcpu, vc) {
2860                 /*
2861                  * It's safe to unlock the vcore in the loop here, because
2862                  * for_each_runnable_thread() is safe against removal of
2863                  * the vcpu, and the vcore state is VCORE_EXITING here,
2864                  * so any vcpus becoming runnable will have their arch.trap
2865                  * set to zero and can't actually run in the guest.
2866                  */
2867                 spin_unlock(&vc->lock);
2868                 /* cancel pending dec exception if dec is positive */
2869                 if (now < vcpu->arch.dec_expires &&
2870                     kvmppc_core_pending_dec(vcpu))
2871                         kvmppc_core_dequeue_dec(vcpu);
2872
2873                 trace_kvm_guest_exit(vcpu);
2874
2875                 ret = RESUME_GUEST;
2876                 if (vcpu->arch.trap)
2877                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2878                                                     vcpu->arch.run_task);
2879
2880                 vcpu->arch.ret = ret;
2881                 vcpu->arch.trap = 0;
2882
2883                 spin_lock(&vc->lock);
2884                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2885                         if (vcpu->arch.pending_exceptions)
2886                                 kvmppc_core_prepare_to_enter(vcpu);
2887                         if (vcpu->arch.ceded)
2888                                 kvmppc_set_timer(vcpu);
2889                         else
2890                                 ++still_running;
2891                 } else {
2892                         kvmppc_remove_runnable(vc, vcpu);
2893                         wake_up(&vcpu->arch.cpu_run);
2894                 }
2895         }
2896         if (!is_master) {
2897                 if (still_running > 0) {
2898                         kvmppc_vcore_preempt(vc);
2899                 } else if (vc->runner) {
2900                         vc->vcore_state = VCORE_PREEMPT;
2901                         kvmppc_core_start_stolen(vc);
2902                 } else {
2903                         vc->vcore_state = VCORE_INACTIVE;
2904                 }
2905                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2906                         /* make sure there's a candidate runner awake */
2907                         i = -1;
2908                         vcpu = next_runnable_thread(vc, &i);
2909                         wake_up(&vcpu->arch.cpu_run);
2910                 }
2911         }
2912         spin_unlock(&vc->lock);
2913 }
2914
2915 /*
2916  * Clear core from the list of active host cores as we are about to
2917  * enter the guest. Only do this if it is the primary thread of the
2918  * core (not if a subcore) that is entering the guest.
2919  */
2920 static inline int kvmppc_clear_host_core(unsigned int cpu)
2921 {
2922         int core;
2923
2924         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2925                 return 0;
2926         /*
2927          * Memory barrier can be omitted here as we will do a smp_wmb()
2928          * later in kvmppc_start_thread and we need ensure that state is
2929          * visible to other CPUs only after we enter guest.
2930          */
2931         core = cpu >> threads_shift;
2932         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2933         return 0;
2934 }
2935
2936 /*
2937  * Advertise this core as an active host core since we exited the guest
2938  * Only need to do this if it is the primary thread of the core that is
2939  * exiting.
2940  */
2941 static inline int kvmppc_set_host_core(unsigned int cpu)
2942 {
2943         int core;
2944
2945         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2946                 return 0;
2947
2948         /*
2949          * Memory barrier can be omitted here because we do a spin_unlock
2950          * immediately after this which provides the memory barrier.
2951          */
2952         core = cpu >> threads_shift;
2953         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2954         return 0;
2955 }
2956
2957 static void set_irq_happened(int trap)
2958 {
2959         switch (trap) {
2960         case BOOK3S_INTERRUPT_EXTERNAL:
2961                 local_paca->irq_happened |= PACA_IRQ_EE;
2962                 break;
2963         case BOOK3S_INTERRUPT_H_DOORBELL:
2964                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2965                 break;
2966         case BOOK3S_INTERRUPT_HMI:
2967                 local_paca->irq_happened |= PACA_IRQ_HMI;
2968                 break;
2969         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2970                 replay_system_reset();
2971                 break;
2972         }
2973 }
2974
2975 /*
2976  * Run a set of guest threads on a physical core.
2977  * Called with vc->lock held.
2978  */
2979 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2980 {
2981         struct kvm_vcpu *vcpu;
2982         int i;
2983         int srcu_idx;
2984         struct core_info core_info;
2985         struct kvmppc_vcore *pvc;
2986         struct kvm_split_mode split_info, *sip;
2987         int split, subcore_size, active;
2988         int sub;
2989         bool thr0_done;
2990         unsigned long cmd_bit, stat_bit;
2991         int pcpu, thr;
2992         int target_threads;
2993         int controlled_threads;
2994         int trap;
2995         bool is_power8;
2996         bool hpt_on_radix;
2997
2998         /*
2999          * Remove from the list any threads that have a signal pending
3000          * or need a VPA update done
3001          */
3002         prepare_threads(vc);
3003
3004         /* if the runner is no longer runnable, let the caller pick a new one */
3005         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3006                 return;
3007
3008         /*
3009          * Initialize *vc.
3010          */
3011         init_vcore_to_run(vc);
3012         vc->preempt_tb = TB_NIL;
3013
3014         /*
3015          * Number of threads that we will be controlling: the same as
3016          * the number of threads per subcore, except on POWER9,
3017          * where it's 1 because the threads are (mostly) independent.
3018          */
3019         controlled_threads = threads_per_vcore(vc->kvm);
3020
3021         /*
3022          * Make sure we are running on primary threads, and that secondary
3023          * threads are offline.  Also check if the number of threads in this
3024          * guest are greater than the current system threads per guest.
3025          * On POWER9, we need to be not in independent-threads mode if
3026          * this is a HPT guest on a radix host machine where the
3027          * CPU threads may not be in different MMU modes.
3028          */
3029         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3030                 !kvm_is_radix(vc->kvm);
3031         if (((controlled_threads > 1) &&
3032              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3033             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3034                 for_each_runnable_thread(i, vcpu, vc) {
3035                         vcpu->arch.ret = -EBUSY;
3036                         kvmppc_remove_runnable(vc, vcpu);
3037                         wake_up(&vcpu->arch.cpu_run);
3038                 }
3039                 goto out;
3040         }
3041
3042         /*
3043          * See if we could run any other vcores on the physical core
3044          * along with this one.
3045          */
3046         init_core_info(&core_info, vc);
3047         pcpu = smp_processor_id();
3048         target_threads = controlled_threads;
3049         if (target_smt_mode && target_smt_mode < target_threads)
3050                 target_threads = target_smt_mode;
3051         if (vc->num_threads < target_threads)
3052                 collect_piggybacks(&core_info, target_threads);
3053
3054         /*
3055          * On radix, arrange for TLB flushing if necessary.
3056          * This has to be done before disabling interrupts since
3057          * it uses smp_call_function().
3058          */
3059         pcpu = smp_processor_id();
3060         if (kvm_is_radix(vc->kvm)) {
3061                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3062                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3063                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3064         }
3065
3066         /*
3067          * Hard-disable interrupts, and check resched flag and signals.
3068          * If we need to reschedule or deliver a signal, clean up
3069          * and return without going into the guest(s).
3070          * If the mmu_ready flag has been cleared, don't go into the
3071          * guest because that means a HPT resize operation is in progress.
3072          */
3073         local_irq_disable();
3074         hard_irq_disable();
3075         if (lazy_irq_pending() || need_resched() ||
3076             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
3077                 local_irq_enable();
3078                 vc->vcore_state = VCORE_INACTIVE;
3079                 /* Unlock all except the primary vcore */
3080                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3081                         pvc = core_info.vc[sub];
3082                         /* Put back on to the preempted vcores list */
3083                         kvmppc_vcore_preempt(pvc);
3084                         spin_unlock(&pvc->lock);
3085                 }
3086                 for (i = 0; i < controlled_threads; ++i)
3087                         kvmppc_release_hwthread(pcpu + i);
3088                 return;
3089         }
3090
3091         kvmppc_clear_host_core(pcpu);
3092
3093         /* Decide on micro-threading (split-core) mode */
3094         subcore_size = threads_per_subcore;
3095         cmd_bit = stat_bit = 0;
3096         split = core_info.n_subcores;
3097         sip = NULL;
3098         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3099                 && !cpu_has_feature(CPU_FTR_ARCH_300);
3100
3101         if (split > 1 || hpt_on_radix) {
3102                 sip = &split_info;
3103                 memset(&split_info, 0, sizeof(split_info));
3104                 for (sub = 0; sub < core_info.n_subcores; ++sub)
3105                         split_info.vc[sub] = core_info.vc[sub];
3106
3107                 if (is_power8) {
3108                         if (split == 2 && (dynamic_mt_modes & 2)) {
3109                                 cmd_bit = HID0_POWER8_1TO2LPAR;
3110                                 stat_bit = HID0_POWER8_2LPARMODE;
3111                         } else {
3112                                 split = 4;
3113                                 cmd_bit = HID0_POWER8_1TO4LPAR;
3114                                 stat_bit = HID0_POWER8_4LPARMODE;
3115                         }
3116                         subcore_size = MAX_SMT_THREADS / split;
3117                         split_info.rpr = mfspr(SPRN_RPR);
3118                         split_info.pmmar = mfspr(SPRN_PMMAR);
3119                         split_info.ldbar = mfspr(SPRN_LDBAR);
3120                         split_info.subcore_size = subcore_size;
3121                 } else {
3122                         split_info.subcore_size = 1;
3123                         if (hpt_on_radix) {
3124                                 /* Use the split_info for LPCR/LPIDR changes */
3125                                 split_info.lpcr_req = vc->lpcr;
3126                                 split_info.lpidr_req = vc->kvm->arch.lpid;
3127                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3128                                 split_info.do_set = 1;
3129                         }
3130                 }
3131
3132                 /* order writes to split_info before kvm_split_mode pointer */
3133                 smp_wmb();
3134         }
3135
3136         for (thr = 0; thr < controlled_threads; ++thr) {
3137                 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3138
3139                 paca->kvm_hstate.tid = thr;
3140                 paca->kvm_hstate.napping = 0;
3141                 paca->kvm_hstate.kvm_split_mode = sip;
3142         }
3143
3144         /* Initiate micro-threading (split-core) on POWER8 if required */
3145         if (cmd_bit) {
3146                 unsigned long hid0 = mfspr(SPRN_HID0);
3147
3148                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3149                 mb();
3150                 mtspr(SPRN_HID0, hid0);
3151                 isync();
3152                 for (;;) {
3153                         hid0 = mfspr(SPRN_HID0);
3154                         if (hid0 & stat_bit)
3155                                 break;
3156                         cpu_relax();
3157                 }
3158         }
3159
3160         /*
3161          * On POWER8, set RWMR register.
3162          * Since it only affects PURR and SPURR, it doesn't affect
3163          * the host, so we don't save/restore the host value.
3164          */
3165         if (is_power8) {
3166                 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3167                 int n_online = atomic_read(&vc->online_count);
3168
3169                 /*
3170                  * Use the 8-thread value if we're doing split-core
3171                  * or if the vcore's online count looks bogus.
3172                  */
3173                 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3174                     n_online >= 1 && n_online <= MAX_SMT_THREADS)
3175                         rwmr_val = p8_rwmr_values[n_online];
3176                 mtspr(SPRN_RWMR, rwmr_val);
3177         }
3178
3179         /* Start all the threads */
3180         active = 0;
3181         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3182                 thr = is_power8 ? subcore_thread_map[sub] : sub;
3183                 thr0_done = false;
3184                 active |= 1 << thr;
3185                 pvc = core_info.vc[sub];
3186                 pvc->pcpu = pcpu + thr;
3187                 for_each_runnable_thread(i, vcpu, pvc) {
3188                         kvmppc_start_thread(vcpu, pvc);
3189                         kvmppc_create_dtl_entry(vcpu, pvc);
3190                         trace_kvm_guest_enter(vcpu);
3191                         if (!vcpu->arch.ptid)
3192                                 thr0_done = true;
3193                         active |= 1 << (thr + vcpu->arch.ptid);
3194                 }
3195                 /*
3196                  * We need to start the first thread of each subcore
3197                  * even if it doesn't have a vcpu.
3198                  */
3199                 if (!thr0_done)
3200                         kvmppc_start_thread(NULL, pvc);
3201         }
3202
3203         /*
3204          * Ensure that split_info.do_nap is set after setting
3205          * the vcore pointer in the PACA of the secondaries.
3206          */
3207         smp_mb();
3208
3209         /*
3210          * When doing micro-threading, poke the inactive threads as well.
3211          * This gets them to the nap instruction after kvm_do_nap,
3212          * which reduces the time taken to unsplit later.
3213          * For POWER9 HPT guest on radix host, we need all the secondary
3214          * threads woken up so they can do the LPCR/LPIDR change.
3215          */
3216         if (cmd_bit || hpt_on_radix) {
3217                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
3218                 for (thr = 1; thr < threads_per_subcore; ++thr)
3219                         if (!(active & (1 << thr)))
3220                                 kvmppc_ipi_thread(pcpu + thr);
3221         }
3222
3223         vc->vcore_state = VCORE_RUNNING;
3224         preempt_disable();
3225
3226         trace_kvmppc_run_core(vc, 0);
3227
3228         for (sub = 0; sub < core_info.n_subcores; ++sub)
3229                 spin_unlock(&core_info.vc[sub]->lock);
3230
3231         if (kvm_is_radix(vc->kvm)) {
3232                 /*
3233                  * Do we need to flush the process scoped TLB for the LPAR?
3234                  *
3235                  * On POWER9, individual threads can come in here, but the
3236                  * TLB is shared between the 4 threads in a core, hence
3237                  * invalidating on one thread invalidates for all.
3238                  * Thus we make all 4 threads use the same bit here.
3239                  *
3240                  * Hash must be flushed in realmode in order to use tlbiel.
3241                  */
3242                 kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL);
3243         }
3244
3245         /*
3246          * Interrupts will be enabled once we get into the guest,
3247          * so tell lockdep that we're about to enable interrupts.
3248          */
3249         trace_hardirqs_on();
3250
3251         guest_enter_irqoff();
3252
3253         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3254
3255         this_cpu_disable_ftrace();
3256
3257         trap = __kvmppc_vcore_entry();
3258
3259         this_cpu_enable_ftrace();
3260
3261         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3262
3263         trace_hardirqs_off();
3264         set_irq_happened(trap);
3265
3266         spin_lock(&vc->lock);
3267         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3268         vc->vcore_state = VCORE_EXITING;
3269
3270         /* wait for secondary threads to finish writing their state to memory */
3271         kvmppc_wait_for_nap(controlled_threads);
3272
3273         /* Return to whole-core mode if we split the core earlier */
3274         if (cmd_bit) {
3275                 unsigned long hid0 = mfspr(SPRN_HID0);
3276                 unsigned long loops = 0;
3277
3278                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3279                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3280                 mb();
3281                 mtspr(SPRN_HID0, hid0);
3282                 isync();
3283                 for (;;) {
3284                         hid0 = mfspr(SPRN_HID0);
3285                         if (!(hid0 & stat_bit))
3286                                 break;
3287                         cpu_relax();
3288                         ++loops;
3289                 }
3290         } else if (hpt_on_radix) {
3291                 /* Wait for all threads to have seen final sync */
3292                 for (thr = 1; thr < controlled_threads; ++thr) {
3293                         struct paca_struct *paca = paca_ptrs[pcpu + thr];
3294
3295                         while (paca->kvm_hstate.kvm_split_mode) {
3296                                 HMT_low();
3297                                 barrier();
3298                         }
3299                         HMT_medium();
3300                 }
3301         }
3302         split_info.do_nap = 0;
3303
3304         kvmppc_set_host_core(pcpu);
3305
3306         local_irq_enable();
3307         guest_exit();
3308
3309         /* Let secondaries go back to the offline loop */
3310         for (i = 0; i < controlled_threads; ++i) {
3311                 kvmppc_release_hwthread(pcpu + i);
3312                 if (sip && sip->napped[i])
3313                         kvmppc_ipi_thread(pcpu + i);
3314                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3315         }
3316
3317         spin_unlock(&vc->lock);
3318
3319         /* make sure updates to secondary vcpu structs are visible now */
3320         smp_mb();
3321
3322         preempt_enable();
3323
3324         for (sub = 0; sub < core_info.n_subcores; ++sub) {
3325                 pvc = core_info.vc[sub];
3326                 post_guest_process(pvc, pvc == vc);
3327         }
3328
3329         spin_lock(&vc->lock);
3330
3331  out:
3332         vc->vcore_state = VCORE_INACTIVE;
3333         trace_kvmppc_run_core(vc, 1);
3334 }
3335
3336 /*
3337  * Load up hypervisor-mode registers on P9.
3338  */
3339 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3340                                      unsigned long lpcr)
3341 {
3342         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3343         s64 hdec;
3344         u64 tb, purr, spurr;
3345         int trap;
3346         unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3347         unsigned long host_ciabr = mfspr(SPRN_CIABR);
3348         unsigned long host_dawr = mfspr(SPRN_DAWR);
3349         unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3350         unsigned long host_psscr = mfspr(SPRN_PSSCR);
3351         unsigned long host_pidr = mfspr(SPRN_PID);
3352
3353         hdec = time_limit - mftb();
3354         if (hdec < 0)
3355                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3356         mtspr(SPRN_HDEC, hdec);
3357
3358         if (vc->tb_offset) {
3359                 u64 new_tb = mftb() + vc->tb_offset;
3360                 mtspr(SPRN_TBU40, new_tb);
3361                 tb = mftb();
3362                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3363                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3364                 vc->tb_offset_applied = vc->tb_offset;
3365         }
3366
3367         if (vc->pcr)
3368                 mtspr(SPRN_PCR, vc->pcr);
3369         mtspr(SPRN_DPDES, vc->dpdes);
3370         mtspr(SPRN_VTB, vc->vtb);
3371
3372         local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3373         local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3374         mtspr(SPRN_PURR, vcpu->arch.purr);
3375         mtspr(SPRN_SPURR, vcpu->arch.spurr);
3376
3377         if (cpu_has_feature(CPU_FTR_DAWR)) {
3378                 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3379                 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3380         }
3381         mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3382         mtspr(SPRN_IC, vcpu->arch.ic);
3383         mtspr(SPRN_PID, vcpu->arch.pid);
3384
3385         mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3386               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3387
3388         mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3389
3390         mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3391         mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3392         mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3393         mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3394
3395         mtspr(SPRN_AMOR, ~0UL);
3396
3397         mtspr(SPRN_LPCR, lpcr);
3398         isync();
3399
3400         kvmppc_xive_push_vcpu(vcpu);
3401
3402         mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3403         mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3404
3405         trap = __kvmhv_vcpu_entry_p9(vcpu);
3406
3407         /* Advance host PURR/SPURR by the amount used by guest */
3408         purr = mfspr(SPRN_PURR);
3409         spurr = mfspr(SPRN_SPURR);
3410         mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3411               purr - vcpu->arch.purr);
3412         mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3413               spurr - vcpu->arch.spurr);
3414         vcpu->arch.purr = purr;
3415         vcpu->arch.spurr = spurr;
3416
3417         vcpu->arch.ic = mfspr(SPRN_IC);
3418         vcpu->arch.pid = mfspr(SPRN_PID);
3419         vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3420
3421         vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3422         vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3423         vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3424         vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3425
3426         /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3427         mtspr(SPRN_PSSCR, host_psscr |
3428               (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3429         mtspr(SPRN_HFSCR, host_hfscr);
3430         mtspr(SPRN_CIABR, host_ciabr);
3431         mtspr(SPRN_DAWR, host_dawr);
3432         mtspr(SPRN_DAWRX, host_dawrx);
3433         mtspr(SPRN_PID, host_pidr);
3434
3435         /*
3436          * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3437          * case we interrupted the guest between a tlbie and a ptesync.
3438          */
3439         asm volatile("eieio; tlbsync; ptesync");
3440
3441         mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);    /* restore host LPID */
3442         isync();
3443
3444         vc->dpdes = mfspr(SPRN_DPDES);
3445         vc->vtb = mfspr(SPRN_VTB);
3446         mtspr(SPRN_DPDES, 0);
3447         if (vc->pcr)
3448                 mtspr(SPRN_PCR, 0);
3449
3450         if (vc->tb_offset_applied) {
3451                 u64 new_tb = mftb() - vc->tb_offset_applied;
3452                 mtspr(SPRN_TBU40, new_tb);
3453                 tb = mftb();
3454                 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3455                         mtspr(SPRN_TBU40, new_tb + 0x1000000);
3456                 vc->tb_offset_applied = 0;
3457         }
3458
3459         mtspr(SPRN_HDEC, 0x7fffffff);
3460         mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3461
3462         return trap;
3463 }
3464
3465 /*
3466  * Virtual-mode guest entry for POWER9 and later when the host and
3467  * guest are both using the radix MMU.  The LPIDR has already been set.
3468  */
3469 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3470                          unsigned long lpcr)
3471 {
3472         struct kvmppc_vcore *vc = vcpu->arch.vcore;
3473         unsigned long host_dscr = mfspr(SPRN_DSCR);
3474         unsigned long host_tidr = mfspr(SPRN_TIDR);
3475         unsigned long host_iamr = mfspr(SPRN_IAMR);
3476         unsigned long host_amr = mfspr(SPRN_AMR);
3477         s64 dec;
3478         u64 tb;
3479         int trap, save_pmu;
3480
3481         dec = mfspr(SPRN_DEC);
3482         tb = mftb();
3483         if (dec < 512)
3484                 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3485         local_paca->kvm_hstate.dec_expires = dec + tb;
3486         if (local_paca->kvm_hstate.dec_expires < time_limit)
3487                 time_limit = local_paca->kvm_hstate.dec_expires;
3488
3489         vcpu->arch.ceded = 0;
3490
3491         kvmhv_save_host_pmu();          /* saves it to PACA kvm_hstate */
3492
3493         kvmppc_subcore_enter_guest();
3494
3495         vc->entry_exit_map = 1;
3496         vc->in_guest = 1;
3497
3498         if (vcpu->arch.vpa.pinned_addr) {
3499                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3500                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3501                 lp->yield_count = cpu_to_be32(yield_count);
3502                 vcpu->arch.vpa.dirty = 1;
3503         }
3504
3505         if (cpu_has_feature(CPU_FTR_TM) ||
3506             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3507                 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3508
3509         kvmhv_load_guest_pmu(vcpu);
3510
3511         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3512         load_fp_state(&vcpu->arch.fp);
3513 #ifdef CONFIG_ALTIVEC
3514         load_vr_state(&vcpu->arch.vr);
3515 #endif
3516
3517         mtspr(SPRN_DSCR, vcpu->arch.dscr);
3518         mtspr(SPRN_IAMR, vcpu->arch.iamr);
3519         mtspr(SPRN_PSPB, vcpu->arch.pspb);
3520         mtspr(SPRN_FSCR, vcpu->arch.fscr);
3521         mtspr(SPRN_TAR, vcpu->arch.tar);
3522         mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3523         mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3524         mtspr(SPRN_BESCR, vcpu->arch.bescr);
3525         mtspr(SPRN_WORT, vcpu->arch.wort);
3526         mtspr(SPRN_TIDR, vcpu->arch.tid);
3527         mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3528         mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3529         mtspr(SPRN_AMR, vcpu->arch.amr);
3530         mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3531
3532         if (!(vcpu->arch.ctrl & 1))
3533                 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3534
3535         mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3536
3537         if (kvmhv_on_pseries()) {
3538                 /* call our hypervisor to load up HV regs and go */
3539                 struct hv_guest_state hvregs;
3540
3541                 kvmhv_save_hv_regs(vcpu, &hvregs);
3542                 hvregs.lpcr = lpcr;
3543                 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3544                 hvregs.version = HV_GUEST_STATE_VERSION;
3545                 if (vcpu->arch.nested) {
3546                         hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3547                         hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3548                 } else {
3549                         hvregs.lpid = vcpu->kvm->arch.lpid;
3550                         hvregs.vcpu_token = vcpu->vcpu_id;
3551                 }
3552                 hvregs.hdec_expiry = time_limit;
3553                 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3554                                           __pa(&vcpu->arch.regs));
3555                 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3556                 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3557                 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3558                 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3559
3560                 /* H_CEDE has to be handled now, not later */
3561                 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3562                     kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3563                         kvmppc_nested_cede(vcpu);
3564                         trap = 0;
3565                 }
3566         } else {
3567                 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3568         }
3569
3570         vcpu->arch.slb_max = 0;
3571         dec = mfspr(SPRN_DEC);
3572         tb = mftb();
3573         vcpu->arch.dec_expires = dec + tb;
3574         vcpu->cpu = -1;
3575         vcpu->arch.thread_cpu = -1;
3576         vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3577
3578         vcpu->arch.iamr = mfspr(SPRN_IAMR);
3579         vcpu->arch.pspb = mfspr(SPRN_PSPB);
3580         vcpu->arch.fscr = mfspr(SPRN_FSCR);
3581         vcpu->arch.tar = mfspr(SPRN_TAR);
3582         vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3583         vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3584         vcpu->arch.bescr = mfspr(SPRN_BESCR);
3585         vcpu->arch.wort = mfspr(SPRN_WORT);
3586         vcpu->arch.tid = mfspr(SPRN_TIDR);
3587         vcpu->arch.amr = mfspr(SPRN_AMR);
3588         vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3589         vcpu->arch.dscr = mfspr(SPRN_DSCR);
3590
3591         mtspr(SPRN_PSPB, 0);
3592         mtspr(SPRN_WORT, 0);
3593         mtspr(SPRN_UAMOR, 0);
3594         mtspr(SPRN_DSCR, host_dscr);
3595         mtspr(SPRN_TIDR, host_tidr);
3596         mtspr(SPRN_IAMR, host_iamr);
3597         mtspr(SPRN_PSPB, 0);
3598
3599         if (host_amr != vcpu->arch.amr)
3600                 mtspr(SPRN_AMR, host_amr);
3601
3602         msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3603         store_fp_state(&vcpu->arch.fp);
3604 #ifdef CONFIG_ALTIVEC
3605         store_vr_state(&vcpu->arch.vr);
3606 #endif
3607
3608         if (cpu_has_feature(CPU_FTR_TM) ||
3609             cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3610                 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3611
3612         save_pmu = 1;
3613         if (vcpu->arch.vpa.pinned_addr) {
3614                 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3615                 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3616                 lp->yield_count = cpu_to_be32(yield_count);
3617                 vcpu->arch.vpa.dirty = 1;
3618                 save_pmu = lp->pmcregs_in_use;
3619         }
3620
3621         kvmhv_save_guest_pmu(vcpu, save_pmu);
3622
3623         vc->entry_exit_map = 0x101;
3624         vc->in_guest = 0;
3625
3626         mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3627
3628         kvmhv_load_host_pmu();
3629
3630         kvmppc_subcore_exit_guest();
3631
3632         return trap;
3633 }
3634
3635 /*
3636  * Wait for some other vcpu thread to execute us, and
3637  * wake us up when we need to handle something in the host.
3638  */
3639 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3640                                  struct kvm_vcpu *vcpu, int wait_state)
3641 {
3642         DEFINE_WAIT(wait);
3643
3644         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3645         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3646                 spin_unlock(&vc->lock);
3647                 schedule();
3648                 spin_lock(&vc->lock);
3649         }
3650         finish_wait(&vcpu->arch.cpu_run, &wait);
3651 }
3652
3653 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3654 {
3655         if (!halt_poll_ns_grow)
3656                 return;
3657
3658         vc->halt_poll_ns *= halt_poll_ns_grow;
3659         if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3660                 vc->halt_poll_ns = halt_poll_ns_grow_start;
3661 }
3662
3663 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3664 {
3665         if (halt_poll_ns_shrink == 0)
3666                 vc->halt_poll_ns = 0;
3667         else
3668                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3669 }
3670
3671 #ifdef CONFIG_KVM_XICS
3672 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3673 {
3674         if (!xics_on_xive())
3675                 return false;
3676         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3677                 vcpu->arch.xive_saved_state.cppr;
3678 }
3679 #else
3680 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3681 {
3682         return false;
3683 }
3684 #endif /* CONFIG_KVM_XICS */
3685
3686 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3687 {
3688         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3689             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3690                 return true;
3691
3692         return false;
3693 }
3694
3695 /*
3696  * Check to see if any of the runnable vcpus on the vcore have pending
3697  * exceptions or are no longer ceded
3698  */
3699 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3700 {
3701         struct kvm_vcpu *vcpu;
3702         int i;
3703
3704         for_each_runnable_thread(i, vcpu, vc) {
3705                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3706                         return 1;
3707         }
3708
3709         return 0;
3710 }
3711
3712 /*
3713  * All the vcpus in this vcore are idle, so wait for a decrementer
3714  * or external interrupt to one of the vcpus.  vc->lock is held.
3715  */
3716 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3717 {
3718         ktime_t cur, start_poll, start_wait;
3719         int do_sleep = 1;
3720         u64 block_ns;
3721         DECLARE_SWAITQUEUE(wait);
3722
3723         /* Poll for pending exceptions and ceded state */
3724         cur = start_poll = ktime_get();
3725         if (vc->halt_poll_ns) {
3726                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3727                 ++vc->runner->stat.halt_attempted_poll;
3728
3729                 vc->vcore_state = VCORE_POLLING;
3730                 spin_unlock(&vc->lock);
3731
3732                 do {
3733                         if (kvmppc_vcore_check_block(vc)) {
3734                                 do_sleep = 0;
3735                                 break;
3736                         }
3737                         cur = ktime_get();
3738                 } while (single_task_running() && ktime_before(cur, stop));
3739
3740                 spin_lock(&vc->lock);
3741                 vc->vcore_state = VCORE_INACTIVE;
3742
3743                 if (!do_sleep) {
3744                         ++vc->runner->stat.halt_successful_poll;
3745                         goto out;
3746                 }
3747         }
3748
3749         prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3750
3751         if (kvmppc_vcore_check_block(vc)) {
3752                 finish_swait(&vc->wq, &wait);
3753                 do_sleep = 0;
3754                 /* If we polled, count this as a successful poll */
3755                 if (vc->halt_poll_ns)
3756                         ++vc->runner->stat.halt_successful_poll;
3757                 goto out;
3758         }
3759
3760         start_wait = ktime_get();
3761
3762         vc->vcore_state = VCORE_SLEEPING;
3763         trace_kvmppc_vcore_blocked(vc, 0);
3764         spin_unlock(&vc->lock);
3765         schedule();
3766         finish_swait(&vc->wq, &wait);
3767         spin_lock(&vc->lock);
3768         vc->vcore_state = VCORE_INACTIVE;
3769         trace_kvmppc_vcore_blocked(vc, 1);
3770         ++vc->runner->stat.halt_successful_wait;
3771
3772         cur = ktime_get();
3773
3774 out:
3775         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3776
3777         /* Attribute wait time */
3778         if (do_sleep) {
3779                 vc->runner->stat.halt_wait_ns +=
3780                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3781                 /* Attribute failed poll time */
3782                 if (vc->halt_poll_ns)
3783                         vc->runner->stat.halt_poll_fail_ns +=
3784                                 ktime_to_ns(start_wait) -
3785                                 ktime_to_ns(start_poll);
3786         } else {
3787                 /* Attribute successful poll time */
3788                 if (vc->halt_poll_ns)
3789                         vc->runner->stat.halt_poll_success_ns +=
3790                                 ktime_to_ns(cur) -
3791                                 ktime_to_ns(start_poll);
3792         }
3793
3794         /* Adjust poll time */
3795         if (halt_poll_ns) {
3796                 if (block_ns <= vc->halt_poll_ns)
3797                         ;
3798                 /* We slept and blocked for longer than the max halt time */
3799                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3800                         shrink_halt_poll_ns(vc);
3801                 /* We slept and our poll time is too small */
3802                 else if (vc->halt_poll_ns < halt_poll_ns &&
3803                                 block_ns < halt_poll_ns)
3804                         grow_halt_poll_ns(vc);
3805                 if (vc->halt_poll_ns > halt_poll_ns)
3806                         vc->halt_poll_ns = halt_poll_ns;
3807         } else
3808                 vc->halt_poll_ns = 0;
3809
3810         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3811 }
3812
3813 /*
3814  * This never fails for a radix guest, as none of the operations it does
3815  * for a radix guest can fail or have a way to report failure.
3816  * kvmhv_run_single_vcpu() relies on this fact.
3817  */
3818 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3819 {
3820         int r = 0;
3821         struct kvm *kvm = vcpu->kvm;
3822
3823         mutex_lock(&kvm->lock);
3824         if (!kvm->arch.mmu_ready) {
3825                 if (!kvm_is_radix(kvm))
3826                         r = kvmppc_hv_setup_htab_rma(vcpu);
3827                 if (!r) {
3828                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3829                                 kvmppc_setup_partition_table(kvm);
3830                         kvm->arch.mmu_ready = 1;
3831                 }
3832         }
3833         mutex_unlock(&kvm->lock);
3834         return r;
3835 }
3836
3837 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3838 {
3839         int n_ceded, i, r;
3840         struct kvmppc_vcore *vc;
3841         struct kvm_vcpu *v;
3842
3843         trace_kvmppc_run_vcpu_enter(vcpu);
3844
3845         kvm_run->exit_reason = 0;
3846         vcpu->arch.ret = RESUME_GUEST;
3847         vcpu->arch.trap = 0;
3848         kvmppc_update_vpas(vcpu);
3849
3850         /*
3851          * Synchronize with other threads in this virtual core
3852          */
3853         vc = vcpu->arch.vcore;
3854         spin_lock(&vc->lock);
3855         vcpu->arch.ceded = 0;
3856         vcpu->arch.run_task = current;
3857         vcpu->arch.kvm_run = kvm_run;
3858         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3859         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3860         vcpu->arch.busy_preempt = TB_NIL;
3861         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3862         ++vc->n_runnable;
3863
3864         /*
3865          * This happens the first time this is called for a vcpu.
3866          * If the vcore is already running, we may be able to start
3867          * this thread straight away and have it join in.
3868          */
3869         if (!signal_pending(current)) {
3870                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3871                      vc->vcore_state == VCORE_RUNNING) &&
3872                            !VCORE_IS_EXITING(vc)) {
3873                         kvmppc_create_dtl_entry(vcpu, vc);
3874                         kvmppc_start_thread(vcpu, vc);
3875                         trace_kvm_guest_enter(vcpu);
3876                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3877                         swake_up_one(&vc->wq);
3878                 }
3879
3880         }
3881
3882         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3883                !signal_pending(current)) {
3884                 /* See if the MMU is ready to go */
3885                 if (!vcpu->kvm->arch.mmu_ready) {
3886                         spin_unlock(&vc->lock);
3887                         r = kvmhv_setup_mmu(vcpu);
3888                         spin_lock(&vc->lock);
3889                         if (r) {
3890                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3891                                 kvm_run->fail_entry.
3892                                         hardware_entry_failure_reason = 0;
3893                                 vcpu->arch.ret = r;
3894                                 break;
3895                         }
3896                 }
3897
3898                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3899                         kvmppc_vcore_end_preempt(vc);
3900
3901                 if (vc->vcore_state != VCORE_INACTIVE) {
3902                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3903                         continue;
3904                 }
3905                 for_each_runnable_thread(i, v, vc) {
3906                         kvmppc_core_prepare_to_enter(v);
3907                         if (signal_pending(v->arch.run_task)) {
3908                                 kvmppc_remove_runnable(vc, v);
3909                                 v->stat.signal_exits++;
3910                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3911                                 v->arch.ret = -EINTR;
3912                                 wake_up(&v->arch.cpu_run);
3913                         }
3914                 }
3915                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3916                         break;
3917                 n_ceded = 0;
3918                 for_each_runnable_thread(i, v, vc) {
3919                         if (!kvmppc_vcpu_woken(v))
3920                                 n_ceded += v->arch.ceded;
3921                         else
3922                                 v->arch.ceded = 0;
3923                 }
3924                 vc->runner = vcpu;
3925                 if (n_ceded == vc->n_runnable) {
3926                         kvmppc_vcore_blocked(vc);
3927                 } else if (need_resched()) {
3928                         kvmppc_vcore_preempt(vc);
3929                         /* Let something else run */
3930                         cond_resched_lock(&vc->lock);
3931                         if (vc->vcore_state == VCORE_PREEMPT)
3932                                 kvmppc_vcore_end_preempt(vc);
3933                 } else {
3934                         kvmppc_run_core(vc);
3935                 }
3936                 vc->runner = NULL;
3937         }
3938
3939         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3940                (vc->vcore_state == VCORE_RUNNING ||
3941                 vc->vcore_state == VCORE_EXITING ||
3942                 vc->vcore_state == VCORE_PIGGYBACK))
3943                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3944
3945         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3946                 kvmppc_vcore_end_preempt(vc);
3947
3948         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3949                 kvmppc_remove_runnable(vc, vcpu);
3950                 vcpu->stat.signal_exits++;
3951                 kvm_run->exit_reason = KVM_EXIT_INTR;
3952                 vcpu->arch.ret = -EINTR;
3953         }
3954
3955         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3956                 /* Wake up some vcpu to run the core */
3957                 i = -1;
3958                 v = next_runnable_thread(vc, &i);
3959                 wake_up(&v->arch.cpu_run);
3960         }
3961
3962         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3963         spin_unlock(&vc->lock);
3964         return vcpu->arch.ret;
3965 }
3966
3967 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
3968                           struct kvm_vcpu *vcpu, u64 time_limit,
3969                           unsigned long lpcr)
3970 {
3971         int trap, r, pcpu;
3972         int srcu_idx;
3973         struct kvmppc_vcore *vc;
3974         struct kvm *kvm = vcpu->kvm;
3975         struct kvm_nested_guest *nested = vcpu->arch.nested;
3976
3977         trace_kvmppc_run_vcpu_enter(vcpu);
3978
3979         kvm_run->exit_reason = 0;
3980         vcpu->arch.ret = RESUME_GUEST;
3981         vcpu->arch.trap = 0;
3982
3983         vc = vcpu->arch.vcore;
3984         vcpu->arch.ceded = 0;
3985         vcpu->arch.run_task = current;
3986         vcpu->arch.kvm_run = kvm_run;
3987         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3988         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3989         vcpu->arch.busy_preempt = TB_NIL;
3990         vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
3991         vc->runnable_threads[0] = vcpu;
3992         vc->n_runnable = 1;
3993         vc->runner = vcpu;
3994
3995         /* See if the MMU is ready to go */
3996         if (!kvm->arch.mmu_ready)
3997                 kvmhv_setup_mmu(vcpu);
3998
3999         if (need_resched())
4000                 cond_resched();
4001
4002         kvmppc_update_vpas(vcpu);
4003
4004         init_vcore_to_run(vc);
4005         vc->preempt_tb = TB_NIL;
4006
4007         preempt_disable();
4008         pcpu = smp_processor_id();
4009         vc->pcpu = pcpu;
4010         kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4011
4012         local_irq_disable();
4013         hard_irq_disable();
4014         if (signal_pending(current))
4015                 goto sigpend;
4016         if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4017                 goto out;
4018
4019         if (!nested) {
4020                 kvmppc_core_prepare_to_enter(vcpu);
4021                 if (vcpu->arch.doorbell_request) {
4022                         vc->dpdes = 1;
4023                         smp_wmb();
4024                         vcpu->arch.doorbell_request = 0;
4025                 }
4026                 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4027                              &vcpu->arch.pending_exceptions))
4028                         lpcr |= LPCR_MER;
4029         } else if (vcpu->arch.pending_exceptions ||
4030                    vcpu->arch.doorbell_request ||
4031                    xive_interrupt_pending(vcpu)) {
4032                 vcpu->arch.ret = RESUME_HOST;
4033                 goto out;
4034         }
4035
4036         kvmppc_clear_host_core(pcpu);
4037
4038         local_paca->kvm_hstate.tid = 0;
4039         local_paca->kvm_hstate.napping = 0;
4040         local_paca->kvm_hstate.kvm_split_mode = NULL;
4041         kvmppc_start_thread(vcpu, vc);
4042         kvmppc_create_dtl_entry(vcpu, vc);
4043         trace_kvm_guest_enter(vcpu);
4044
4045         vc->vcore_state = VCORE_RUNNING;
4046         trace_kvmppc_run_core(vc, 0);
4047
4048         if (cpu_has_feature(CPU_FTR_HVMODE))
4049                 kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested);
4050
4051         trace_hardirqs_on();
4052         guest_enter_irqoff();
4053
4054         srcu_idx = srcu_read_lock(&kvm->srcu);
4055
4056         this_cpu_disable_ftrace();
4057
4058         trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4059         vcpu->arch.trap = trap;
4060
4061         this_cpu_enable_ftrace();
4062
4063         srcu_read_unlock(&kvm->srcu, srcu_idx);
4064
4065         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4066                 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4067                 isync();
4068         }
4069
4070         trace_hardirqs_off();
4071         set_irq_happened(trap);
4072
4073         kvmppc_set_host_core(pcpu);
4074
4075         local_irq_enable();
4076         guest_exit();
4077
4078         cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4079
4080         preempt_enable();
4081
4082         /* cancel pending decrementer exception if DEC is now positive */
4083         if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
4084                 kvmppc_core_dequeue_dec(vcpu);
4085
4086         trace_kvm_guest_exit(vcpu);
4087         r = RESUME_GUEST;
4088         if (trap) {
4089                 if (!nested)
4090                         r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4091                 else
4092                         r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4093         }
4094         vcpu->arch.ret = r;
4095
4096         if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4097             !kvmppc_vcpu_woken(vcpu)) {
4098                 kvmppc_set_timer(vcpu);
4099                 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4100                         if (signal_pending(current)) {
4101                                 vcpu->stat.signal_exits++;
4102                                 kvm_run->exit_reason = KVM_EXIT_INTR;
4103                                 vcpu->arch.ret = -EINTR;
4104                                 break;
4105                         }
4106                         spin_lock(&vc->lock);
4107                         kvmppc_vcore_blocked(vc);
4108                         spin_unlock(&vc->lock);
4109                 }
4110         }
4111         vcpu->arch.ceded = 0;
4112
4113         vc->vcore_state = VCORE_INACTIVE;
4114         trace_kvmppc_run_core(vc, 1);
4115
4116  done:
4117         kvmppc_remove_runnable(vc, vcpu);
4118         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4119
4120         return vcpu->arch.ret;
4121
4122  sigpend:
4123         vcpu->stat.signal_exits++;
4124         kvm_run->exit_reason = KVM_EXIT_INTR;
4125         vcpu->arch.ret = -EINTR;
4126  out:
4127         local_irq_enable();
4128         preempt_enable();
4129         goto done;
4130 }
4131
4132 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4133 {
4134         int r;
4135         int srcu_idx;
4136         unsigned long ebb_regs[3] = {}; /* shut up GCC */
4137         unsigned long user_tar = 0;
4138         unsigned int user_vrsave;
4139         struct kvm *kvm;
4140
4141         if (!vcpu->arch.sane) {
4142                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4143                 return -EINVAL;
4144         }
4145
4146         /*
4147          * Don't allow entry with a suspended transaction, because
4148          * the guest entry/exit code will lose it.
4149          * If the guest has TM enabled, save away their TM-related SPRs
4150          * (they will get restored by the TM unavailable interrupt).
4151          */
4152 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4153         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4154             (current->thread.regs->msr & MSR_TM)) {
4155                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4156                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4157                         run->fail_entry.hardware_entry_failure_reason = 0;
4158                         return -EINVAL;
4159                 }
4160                 /* Enable TM so we can read the TM SPRs */
4161                 mtmsr(mfmsr() | MSR_TM);
4162                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4163                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4164                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4165                 current->thread.regs->msr &= ~MSR_TM;
4166         }
4167 #endif
4168
4169         /*
4170          * Force online to 1 for the sake of old userspace which doesn't
4171          * set it.
4172          */
4173         if (!vcpu->arch.online) {
4174                 atomic_inc(&vcpu->arch.vcore->online_count);
4175                 vcpu->arch.online = 1;
4176         }
4177
4178         kvmppc_core_prepare_to_enter(vcpu);
4179
4180         /* No need to go into the guest when all we'll do is come back out */
4181         if (signal_pending(current)) {
4182                 run->exit_reason = KVM_EXIT_INTR;
4183                 return -EINTR;
4184         }
4185
4186         kvm = vcpu->kvm;
4187         atomic_inc(&kvm->arch.vcpus_running);
4188         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4189         smp_mb();
4190
4191         flush_all_to_thread(current);
4192
4193         /* Save userspace EBB and other register values */
4194         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4195                 ebb_regs[0] = mfspr(SPRN_EBBHR);
4196                 ebb_regs[1] = mfspr(SPRN_EBBRR);
4197                 ebb_regs[2] = mfspr(SPRN_BESCR);
4198                 user_tar = mfspr(SPRN_TAR);
4199         }
4200         user_vrsave = mfspr(SPRN_VRSAVE);
4201
4202         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4203         vcpu->arch.pgdir = current->mm->pgd;
4204         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4205
4206         do {
4207                 /*
4208                  * The early POWER9 chips that can't mix radix and HPT threads
4209                  * on the same core also need the workaround for the problem
4210                  * where the TLB would prefetch entries in the guest exit path
4211                  * for radix guests using the guest PIDR value and LPID 0.
4212                  * The workaround is in the old path (kvmppc_run_vcpu())
4213                  * but not the new path (kvmhv_run_single_vcpu()).
4214                  */
4215                 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4216                     !no_mixing_hpt_and_radix)
4217                         r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4218                                                   vcpu->arch.vcore->lpcr);
4219                 else
4220                         r = kvmppc_run_vcpu(run, vcpu);
4221
4222                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4223                     !(vcpu->arch.shregs.msr & MSR_PR)) {
4224                         trace_kvm_hcall_enter(vcpu);
4225                         r = kvmppc_pseries_do_hcall(vcpu);
4226                         trace_kvm_hcall_exit(vcpu, r);
4227                         kvmppc_core_prepare_to_enter(vcpu);
4228                 } else if (r == RESUME_PAGE_FAULT) {
4229                         srcu_idx = srcu_read_lock(&kvm->srcu);
4230                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
4231                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4232                         srcu_read_unlock(&kvm->srcu, srcu_idx);
4233                 } else if (r == RESUME_PASSTHROUGH) {
4234                         if (WARN_ON(xics_on_xive()))
4235                                 r = H_SUCCESS;
4236                         else
4237                                 r = kvmppc_xics_rm_complete(vcpu, 0);
4238                 }
4239         } while (is_kvmppc_resume_guest(r));
4240
4241         /* Restore userspace EBB and other register values */
4242         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4243                 mtspr(SPRN_EBBHR, ebb_regs[0]);
4244                 mtspr(SPRN_EBBRR, ebb_regs[1]);
4245                 mtspr(SPRN_BESCR, ebb_regs[2]);
4246                 mtspr(SPRN_TAR, user_tar);
4247                 mtspr(SPRN_FSCR, current->thread.fscr);
4248         }
4249         mtspr(SPRN_VRSAVE, user_vrsave);
4250
4251         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4252         atomic_dec(&kvm->arch.vcpus_running);
4253         return r;
4254 }
4255
4256 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4257                                      int shift, int sllp)
4258 {
4259         (*sps)->page_shift = shift;
4260         (*sps)->slb_enc = sllp;
4261         (*sps)->enc[0].page_shift = shift;
4262         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4263         /*
4264          * Add 16MB MPSS support (may get filtered out by userspace)
4265          */
4266         if (shift != 24) {
4267                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4268                 if (penc != -1) {
4269                         (*sps)->enc[1].page_shift = 24;
4270                         (*sps)->enc[1].pte_enc = penc;
4271                 }
4272         }
4273         (*sps)++;
4274 }
4275
4276 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4277                                          struct kvm_ppc_smmu_info *info)
4278 {
4279         struct kvm_ppc_one_seg_page_size *sps;
4280
4281         /*
4282          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4283          * POWER7 doesn't support keys for instruction accesses,
4284          * POWER8 and POWER9 do.
4285          */
4286         info->data_keys = 32;
4287         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4288
4289         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4290         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4291         info->slb_size = 32;
4292
4293         /* We only support these sizes for now, and no muti-size segments */
4294         sps = &info->sps[0];
4295         kvmppc_add_seg_page_size(&sps, 12, 0);
4296         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4297         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4298
4299         /* If running as a nested hypervisor, we don't support HPT guests */
4300         if (kvmhv_on_pseries())
4301                 info->flags |= KVM_PPC_NO_HASH;
4302
4303         return 0;
4304 }
4305
4306 /*
4307  * Get (and clear) the dirty memory log for a memory slot.
4308  */
4309 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4310                                          struct kvm_dirty_log *log)
4311 {
4312         struct kvm_memslots *slots;
4313         struct kvm_memory_slot *memslot;
4314         int i, r;
4315         unsigned long n;
4316         unsigned long *buf, *p;
4317         struct kvm_vcpu *vcpu;
4318
4319         mutex_lock(&kvm->slots_lock);
4320
4321         r = -EINVAL;
4322         if (log->slot >= KVM_USER_MEM_SLOTS)
4323                 goto out;
4324
4325         slots = kvm_memslots(kvm);
4326         memslot = id_to_memslot(slots, log->slot);
4327         r = -ENOENT;
4328         if (!memslot->dirty_bitmap)
4329                 goto out;
4330
4331         /*
4332          * Use second half of bitmap area because both HPT and radix
4333          * accumulate bits in the first half.
4334          */
4335         n = kvm_dirty_bitmap_bytes(memslot);
4336         buf = memslot->dirty_bitmap + n / sizeof(long);
4337         memset(buf, 0, n);
4338
4339         if (kvm_is_radix(kvm))
4340                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4341         else
4342                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4343         if (r)
4344                 goto out;
4345
4346         /*
4347          * We accumulate dirty bits in the first half of the
4348          * memslot's dirty_bitmap area, for when pages are paged
4349          * out or modified by the host directly.  Pick up these
4350          * bits and add them to the map.
4351          */
4352         p = memslot->dirty_bitmap;
4353         for (i = 0; i < n / sizeof(long); ++i)
4354                 buf[i] |= xchg(&p[i], 0);
4355
4356         /* Harvest dirty bits from VPA and DTL updates */
4357         /* Note: we never modify the SLB shadow buffer areas */
4358         kvm_for_each_vcpu(i, vcpu, kvm) {
4359                 spin_lock(&vcpu->arch.vpa_update_lock);
4360                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4361                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4362                 spin_unlock(&vcpu->arch.vpa_update_lock);
4363         }
4364
4365         r = -EFAULT;
4366         if (copy_to_user(log->dirty_bitmap, buf, n))
4367                 goto out;
4368
4369         r = 0;
4370 out:
4371         mutex_unlock(&kvm->slots_lock);
4372         return r;
4373 }
4374
4375 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4376                                         struct kvm_memory_slot *dont)
4377 {
4378         if (!dont || free->arch.rmap != dont->arch.rmap) {
4379                 vfree(free->arch.rmap);
4380                 free->arch.rmap = NULL;
4381         }
4382 }
4383
4384 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4385                                          unsigned long npages)
4386 {
4387         slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4388         if (!slot->arch.rmap)
4389                 return -ENOMEM;
4390
4391         return 0;
4392 }
4393
4394 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4395                                         struct kvm_memory_slot *memslot,
4396                                         const struct kvm_userspace_memory_region *mem)
4397 {
4398         return 0;
4399 }
4400
4401 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4402                                 const struct kvm_userspace_memory_region *mem,
4403                                 const struct kvm_memory_slot *old,
4404                                 const struct kvm_memory_slot *new,
4405                                 enum kvm_mr_change change)
4406 {
4407         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4408
4409         /*
4410          * If we are making a new memslot, it might make
4411          * some address that was previously cached as emulated
4412          * MMIO be no longer emulated MMIO, so invalidate
4413          * all the caches of emulated MMIO translations.
4414          */
4415         if (npages)
4416                 atomic64_inc(&kvm->arch.mmio_update);
4417
4418         /*
4419          * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4420          * have already called kvm_arch_flush_shadow_memslot() to
4421          * flush shadow mappings.  For KVM_MR_CREATE we have no
4422          * previous mappings.  So the only case to handle is
4423          * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4424          * has been changed.
4425          * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4426          * to get rid of any THP PTEs in the partition-scoped page tables
4427          * so we can track dirtiness at the page level; we flush when
4428          * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4429          * using THP PTEs.
4430          */
4431         if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4432             ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4433                 kvmppc_radix_flush_memslot(kvm, old);
4434 }
4435
4436 /*
4437  * Update LPCR values in kvm->arch and in vcores.
4438  * Caller must hold kvm->lock.
4439  */
4440 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4441 {
4442         long int i;
4443         u32 cores_done = 0;
4444
4445         if ((kvm->arch.lpcr & mask) == lpcr)
4446                 return;
4447
4448         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4449
4450         for (i = 0; i < KVM_MAX_VCORES; ++i) {
4451                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4452                 if (!vc)
4453                         continue;
4454                 spin_lock(&vc->lock);
4455                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4456                 spin_unlock(&vc->lock);
4457                 if (++cores_done >= kvm->arch.online_vcores)
4458                         break;
4459         }
4460 }
4461
4462 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4463 {
4464         return;
4465 }
4466
4467 void kvmppc_setup_partition_table(struct kvm *kvm)
4468 {
4469         unsigned long dw0, dw1;
4470
4471         if (!kvm_is_radix(kvm)) {
4472                 /* PS field - page size for VRMA */
4473                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4474                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4475                 /* HTABSIZE and HTABORG fields */
4476                 dw0 |= kvm->arch.sdr1;
4477
4478                 /* Second dword as set by userspace */
4479                 dw1 = kvm->arch.process_table;
4480         } else {
4481                 dw0 = PATB_HR | radix__get_tree_size() |
4482                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4483                 dw1 = PATB_GR | kvm->arch.process_table;
4484         }
4485         kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4486 }
4487
4488 /*
4489  * Set up HPT (hashed page table) and RMA (real-mode area).
4490  * Must be called with kvm->lock held.
4491  */
4492 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4493 {
4494         int err = 0;
4495         struct kvm *kvm = vcpu->kvm;
4496         unsigned long hva;
4497         struct kvm_memory_slot *memslot;
4498         struct vm_area_struct *vma;
4499         unsigned long lpcr = 0, senc;
4500         unsigned long psize, porder;
4501         int srcu_idx;
4502
4503         /* Allocate hashed page table (if not done already) and reset it */
4504         if (!kvm->arch.hpt.virt) {
4505                 int order = KVM_DEFAULT_HPT_ORDER;
4506                 struct kvm_hpt_info info;
4507
4508                 err = kvmppc_allocate_hpt(&info, order);
4509                 /* If we get here, it means userspace didn't specify a
4510                  * size explicitly.  So, try successively smaller
4511                  * sizes if the default failed. */
4512                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4513                         err  = kvmppc_allocate_hpt(&info, order);
4514
4515                 if (err < 0) {
4516                         pr_err("KVM: Couldn't alloc HPT\n");
4517                         goto out;
4518                 }
4519
4520                 kvmppc_set_hpt(kvm, &info);
4521         }
4522
4523         /* Look up the memslot for guest physical address 0 */
4524         srcu_idx = srcu_read_lock(&kvm->srcu);
4525         memslot = gfn_to_memslot(kvm, 0);
4526
4527         /* We must have some memory at 0 by now */
4528         err = -EINVAL;
4529         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4530                 goto out_srcu;
4531
4532         /* Look up the VMA for the start of this memory slot */
4533         hva = memslot->userspace_addr;
4534         down_read(&current->mm->mmap_sem);
4535         vma = find_vma(current->mm, hva);
4536         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4537                 goto up_out;
4538
4539         psize = vma_kernel_pagesize(vma);
4540
4541         up_read(&current->mm->mmap_sem);
4542
4543         /* We can handle 4k, 64k or 16M pages in the VRMA */
4544         if (psize >= 0x1000000)
4545                 psize = 0x1000000;
4546         else if (psize >= 0x10000)
4547                 psize = 0x10000;
4548         else
4549                 psize = 0x1000;
4550         porder = __ilog2(psize);
4551
4552         senc = slb_pgsize_encoding(psize);
4553         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4554                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4555         /* Create HPTEs in the hash page table for the VRMA */
4556         kvmppc_map_vrma(vcpu, memslot, porder);
4557
4558         /* Update VRMASD field in the LPCR */
4559         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4560                 /* the -4 is to account for senc values starting at 0x10 */
4561                 lpcr = senc << (LPCR_VRMASD_SH - 4);
4562                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4563         }
4564
4565         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4566         smp_wmb();
4567         err = 0;
4568  out_srcu:
4569         srcu_read_unlock(&kvm->srcu, srcu_idx);
4570  out:
4571         return err;
4572
4573  up_out:
4574         up_read(&current->mm->mmap_sem);
4575         goto out_srcu;
4576 }
4577
4578 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4579 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4580 {
4581         if (nesting_enabled(kvm))
4582                 kvmhv_release_all_nested(kvm);
4583         kvmppc_rmap_reset(kvm);
4584         kvm->arch.process_table = 0;
4585         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4586         spin_lock(&kvm->mmu_lock);
4587         kvm->arch.radix = 0;
4588         spin_unlock(&kvm->mmu_lock);
4589         kvmppc_free_radix(kvm);
4590         kvmppc_update_lpcr(kvm, LPCR_VPM1,
4591                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4592         return 0;
4593 }
4594
4595 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
4596 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4597 {
4598         int err;
4599
4600         err = kvmppc_init_vm_radix(kvm);
4601         if (err)
4602                 return err;
4603         kvmppc_rmap_reset(kvm);
4604         /* Mutual exclusion with kvm_unmap_hva_range etc. */
4605         spin_lock(&kvm->mmu_lock);
4606         kvm->arch.radix = 1;
4607         spin_unlock(&kvm->mmu_lock);
4608         kvmppc_free_hpt(&kvm->arch.hpt);
4609         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4610                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4611         return 0;
4612 }
4613
4614 #ifdef CONFIG_KVM_XICS
4615 /*
4616  * Allocate a per-core structure for managing state about which cores are
4617  * running in the host versus the guest and for exchanging data between
4618  * real mode KVM and CPU running in the host.
4619  * This is only done for the first VM.
4620  * The allocated structure stays even if all VMs have stopped.
4621  * It is only freed when the kvm-hv module is unloaded.
4622  * It's OK for this routine to fail, we just don't support host
4623  * core operations like redirecting H_IPI wakeups.
4624  */
4625 void kvmppc_alloc_host_rm_ops(void)
4626 {
4627         struct kvmppc_host_rm_ops *ops;
4628         unsigned long l_ops;
4629         int cpu, core;
4630         int size;
4631
4632         /* Not the first time here ? */
4633         if (kvmppc_host_rm_ops_hv != NULL)
4634                 return;
4635
4636         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4637         if (!ops)
4638                 return;
4639
4640         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4641         ops->rm_core = kzalloc(size, GFP_KERNEL);
4642
4643         if (!ops->rm_core) {
4644                 kfree(ops);
4645                 return;
4646         }
4647
4648         cpus_read_lock();
4649
4650         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4651                 if (!cpu_online(cpu))
4652                         continue;
4653
4654                 core = cpu >> threads_shift;
4655                 ops->rm_core[core].rm_state.in_host = 1;
4656         }
4657
4658         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4659
4660         /*
4661          * Make the contents of the kvmppc_host_rm_ops structure visible
4662          * to other CPUs before we assign it to the global variable.
4663          * Do an atomic assignment (no locks used here), but if someone
4664          * beats us to it, just free our copy and return.
4665          */
4666         smp_wmb();
4667         l_ops = (unsigned long) ops;
4668
4669         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4670                 cpus_read_unlock();
4671                 kfree(ops->rm_core);
4672                 kfree(ops);
4673                 return;
4674         }
4675
4676         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4677                                              "ppc/kvm_book3s:prepare",
4678                                              kvmppc_set_host_core,
4679                                              kvmppc_clear_host_core);
4680         cpus_read_unlock();
4681 }
4682
4683 void kvmppc_free_host_rm_ops(void)
4684 {
4685         if (kvmppc_host_rm_ops_hv) {
4686                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4687                 kfree(kvmppc_host_rm_ops_hv->rm_core);
4688                 kfree(kvmppc_host_rm_ops_hv);
4689                 kvmppc_host_rm_ops_hv = NULL;
4690         }
4691 }
4692 #endif
4693
4694 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4695 {
4696         unsigned long lpcr, lpid;
4697         char buf[32];
4698         int ret;
4699
4700         /* Allocate the guest's logical partition ID */
4701
4702         lpid = kvmppc_alloc_lpid();
4703         if ((long)lpid < 0)
4704                 return -ENOMEM;
4705         kvm->arch.lpid = lpid;
4706
4707         kvmppc_alloc_host_rm_ops();
4708
4709         kvmhv_vm_nested_init(kvm);
4710
4711         /*
4712          * Since we don't flush the TLB when tearing down a VM,
4713          * and this lpid might have previously been used,
4714          * make sure we flush on each core before running the new VM.
4715          * On POWER9, the tlbie in mmu_partition_table_set_entry()
4716          * does this flush for us.
4717          */
4718         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4719                 cpumask_setall(&kvm->arch.need_tlb_flush);
4720
4721         /* Start out with the default set of hcalls enabled */
4722         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4723                sizeof(kvm->arch.enabled_hcalls));
4724
4725         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4726                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4727
4728         /* Init LPCR for virtual RMA mode */
4729         if (cpu_has_feature(CPU_FTR_HVMODE)) {
4730                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4731                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4732                 lpcr &= LPCR_PECE | LPCR_LPES;
4733         } else {
4734                 lpcr = 0;
4735         }
4736         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4737                 LPCR_VPM0 | LPCR_VPM1;
4738         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4739                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4740         /* On POWER8 turn on online bit to enable PURR/SPURR */
4741         if (cpu_has_feature(CPU_FTR_ARCH_207S))
4742                 lpcr |= LPCR_ONL;
4743         /*
4744          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4745          * Set HVICE bit to enable hypervisor virtualization interrupts.
4746          * Set HEIC to prevent OS interrupts to go to hypervisor (should
4747          * be unnecessary but better safe than sorry in case we re-enable
4748          * EE in HV mode with this LPCR still set)
4749          */
4750         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4751                 lpcr &= ~LPCR_VPM0;
4752                 lpcr |= LPCR_HVICE | LPCR_HEIC;
4753
4754                 /*
4755                  * If xive is enabled, we route 0x500 interrupts directly
4756                  * to the guest.
4757                  */
4758                 if (xics_on_xive())
4759                         lpcr |= LPCR_LPES;
4760         }
4761
4762         /*
4763          * If the host uses radix, the guest starts out as radix.
4764          */
4765         if (radix_enabled()) {
4766                 kvm->arch.radix = 1;
4767                 kvm->arch.mmu_ready = 1;
4768                 lpcr &= ~LPCR_VPM1;
4769                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4770                 ret = kvmppc_init_vm_radix(kvm);
4771                 if (ret) {
4772                         kvmppc_free_lpid(kvm->arch.lpid);
4773                         return ret;
4774                 }
4775                 kvmppc_setup_partition_table(kvm);
4776         }
4777
4778         kvm->arch.lpcr = lpcr;
4779
4780         /* Initialization for future HPT resizes */
4781         kvm->arch.resize_hpt = NULL;
4782
4783         /*
4784          * Work out how many sets the TLB has, for the use of
4785          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4786          */
4787         if (radix_enabled())
4788                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
4789         else if (cpu_has_feature(CPU_FTR_ARCH_300))
4790                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
4791         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4792                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
4793         else
4794                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
4795
4796         /*
4797          * Track that we now have a HV mode VM active. This blocks secondary
4798          * CPU threads from coming online.
4799          * On POWER9, we only need to do this if the "indep_threads_mode"
4800          * module parameter has been set to N.
4801          */
4802         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4803                 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4804                         pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4805                         kvm->arch.threads_indep = true;
4806                 } else {
4807                         kvm->arch.threads_indep = indep_threads_mode;
4808                 }
4809         }
4810         if (!kvm->arch.threads_indep)
4811                 kvm_hv_vm_activated();
4812
4813         /*
4814          * Initialize smt_mode depending on processor.
4815          * POWER8 and earlier have to use "strict" threading, where
4816          * all vCPUs in a vcore have to run on the same (sub)core,
4817          * whereas on POWER9 the threads can each run a different
4818          * guest.
4819          */
4820         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4821                 kvm->arch.smt_mode = threads_per_subcore;
4822         else
4823                 kvm->arch.smt_mode = 1;
4824         kvm->arch.emul_smt_mode = 1;
4825
4826         /*
4827          * Create a debugfs directory for the VM
4828          */
4829         snprintf(buf, sizeof(buf), "vm%d", current->pid);
4830         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4831         kvmppc_mmu_debugfs_init(kvm);
4832         if (radix_enabled())
4833                 kvmhv_radix_debugfs_init(kvm);
4834
4835         return 0;
4836 }
4837
4838 static void kvmppc_free_vcores(struct kvm *kvm)
4839 {
4840         long int i;
4841
4842         for (i = 0; i < KVM_MAX_VCORES; ++i)
4843                 kfree(kvm->arch.vcores[i]);
4844         kvm->arch.online_vcores = 0;
4845 }
4846
4847 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4848 {
4849         debugfs_remove_recursive(kvm->arch.debugfs_dir);
4850
4851         if (!kvm->arch.threads_indep)
4852                 kvm_hv_vm_deactivated();
4853
4854         kvmppc_free_vcores(kvm);
4855
4856
4857         if (kvm_is_radix(kvm))
4858                 kvmppc_free_radix(kvm);
4859         else
4860                 kvmppc_free_hpt(&kvm->arch.hpt);
4861
4862         /* Perform global invalidation and return lpid to the pool */
4863         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4864                 if (nesting_enabled(kvm))
4865                         kvmhv_release_all_nested(kvm);
4866                 kvm->arch.process_table = 0;
4867                 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4868         }
4869         kvmppc_free_lpid(kvm->arch.lpid);
4870
4871         kvmppc_free_pimap(kvm);
4872 }
4873
4874 /* We don't need to emulate any privileged instructions or dcbz */
4875 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4876                                      unsigned int inst, int *advance)
4877 {
4878         return EMULATE_FAIL;
4879 }
4880
4881 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4882                                         ulong spr_val)
4883 {
4884         return EMULATE_FAIL;
4885 }
4886
4887 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4888                                         ulong *spr_val)
4889 {
4890         return EMULATE_FAIL;
4891 }
4892
4893 static int kvmppc_core_check_processor_compat_hv(void)
4894 {
4895         if (cpu_has_feature(CPU_FTR_HVMODE) &&
4896             cpu_has_feature(CPU_FTR_ARCH_206))
4897                 return 0;
4898
4899         /* POWER9 in radix mode is capable of being a nested hypervisor. */
4900         if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4901                 return 0;
4902
4903         return -EIO;
4904 }
4905
4906 #ifdef CONFIG_KVM_XICS
4907
4908 void kvmppc_free_pimap(struct kvm *kvm)
4909 {
4910         kfree(kvm->arch.pimap);
4911 }
4912
4913 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4914 {
4915         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4916 }
4917
4918 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4919 {
4920         struct irq_desc *desc;
4921         struct kvmppc_irq_map *irq_map;
4922         struct kvmppc_passthru_irqmap *pimap;
4923         struct irq_chip *chip;
4924         int i, rc = 0;
4925
4926         if (!kvm_irq_bypass)
4927                 return 1;
4928
4929         desc = irq_to_desc(host_irq);
4930         if (!desc)
4931                 return -EIO;
4932
4933         mutex_lock(&kvm->lock);
4934
4935         pimap = kvm->arch.pimap;
4936         if (pimap == NULL) {
4937                 /* First call, allocate structure to hold IRQ map */
4938                 pimap = kvmppc_alloc_pimap();
4939                 if (pimap == NULL) {
4940                         mutex_unlock(&kvm->lock);
4941                         return -ENOMEM;
4942                 }
4943                 kvm->arch.pimap = pimap;
4944         }
4945
4946         /*
4947          * For now, we only support interrupts for which the EOI operation
4948          * is an OPAL call followed by a write to XIRR, since that's
4949          * what our real-mode EOI code does, or a XIVE interrupt
4950          */
4951         chip = irq_data_get_irq_chip(&desc->irq_data);
4952         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4953                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4954                         host_irq, guest_gsi);
4955                 mutex_unlock(&kvm->lock);
4956                 return -ENOENT;
4957         }
4958
4959         /*
4960          * See if we already have an entry for this guest IRQ number.
4961          * If it's mapped to a hardware IRQ number, that's an error,
4962          * otherwise re-use this entry.
4963          */
4964         for (i = 0; i < pimap->n_mapped; i++) {
4965                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4966                         if (pimap->mapped[i].r_hwirq) {
4967                                 mutex_unlock(&kvm->lock);
4968                                 return -EINVAL;
4969                         }
4970                         break;
4971                 }
4972         }
4973
4974         if (i == KVMPPC_PIRQ_MAPPED) {
4975                 mutex_unlock(&kvm->lock);
4976                 return -EAGAIN;         /* table is full */
4977         }
4978
4979         irq_map = &pimap->mapped[i];
4980
4981         irq_map->v_hwirq = guest_gsi;
4982         irq_map->desc = desc;
4983
4984         /*
4985          * Order the above two stores before the next to serialize with
4986          * the KVM real mode handler.
4987          */
4988         smp_wmb();
4989         irq_map->r_hwirq = desc->irq_data.hwirq;
4990
4991         if (i == pimap->n_mapped)
4992                 pimap->n_mapped++;
4993
4994         if (xics_on_xive())
4995                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4996         else
4997                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4998         if (rc)
4999                 irq_map->r_hwirq = 0;
5000
5001         mutex_unlock(&kvm->lock);
5002
5003         return 0;
5004 }
5005
5006 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5007 {
5008         struct irq_desc *desc;
5009         struct kvmppc_passthru_irqmap *pimap;
5010         int i, rc = 0;
5011
5012         if (!kvm_irq_bypass)
5013                 return 0;
5014
5015         desc = irq_to_desc(host_irq);
5016         if (!desc)
5017                 return -EIO;
5018
5019         mutex_lock(&kvm->lock);
5020         if (!kvm->arch.pimap)
5021                 goto unlock;
5022
5023         pimap = kvm->arch.pimap;
5024
5025         for (i = 0; i < pimap->n_mapped; i++) {
5026                 if (guest_gsi == pimap->mapped[i].v_hwirq)
5027                         break;
5028         }
5029
5030         if (i == pimap->n_mapped) {
5031                 mutex_unlock(&kvm->lock);
5032                 return -ENODEV;
5033         }
5034
5035         if (xics_on_xive())
5036                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5037         else
5038                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5039
5040         /* invalidate the entry (what do do on error from the above ?) */
5041         pimap->mapped[i].r_hwirq = 0;
5042
5043         /*
5044          * We don't free this structure even when the count goes to
5045          * zero. The structure is freed when we destroy the VM.
5046          */
5047  unlock:
5048         mutex_unlock(&kvm->lock);
5049         return rc;
5050 }
5051
5052 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5053                                              struct irq_bypass_producer *prod)
5054 {
5055         int ret = 0;
5056         struct kvm_kernel_irqfd *irqfd =
5057                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5058
5059         irqfd->producer = prod;
5060
5061         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5062         if (ret)
5063                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5064                         prod->irq, irqfd->gsi, ret);
5065
5066         return ret;
5067 }
5068
5069 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5070                                               struct irq_bypass_producer *prod)
5071 {
5072         int ret;
5073         struct kvm_kernel_irqfd *irqfd =
5074                 container_of(cons, struct kvm_kernel_irqfd, consumer);
5075
5076         irqfd->producer = NULL;
5077
5078         /*
5079          * When producer of consumer is unregistered, we change back to
5080          * default external interrupt handling mode - KVM real mode
5081          * will switch back to host.
5082          */
5083         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5084         if (ret)
5085                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5086                         prod->irq, irqfd->gsi, ret);
5087 }
5088 #endif
5089
5090 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5091                                  unsigned int ioctl, unsigned long arg)
5092 {
5093         struct kvm *kvm __maybe_unused = filp->private_data;
5094         void __user *argp = (void __user *)arg;
5095         long r;
5096
5097         switch (ioctl) {
5098
5099         case KVM_PPC_ALLOCATE_HTAB: {
5100                 u32 htab_order;
5101
5102                 r = -EFAULT;
5103                 if (get_user(htab_order, (u32 __user *)argp))
5104                         break;
5105                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5106                 if (r)
5107                         break;
5108                 r = 0;
5109                 break;
5110         }
5111
5112         case KVM_PPC_GET_HTAB_FD: {
5113                 struct kvm_get_htab_fd ghf;
5114
5115                 r = -EFAULT;
5116                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5117                         break;
5118                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5119                 break;
5120         }
5121
5122         case KVM_PPC_RESIZE_HPT_PREPARE: {
5123                 struct kvm_ppc_resize_hpt rhpt;
5124
5125                 r = -EFAULT;
5126                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5127                         break;
5128
5129                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5130                 break;
5131         }
5132
5133         case KVM_PPC_RESIZE_HPT_COMMIT: {
5134                 struct kvm_ppc_resize_hpt rhpt;
5135
5136                 r = -EFAULT;
5137                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5138                         break;
5139
5140                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5141                 break;
5142         }
5143
5144         default:
5145                 r = -ENOTTY;
5146         }
5147
5148         return r;
5149 }
5150
5151 /*
5152  * List of hcall numbers to enable by default.
5153  * For compatibility with old userspace, we enable by default
5154  * all hcalls that were implemented before the hcall-enabling
5155  * facility was added.  Note this list should not include H_RTAS.
5156  */
5157 static unsigned int default_hcall_list[] = {
5158         H_REMOVE,
5159         H_ENTER,
5160         H_READ,
5161         H_PROTECT,
5162         H_BULK_REMOVE,
5163         H_GET_TCE,
5164         H_PUT_TCE,
5165         H_SET_DABR,
5166         H_SET_XDABR,
5167         H_CEDE,
5168         H_PROD,
5169         H_CONFER,
5170         H_REGISTER_VPA,
5171 #ifdef CONFIG_KVM_XICS
5172         H_EOI,
5173         H_CPPR,
5174         H_IPI,
5175         H_IPOLL,
5176         H_XIRR,
5177         H_XIRR_X,
5178 #endif
5179         0
5180 };
5181
5182 static void init_default_hcalls(void)
5183 {
5184         int i;
5185         unsigned int hcall;
5186
5187         for (i = 0; default_hcall_list[i]; ++i) {
5188                 hcall = default_hcall_list[i];
5189                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5190                 __set_bit(hcall / 4, default_enabled_hcalls);
5191         }
5192 }
5193
5194 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5195 {
5196         unsigned long lpcr;
5197         int radix;
5198         int err;
5199
5200         /* If not on a POWER9, reject it */
5201         if (!cpu_has_feature(CPU_FTR_ARCH_300))
5202                 return -ENODEV;
5203
5204         /* If any unknown flags set, reject it */
5205         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5206                 return -EINVAL;
5207
5208         /* GR (guest radix) bit in process_table field must match */
5209         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5210         if (!!(cfg->process_table & PATB_GR) != radix)
5211                 return -EINVAL;
5212
5213         /* Process table size field must be reasonable, i.e. <= 24 */
5214         if ((cfg->process_table & PRTS_MASK) > 24)
5215                 return -EINVAL;
5216
5217         /* We can change a guest to/from radix now, if the host is radix */
5218         if (radix && !radix_enabled())
5219                 return -EINVAL;
5220
5221         /* If we're a nested hypervisor, we currently only support radix */
5222         if (kvmhv_on_pseries() && !radix)
5223                 return -EINVAL;
5224
5225         mutex_lock(&kvm->lock);
5226         if (radix != kvm_is_radix(kvm)) {
5227                 if (kvm->arch.mmu_ready) {
5228                         kvm->arch.mmu_ready = 0;
5229                         /* order mmu_ready vs. vcpus_running */
5230                         smp_mb();
5231                         if (atomic_read(&kvm->arch.vcpus_running)) {
5232                                 kvm->arch.mmu_ready = 1;
5233                                 err = -EBUSY;
5234                                 goto out_unlock;
5235                         }
5236                 }
5237                 if (radix)
5238                         err = kvmppc_switch_mmu_to_radix(kvm);
5239                 else
5240                         err = kvmppc_switch_mmu_to_hpt(kvm);
5241                 if (err)
5242                         goto out_unlock;
5243         }
5244
5245         kvm->arch.process_table = cfg->process_table;
5246         kvmppc_setup_partition_table(kvm);
5247
5248         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5249         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5250         err = 0;
5251
5252  out_unlock:
5253         mutex_unlock(&kvm->lock);
5254         return err;
5255 }
5256
5257 static int kvmhv_enable_nested(struct kvm *kvm)
5258 {
5259         if (!nested)
5260                 return -EPERM;
5261         if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5262                 return -ENODEV;
5263
5264         /* kvm == NULL means the caller is testing if the capability exists */
5265         if (kvm)
5266                 kvm->arch.nested_enable = true;
5267         return 0;
5268 }
5269
5270 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5271                                  int size)
5272 {
5273         int rc = -EINVAL;
5274
5275         if (kvmhv_vcpu_is_radix(vcpu)) {
5276                 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5277
5278                 if (rc > 0)
5279                         rc = -EINVAL;
5280         }
5281
5282         /* For now quadrants are the only way to access nested guest memory */
5283         if (rc && vcpu->arch.nested)
5284                 rc = -EAGAIN;
5285
5286         return rc;
5287 }
5288
5289 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5290                                 int size)
5291 {
5292         int rc = -EINVAL;
5293
5294         if (kvmhv_vcpu_is_radix(vcpu)) {
5295                 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5296
5297                 if (rc > 0)
5298                         rc = -EINVAL;
5299         }
5300
5301         /* For now quadrants are the only way to access nested guest memory */
5302         if (rc && vcpu->arch.nested)
5303                 rc = -EAGAIN;
5304
5305         return rc;
5306 }
5307
5308 static struct kvmppc_ops kvm_ops_hv = {
5309         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5310         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5311         .get_one_reg = kvmppc_get_one_reg_hv,
5312         .set_one_reg = kvmppc_set_one_reg_hv,
5313         .vcpu_load   = kvmppc_core_vcpu_load_hv,
5314         .vcpu_put    = kvmppc_core_vcpu_put_hv,
5315         .set_msr     = kvmppc_set_msr_hv,
5316         .vcpu_run    = kvmppc_vcpu_run_hv,
5317         .vcpu_create = kvmppc_core_vcpu_create_hv,
5318         .vcpu_free   = kvmppc_core_vcpu_free_hv,
5319         .check_requests = kvmppc_core_check_requests_hv,
5320         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5321         .flush_memslot  = kvmppc_core_flush_memslot_hv,
5322         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5323         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5324         .unmap_hva_range = kvm_unmap_hva_range_hv,
5325         .age_hva  = kvm_age_hva_hv,
5326         .test_age_hva = kvm_test_age_hva_hv,
5327         .set_spte_hva = kvm_set_spte_hva_hv,
5328         .mmu_destroy  = kvmppc_mmu_destroy_hv,
5329         .free_memslot = kvmppc_core_free_memslot_hv,
5330         .create_memslot = kvmppc_core_create_memslot_hv,
5331         .init_vm =  kvmppc_core_init_vm_hv,
5332         .destroy_vm = kvmppc_core_destroy_vm_hv,
5333         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5334         .emulate_op = kvmppc_core_emulate_op_hv,
5335         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5336         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5337         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5338         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5339         .hcall_implemented = kvmppc_hcall_impl_hv,
5340 #ifdef CONFIG_KVM_XICS
5341         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5342         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5343 #endif
5344         .configure_mmu = kvmhv_configure_mmu,
5345         .get_rmmu_info = kvmhv_get_rmmu_info,
5346         .set_smt_mode = kvmhv_set_smt_mode,
5347         .enable_nested = kvmhv_enable_nested,
5348         .load_from_eaddr = kvmhv_load_from_eaddr,
5349         .store_to_eaddr = kvmhv_store_to_eaddr,
5350 };
5351
5352 static int kvm_init_subcore_bitmap(void)
5353 {
5354         int i, j;
5355         int nr_cores = cpu_nr_cores();
5356         struct sibling_subcore_state *sibling_subcore_state;
5357
5358         for (i = 0; i < nr_cores; i++) {
5359                 int first_cpu = i * threads_per_core;
5360                 int node = cpu_to_node(first_cpu);
5361
5362                 /* Ignore if it is already allocated. */
5363                 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5364                         continue;
5365
5366                 sibling_subcore_state =
5367                         kzalloc_node(sizeof(struct sibling_subcore_state),
5368                                                         GFP_KERNEL, node);
5369                 if (!sibling_subcore_state)
5370                         return -ENOMEM;
5371
5372
5373                 for (j = 0; j < threads_per_core; j++) {
5374                         int cpu = first_cpu + j;
5375
5376                         paca_ptrs[cpu]->sibling_subcore_state =
5377                                                 sibling_subcore_state;
5378                 }
5379         }
5380         return 0;
5381 }
5382
5383 static int kvmppc_radix_possible(void)
5384 {
5385         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5386 }
5387
5388 static int kvmppc_book3s_init_hv(void)
5389 {
5390         int r;
5391         /*
5392          * FIXME!! Do we need to check on all cpus ?
5393          */
5394         r = kvmppc_core_check_processor_compat_hv();
5395         if (r < 0)
5396                 return -ENODEV;
5397
5398         r = kvmhv_nested_init();
5399         if (r)
5400                 return r;
5401
5402         r = kvm_init_subcore_bitmap();
5403         if (r)
5404                 return r;
5405
5406         /*
5407          * We need a way of accessing the XICS interrupt controller,
5408          * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5409          * indirectly, via OPAL.
5410          */
5411 #ifdef CONFIG_SMP
5412         if (!xics_on_xive() && !kvmhv_on_pseries() &&
5413             !local_paca->kvm_hstate.xics_phys) {
5414                 struct device_node *np;
5415
5416                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5417                 if (!np) {
5418                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5419                         return -ENODEV;
5420                 }
5421                 /* presence of intc confirmed - node can be dropped again */
5422                 of_node_put(np);
5423         }
5424 #endif
5425
5426         kvm_ops_hv.owner = THIS_MODULE;
5427         kvmppc_hv_ops = &kvm_ops_hv;
5428
5429         init_default_hcalls();
5430
5431         init_vcore_lists();
5432
5433         r = kvmppc_mmu_hv_init();
5434         if (r)
5435                 return r;
5436
5437         if (kvmppc_radix_possible())
5438                 r = kvmppc_radix_init();
5439
5440         /*
5441          * POWER9 chips before version 2.02 can't have some threads in
5442          * HPT mode and some in radix mode on the same core.
5443          */
5444         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5445                 unsigned int pvr = mfspr(SPRN_PVR);
5446                 if ((pvr >> 16) == PVR_POWER9 &&
5447                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5448                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5449                         no_mixing_hpt_and_radix = true;
5450         }
5451
5452         return r;
5453 }
5454
5455 static void kvmppc_book3s_exit_hv(void)
5456 {
5457         kvmppc_free_host_rm_ops();
5458         if (kvmppc_radix_possible())
5459                 kvmppc_radix_exit();
5460         kvmppc_hv_ops = NULL;
5461         kvmhv_nested_exit();
5462 }
5463
5464 module_init(kvmppc_book3s_init_hv);
5465 module_exit(kvmppc_book3s_exit_hv);
5466 MODULE_LICENSE("GPL");
5467 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5468 MODULE_ALIAS("devname:kvm");