Merge tag 'powerpc-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108         .set = param_set_int,
109         .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118
119 /* If set, the threads on each CPU core have to be in the same MMU mode */
120 static bool no_mixing_hpt_and_radix;
121
122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126                 int *ip)
127 {
128         int i = *ip;
129         struct kvm_vcpu *vcpu;
130
131         while (++i < MAX_SMT_THREADS) {
132                 vcpu = READ_ONCE(vc->runnable_threads[i]);
133                 if (vcpu) {
134                         *ip = i;
135                         return vcpu;
136                 }
137         }
138         return NULL;
139 }
140
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148
149         /* On POWER9 we can use msgsnd to IPI any cpu */
150         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151                 msg |= get_hard_smp_processor_id(cpu);
152                 smp_mb();
153                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154                 return true;
155         }
156
157         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
158         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159                 preempt_disable();
160                 if (cpu_first_thread_sibling(cpu) ==
161                     cpu_first_thread_sibling(smp_processor_id())) {
162                         msg |= cpu_thread_in_core(cpu);
163                         smp_mb();
164                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165                         preempt_enable();
166                         return true;
167                 }
168                 preempt_enable();
169         }
170
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172         if (cpu >= 0 && cpu < nr_cpu_ids) {
173                 if (paca[cpu].kvm_hstate.xics_phys) {
174                         xics_wake_cpu(cpu);
175                         return true;
176                 }
177                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178                 return true;
179         }
180 #endif
181
182         return false;
183 }
184
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187         int cpu;
188         struct swait_queue_head *wqp;
189
190         wqp = kvm_arch_vcpu_wq(vcpu);
191         if (swq_has_sleeper(wqp)) {
192                 swake_up(wqp);
193                 ++vcpu->stat.halt_wakeup;
194         }
195
196         cpu = READ_ONCE(vcpu->arch.thread_cpu);
197         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198                 return;
199
200         /* CPU points to the first thread of the core */
201         cpu = vcpu->cpu;
202         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203                 smp_send_reschedule(cpu);
204 }
205
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241         unsigned long flags;
242
243         spin_lock_irqsave(&vc->stoltb_lock, flags);
244         vc->preempt_tb = mftb();
245         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250         unsigned long flags;
251
252         spin_lock_irqsave(&vc->stoltb_lock, flags);
253         if (vc->preempt_tb != TB_NIL) {
254                 vc->stolen_tb += mftb() - vc->preempt_tb;
255                 vc->preempt_tb = TB_NIL;
256         }
257         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262         struct kvmppc_vcore *vc = vcpu->arch.vcore;
263         unsigned long flags;
264
265         /*
266          * We can test vc->runner without taking the vcore lock,
267          * because only this task ever sets vc->runner to this
268          * vcpu, and once it is set to this vcpu, only this task
269          * ever sets it to NULL.
270          */
271         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272                 kvmppc_core_end_stolen(vc);
273
274         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276             vcpu->arch.busy_preempt != TB_NIL) {
277                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278                 vcpu->arch.busy_preempt = TB_NIL;
279         }
280         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285         struct kvmppc_vcore *vc = vcpu->arch.vcore;
286         unsigned long flags;
287
288         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289                 kvmppc_core_start_stolen(vc);
290
291         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293                 vcpu->arch.busy_preempt = mftb();
294         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299         /*
300          * Check for illegal transactional state bit combination
301          * and if we find it, force the TS field to a safe state.
302          */
303         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304                 msr &= ~MSR_TS_MASK;
305         vcpu->arch.shregs.msr = msr;
306         kvmppc_end_cede(vcpu);
307 }
308
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311         vcpu->arch.pvr = pvr;
312 }
313
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
316
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320         struct kvmppc_vcore *vc = vcpu->arch.vcore;
321
322         /* We can (emulate) our own architecture version and anything older */
323         if (cpu_has_feature(CPU_FTR_ARCH_300))
324                 host_pcr_bit = PCR_ARCH_300;
325         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326                 host_pcr_bit = PCR_ARCH_207;
327         else if (cpu_has_feature(CPU_FTR_ARCH_206))
328                 host_pcr_bit = PCR_ARCH_206;
329         else
330                 host_pcr_bit = PCR_ARCH_205;
331
332         /* Determine lowest PCR bit needed to run guest in given PVR level */
333         guest_pcr_bit = host_pcr_bit;
334         if (arch_compat) {
335                 switch (arch_compat) {
336                 case PVR_ARCH_205:
337                         guest_pcr_bit = PCR_ARCH_205;
338                         break;
339                 case PVR_ARCH_206:
340                 case PVR_ARCH_206p:
341                         guest_pcr_bit = PCR_ARCH_206;
342                         break;
343                 case PVR_ARCH_207:
344                         guest_pcr_bit = PCR_ARCH_207;
345                         break;
346                 case PVR_ARCH_300:
347                         guest_pcr_bit = PCR_ARCH_300;
348                         break;
349                 default:
350                         return -EINVAL;
351                 }
352         }
353
354         /* Check requested PCR bits don't exceed our capabilities */
355         if (guest_pcr_bit > host_pcr_bit)
356                 return -EINVAL;
357
358         spin_lock(&vc->lock);
359         vc->arch_compat = arch_compat;
360         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361         vc->pcr = host_pcr_bit - guest_pcr_bit;
362         spin_unlock(&vc->lock);
363
364         return 0;
365 }
366
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369         int r;
370
371         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374         for (r = 0; r < 16; ++r)
375                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376                        r, kvmppc_get_gpr(vcpu, r),
377                        r+16, kvmppc_get_gpr(vcpu, r+16));
378         pr_err("ctr = %.16lx  lr  = %.16lx\n",
379                vcpu->arch.ctr, vcpu->arch.lr);
380         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389         pr_err("fault dar = %.16lx dsisr = %.8x\n",
390                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392         for (r = 0; r < vcpu->arch.slb_max; ++r)
393                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
394                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397                vcpu->arch.last_inst);
398 }
399
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402         struct kvm_vcpu *ret;
403
404         mutex_lock(&kvm->lock);
405         ret = kvm_get_vcpu_by_id(kvm, id);
406         mutex_unlock(&kvm->lock);
407         return ret;
408 }
409
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413         vpa->yield_count = cpu_to_be32(1);
414 }
415
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417                    unsigned long addr, unsigned long len)
418 {
419         /* check address is cacheline aligned */
420         if (addr & (L1_CACHE_BYTES - 1))
421                 return -EINVAL;
422         spin_lock(&vcpu->arch.vpa_update_lock);
423         if (v->next_gpa != addr || v->len != len) {
424                 v->next_gpa = addr;
425                 v->len = addr ? len : 0;
426                 v->update_pending = 1;
427         }
428         spin_unlock(&vcpu->arch.vpa_update_lock);
429         return 0;
430 }
431
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434         u32 dummy;
435         union {
436                 __be16 hword;
437                 __be32 word;
438         } length;
439 };
440
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443         if (vpap->update_pending)
444                 return vpap->next_gpa != 0;
445         return vpap->pinned_addr != NULL;
446 }
447
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449                                        unsigned long flags,
450                                        unsigned long vcpuid, unsigned long vpa)
451 {
452         struct kvm *kvm = vcpu->kvm;
453         unsigned long len, nb;
454         void *va;
455         struct kvm_vcpu *tvcpu;
456         int err;
457         int subfunc;
458         struct kvmppc_vpa *vpap;
459
460         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461         if (!tvcpu)
462                 return H_PARAMETER;
463
464         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466             subfunc == H_VPA_REG_SLB) {
467                 /* Registering new area - address must be cache-line aligned */
468                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469                         return H_PARAMETER;
470
471                 /* convert logical addr to kernel addr and read length */
472                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473                 if (va == NULL)
474                         return H_PARAMETER;
475                 if (subfunc == H_VPA_REG_VPA)
476                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477                 else
478                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
480
481                 /* Check length */
482                 if (len > nb || len < sizeof(struct reg_vpa))
483                         return H_PARAMETER;
484         } else {
485                 vpa = 0;
486                 len = 0;
487         }
488
489         err = H_PARAMETER;
490         vpap = NULL;
491         spin_lock(&tvcpu->arch.vpa_update_lock);
492
493         switch (subfunc) {
494         case H_VPA_REG_VPA:             /* register VPA */
495                 /*
496                  * The size of our lppaca is 1kB because of the way we align
497                  * it for the guest to avoid crossing a 4kB boundary. We only
498                  * use 640 bytes of the structure though, so we should accept
499                  * clients that set a size of 640.
500                  */
501                 if (len < 640)
502                         break;
503                 vpap = &tvcpu->arch.vpa;
504                 err = 0;
505                 break;
506
507         case H_VPA_REG_DTL:             /* register DTL */
508                 if (len < sizeof(struct dtl_entry))
509                         break;
510                 len -= len % sizeof(struct dtl_entry);
511
512                 /* Check that they have previously registered a VPA */
513                 err = H_RESOURCE;
514                 if (!vpa_is_registered(&tvcpu->arch.vpa))
515                         break;
516
517                 vpap = &tvcpu->arch.dtl;
518                 err = 0;
519                 break;
520
521         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
522                 /* Check that they have previously registered a VPA */
523                 err = H_RESOURCE;
524                 if (!vpa_is_registered(&tvcpu->arch.vpa))
525                         break;
526
527                 vpap = &tvcpu->arch.slb_shadow;
528                 err = 0;
529                 break;
530
531         case H_VPA_DEREG_VPA:           /* deregister VPA */
532                 /* Check they don't still have a DTL or SLB buf registered */
533                 err = H_RESOURCE;
534                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
535                     vpa_is_registered(&tvcpu->arch.slb_shadow))
536                         break;
537
538                 vpap = &tvcpu->arch.vpa;
539                 err = 0;
540                 break;
541
542         case H_VPA_DEREG_DTL:           /* deregister DTL */
543                 vpap = &tvcpu->arch.dtl;
544                 err = 0;
545                 break;
546
547         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
548                 vpap = &tvcpu->arch.slb_shadow;
549                 err = 0;
550                 break;
551         }
552
553         if (vpap) {
554                 vpap->next_gpa = vpa;
555                 vpap->len = len;
556                 vpap->update_pending = 1;
557         }
558
559         spin_unlock(&tvcpu->arch.vpa_update_lock);
560
561         return err;
562 }
563
564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
565 {
566         struct kvm *kvm = vcpu->kvm;
567         void *va;
568         unsigned long nb;
569         unsigned long gpa;
570
571         /*
572          * We need to pin the page pointed to by vpap->next_gpa,
573          * but we can't call kvmppc_pin_guest_page under the lock
574          * as it does get_user_pages() and down_read().  So we
575          * have to drop the lock, pin the page, then get the lock
576          * again and check that a new area didn't get registered
577          * in the meantime.
578          */
579         for (;;) {
580                 gpa = vpap->next_gpa;
581                 spin_unlock(&vcpu->arch.vpa_update_lock);
582                 va = NULL;
583                 nb = 0;
584                 if (gpa)
585                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
586                 spin_lock(&vcpu->arch.vpa_update_lock);
587                 if (gpa == vpap->next_gpa)
588                         break;
589                 /* sigh... unpin that one and try again */
590                 if (va)
591                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
592         }
593
594         vpap->update_pending = 0;
595         if (va && nb < vpap->len) {
596                 /*
597                  * If it's now too short, it must be that userspace
598                  * has changed the mappings underlying guest memory,
599                  * so unregister the region.
600                  */
601                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
602                 va = NULL;
603         }
604         if (vpap->pinned_addr)
605                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
606                                         vpap->dirty);
607         vpap->gpa = gpa;
608         vpap->pinned_addr = va;
609         vpap->dirty = false;
610         if (va)
611                 vpap->pinned_end = va + vpap->len;
612 }
613
614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
615 {
616         if (!(vcpu->arch.vpa.update_pending ||
617               vcpu->arch.slb_shadow.update_pending ||
618               vcpu->arch.dtl.update_pending))
619                 return;
620
621         spin_lock(&vcpu->arch.vpa_update_lock);
622         if (vcpu->arch.vpa.update_pending) {
623                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
624                 if (vcpu->arch.vpa.pinned_addr)
625                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
626         }
627         if (vcpu->arch.dtl.update_pending) {
628                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
629                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
630                 vcpu->arch.dtl_index = 0;
631         }
632         if (vcpu->arch.slb_shadow.update_pending)
633                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
634         spin_unlock(&vcpu->arch.vpa_update_lock);
635 }
636
637 /*
638  * Return the accumulated stolen time for the vcore up until `now'.
639  * The caller should hold the vcore lock.
640  */
641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
642 {
643         u64 p;
644         unsigned long flags;
645
646         spin_lock_irqsave(&vc->stoltb_lock, flags);
647         p = vc->stolen_tb;
648         if (vc->vcore_state != VCORE_INACTIVE &&
649             vc->preempt_tb != TB_NIL)
650                 p += now - vc->preempt_tb;
651         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
652         return p;
653 }
654
655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
656                                     struct kvmppc_vcore *vc)
657 {
658         struct dtl_entry *dt;
659         struct lppaca *vpa;
660         unsigned long stolen;
661         unsigned long core_stolen;
662         u64 now;
663         unsigned long flags;
664
665         dt = vcpu->arch.dtl_ptr;
666         vpa = vcpu->arch.vpa.pinned_addr;
667         now = mftb();
668         core_stolen = vcore_stolen_time(vc, now);
669         stolen = core_stolen - vcpu->arch.stolen_logged;
670         vcpu->arch.stolen_logged = core_stolen;
671         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
672         stolen += vcpu->arch.busy_stolen;
673         vcpu->arch.busy_stolen = 0;
674         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
675         if (!dt || !vpa)
676                 return;
677         memset(dt, 0, sizeof(struct dtl_entry));
678         dt->dispatch_reason = 7;
679         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
680         dt->timebase = cpu_to_be64(now + vc->tb_offset);
681         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
682         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
683         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
684         ++dt;
685         if (dt == vcpu->arch.dtl.pinned_end)
686                 dt = vcpu->arch.dtl.pinned_addr;
687         vcpu->arch.dtl_ptr = dt;
688         /* order writing *dt vs. writing vpa->dtl_idx */
689         smp_wmb();
690         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
691         vcpu->arch.dtl.dirty = true;
692 }
693
694 /* See if there is a doorbell interrupt pending for a vcpu */
695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
696 {
697         int thr;
698         struct kvmppc_vcore *vc;
699
700         if (vcpu->arch.doorbell_request)
701                 return true;
702         /*
703          * Ensure that the read of vcore->dpdes comes after the read
704          * of vcpu->doorbell_request.  This barrier matches the
705          * lwsync in book3s_hv_rmhandlers.S just before the
706          * fast_guest_return label.
707          */
708         smp_rmb();
709         vc = vcpu->arch.vcore;
710         thr = vcpu->vcpu_id - vc->first_vcpuid;
711         return !!(vc->dpdes & (1 << thr));
712 }
713
714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
715 {
716         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
717                 return true;
718         if ((!vcpu->arch.vcore->arch_compat) &&
719             cpu_has_feature(CPU_FTR_ARCH_207S))
720                 return true;
721         return false;
722 }
723
724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
725                              unsigned long resource, unsigned long value1,
726                              unsigned long value2)
727 {
728         switch (resource) {
729         case H_SET_MODE_RESOURCE_SET_CIABR:
730                 if (!kvmppc_power8_compatible(vcpu))
731                         return H_P2;
732                 if (value2)
733                         return H_P4;
734                 if (mflags)
735                         return H_UNSUPPORTED_FLAG_START;
736                 /* Guests can't breakpoint the hypervisor */
737                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
738                         return H_P3;
739                 vcpu->arch.ciabr  = value1;
740                 return H_SUCCESS;
741         case H_SET_MODE_RESOURCE_SET_DAWR:
742                 if (!kvmppc_power8_compatible(vcpu))
743                         return H_P2;
744                 if (mflags)
745                         return H_UNSUPPORTED_FLAG_START;
746                 if (value2 & DABRX_HYP)
747                         return H_P4;
748                 vcpu->arch.dawr  = value1;
749                 vcpu->arch.dawrx = value2;
750                 return H_SUCCESS;
751         default:
752                 return H_TOO_HARD;
753         }
754 }
755
756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
757 {
758         struct kvmppc_vcore *vcore = target->arch.vcore;
759
760         /*
761          * We expect to have been called by the real mode handler
762          * (kvmppc_rm_h_confer()) which would have directly returned
763          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
764          * have useful work to do and should not confer) so we don't
765          * recheck that here.
766          */
767
768         spin_lock(&vcore->lock);
769         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
770             vcore->vcore_state != VCORE_INACTIVE &&
771             vcore->runner)
772                 target = vcore->runner;
773         spin_unlock(&vcore->lock);
774
775         return kvm_vcpu_yield_to(target);
776 }
777
778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
779 {
780         int yield_count = 0;
781         struct lppaca *lppaca;
782
783         spin_lock(&vcpu->arch.vpa_update_lock);
784         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
785         if (lppaca)
786                 yield_count = be32_to_cpu(lppaca->yield_count);
787         spin_unlock(&vcpu->arch.vpa_update_lock);
788         return yield_count;
789 }
790
791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
792 {
793         unsigned long req = kvmppc_get_gpr(vcpu, 3);
794         unsigned long target, ret = H_SUCCESS;
795         int yield_count;
796         struct kvm_vcpu *tvcpu;
797         int idx, rc;
798
799         if (req <= MAX_HCALL_OPCODE &&
800             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
801                 return RESUME_HOST;
802
803         switch (req) {
804         case H_CEDE:
805                 break;
806         case H_PROD:
807                 target = kvmppc_get_gpr(vcpu, 4);
808                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
809                 if (!tvcpu) {
810                         ret = H_PARAMETER;
811                         break;
812                 }
813                 tvcpu->arch.prodded = 1;
814                 smp_mb();
815                 if (tvcpu->arch.ceded)
816                         kvmppc_fast_vcpu_kick_hv(tvcpu);
817                 break;
818         case H_CONFER:
819                 target = kvmppc_get_gpr(vcpu, 4);
820                 if (target == -1)
821                         break;
822                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
823                 if (!tvcpu) {
824                         ret = H_PARAMETER;
825                         break;
826                 }
827                 yield_count = kvmppc_get_gpr(vcpu, 5);
828                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
829                         break;
830                 kvm_arch_vcpu_yield_to(tvcpu);
831                 break;
832         case H_REGISTER_VPA:
833                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
834                                         kvmppc_get_gpr(vcpu, 5),
835                                         kvmppc_get_gpr(vcpu, 6));
836                 break;
837         case H_RTAS:
838                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
839                         return RESUME_HOST;
840
841                 idx = srcu_read_lock(&vcpu->kvm->srcu);
842                 rc = kvmppc_rtas_hcall(vcpu);
843                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
844
845                 if (rc == -ENOENT)
846                         return RESUME_HOST;
847                 else if (rc == 0)
848                         break;
849
850                 /* Send the error out to userspace via KVM_RUN */
851                 return rc;
852         case H_LOGICAL_CI_LOAD:
853                 ret = kvmppc_h_logical_ci_load(vcpu);
854                 if (ret == H_TOO_HARD)
855                         return RESUME_HOST;
856                 break;
857         case H_LOGICAL_CI_STORE:
858                 ret = kvmppc_h_logical_ci_store(vcpu);
859                 if (ret == H_TOO_HARD)
860                         return RESUME_HOST;
861                 break;
862         case H_SET_MODE:
863                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
864                                         kvmppc_get_gpr(vcpu, 5),
865                                         kvmppc_get_gpr(vcpu, 6),
866                                         kvmppc_get_gpr(vcpu, 7));
867                 if (ret == H_TOO_HARD)
868                         return RESUME_HOST;
869                 break;
870         case H_XIRR:
871         case H_CPPR:
872         case H_EOI:
873         case H_IPI:
874         case H_IPOLL:
875         case H_XIRR_X:
876                 if (kvmppc_xics_enabled(vcpu)) {
877                         if (xive_enabled()) {
878                                 ret = H_NOT_AVAILABLE;
879                                 return RESUME_GUEST;
880                         }
881                         ret = kvmppc_xics_hcall(vcpu, req);
882                         break;
883                 }
884                 return RESUME_HOST;
885         case H_PUT_TCE:
886                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
887                                                 kvmppc_get_gpr(vcpu, 5),
888                                                 kvmppc_get_gpr(vcpu, 6));
889                 if (ret == H_TOO_HARD)
890                         return RESUME_HOST;
891                 break;
892         case H_PUT_TCE_INDIRECT:
893                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
894                                                 kvmppc_get_gpr(vcpu, 5),
895                                                 kvmppc_get_gpr(vcpu, 6),
896                                                 kvmppc_get_gpr(vcpu, 7));
897                 if (ret == H_TOO_HARD)
898                         return RESUME_HOST;
899                 break;
900         case H_STUFF_TCE:
901                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
902                                                 kvmppc_get_gpr(vcpu, 5),
903                                                 kvmppc_get_gpr(vcpu, 6),
904                                                 kvmppc_get_gpr(vcpu, 7));
905                 if (ret == H_TOO_HARD)
906                         return RESUME_HOST;
907                 break;
908         default:
909                 return RESUME_HOST;
910         }
911         kvmppc_set_gpr(vcpu, 3, ret);
912         vcpu->arch.hcall_needed = 0;
913         return RESUME_GUEST;
914 }
915
916 static int kvmppc_hcall_impl_hv(unsigned long cmd)
917 {
918         switch (cmd) {
919         case H_CEDE:
920         case H_PROD:
921         case H_CONFER:
922         case H_REGISTER_VPA:
923         case H_SET_MODE:
924         case H_LOGICAL_CI_LOAD:
925         case H_LOGICAL_CI_STORE:
926 #ifdef CONFIG_KVM_XICS
927         case H_XIRR:
928         case H_CPPR:
929         case H_EOI:
930         case H_IPI:
931         case H_IPOLL:
932         case H_XIRR_X:
933 #endif
934                 return 1;
935         }
936
937         /* See if it's in the real-mode table */
938         return kvmppc_hcall_impl_hv_realmode(cmd);
939 }
940
941 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
942                                         struct kvm_vcpu *vcpu)
943 {
944         u32 last_inst;
945
946         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
947                                         EMULATE_DONE) {
948                 /*
949                  * Fetch failed, so return to guest and
950                  * try executing it again.
951                  */
952                 return RESUME_GUEST;
953         }
954
955         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
956                 run->exit_reason = KVM_EXIT_DEBUG;
957                 run->debug.arch.address = kvmppc_get_pc(vcpu);
958                 return RESUME_HOST;
959         } else {
960                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
961                 return RESUME_GUEST;
962         }
963 }
964
965 static void do_nothing(void *x)
966 {
967 }
968
969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
970 {
971         int thr, cpu, pcpu, nthreads;
972         struct kvm_vcpu *v;
973         unsigned long dpdes;
974
975         nthreads = vcpu->kvm->arch.emul_smt_mode;
976         dpdes = 0;
977         cpu = vcpu->vcpu_id & ~(nthreads - 1);
978         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
979                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
980                 if (!v)
981                         continue;
982                 /*
983                  * If the vcpu is currently running on a physical cpu thread,
984                  * interrupt it in order to pull it out of the guest briefly,
985                  * which will update its vcore->dpdes value.
986                  */
987                 pcpu = READ_ONCE(v->cpu);
988                 if (pcpu >= 0)
989                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
990                 if (kvmppc_doorbell_pending(v))
991                         dpdes |= 1 << thr;
992         }
993         return dpdes;
994 }
995
996 /*
997  * On POWER9, emulate doorbell-related instructions in order to
998  * give the guest the illusion of running on a multi-threaded core.
999  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000  * and mfspr DPDES.
1001  */
1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003 {
1004         u32 inst, rb, thr;
1005         unsigned long arg;
1006         struct kvm *kvm = vcpu->kvm;
1007         struct kvm_vcpu *tvcpu;
1008
1009         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1010                 return RESUME_GUEST;
1011         if (get_op(inst) != 31)
1012                 return EMULATE_FAIL;
1013         rb = get_rb(inst);
1014         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1015         switch (get_xop(inst)) {
1016         case OP_31_XOP_MSGSNDP:
1017                 arg = kvmppc_get_gpr(vcpu, rb);
1018                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1019                         break;
1020                 arg &= 0x3f;
1021                 if (arg >= kvm->arch.emul_smt_mode)
1022                         break;
1023                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1024                 if (!tvcpu)
1025                         break;
1026                 if (!tvcpu->arch.doorbell_request) {
1027                         tvcpu->arch.doorbell_request = 1;
1028                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1029                 }
1030                 break;
1031         case OP_31_XOP_MSGCLRP:
1032                 arg = kvmppc_get_gpr(vcpu, rb);
1033                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1034                         break;
1035                 vcpu->arch.vcore->dpdes = 0;
1036                 vcpu->arch.doorbell_request = 0;
1037                 break;
1038         case OP_31_XOP_MFSPR:
1039                 switch (get_sprn(inst)) {
1040                 case SPRN_TIR:
1041                         arg = thr;
1042                         break;
1043                 case SPRN_DPDES:
1044                         arg = kvmppc_read_dpdes(vcpu);
1045                         break;
1046                 default:
1047                         return EMULATE_FAIL;
1048                 }
1049                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1050                 break;
1051         default:
1052                 return EMULATE_FAIL;
1053         }
1054         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1055         return RESUME_GUEST;
1056 }
1057
1058 /* Called with vcpu->arch.vcore->lock held */
1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060                                  struct task_struct *tsk)
1061 {
1062         int r = RESUME_HOST;
1063
1064         vcpu->stat.sum_exits++;
1065
1066         /*
1067          * This can happen if an interrupt occurs in the last stages
1068          * of guest entry or the first stages of guest exit (i.e. after
1069          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071          * That can happen due to a bug, or due to a machine check
1072          * occurring at just the wrong time.
1073          */
1074         if (vcpu->arch.shregs.msr & MSR_HV) {
1075                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1076                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078                         vcpu->arch.shregs.msr);
1079                 kvmppc_dump_regs(vcpu);
1080                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1082                 return RESUME_HOST;
1083         }
1084         run->exit_reason = KVM_EXIT_UNKNOWN;
1085         run->ready_for_interrupt_injection = 1;
1086         switch (vcpu->arch.trap) {
1087         /* We're good on these - the host merely wanted to get our attention */
1088         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089                 vcpu->stat.dec_exits++;
1090                 r = RESUME_GUEST;
1091                 break;
1092         case BOOK3S_INTERRUPT_EXTERNAL:
1093         case BOOK3S_INTERRUPT_H_DOORBELL:
1094         case BOOK3S_INTERRUPT_H_VIRT:
1095                 vcpu->stat.ext_intr_exits++;
1096                 r = RESUME_GUEST;
1097                 break;
1098         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099         case BOOK3S_INTERRUPT_HMI:
1100         case BOOK3S_INTERRUPT_PERFMON:
1101         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102                 r = RESUME_GUEST;
1103                 break;
1104         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1106                 run->exit_reason = KVM_EXIT_NMI;
1107                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1108                 /* Clear out the old NMI status from run->flags */
1109                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110                 /* Now set the NMI status */
1111                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113                 else
1114                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115
1116                 r = RESUME_HOST;
1117                 /* Print the MCE event to host console. */
1118                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119                 break;
1120         case BOOK3S_INTERRUPT_PROGRAM:
1121         {
1122                 ulong flags;
1123                 /*
1124                  * Normally program interrupts are delivered directly
1125                  * to the guest by the hardware, but we can get here
1126                  * as a result of a hypervisor emulation interrupt
1127                  * (e40) getting turned into a 700 by BML RTAS.
1128                  */
1129                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130                 kvmppc_core_queue_program(vcpu, flags);
1131                 r = RESUME_GUEST;
1132                 break;
1133         }
1134         case BOOK3S_INTERRUPT_SYSCALL:
1135         {
1136                 /* hcall - punt to userspace */
1137                 int i;
1138
1139                 /* hypercall with MSR_PR has already been handled in rmode,
1140                  * and never reaches here.
1141                  */
1142
1143                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144                 for (i = 0; i < 9; ++i)
1145                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147                 vcpu->arch.hcall_needed = 1;
1148                 r = RESUME_HOST;
1149                 break;
1150         }
1151         /*
1152          * We get these next two if the guest accesses a page which it thinks
1153          * it has mapped but which is not actually present, either because
1154          * it is for an emulated I/O device or because the corresonding
1155          * host page has been paged out.  Any other HDSI/HISI interrupts
1156          * have been handled already.
1157          */
1158         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159                 r = RESUME_PAGE_FAULT;
1160                 break;
1161         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163                 vcpu->arch.fault_dsisr = 0;
1164                 r = RESUME_PAGE_FAULT;
1165                 break;
1166         /*
1167          * This occurs if the guest executes an illegal instruction.
1168          * If the guest debug is disabled, generate a program interrupt
1169          * to the guest. If guest debug is enabled, we need to check
1170          * whether the instruction is a software breakpoint instruction.
1171          * Accordingly return to Guest or Host.
1172          */
1173         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176                                 swab32(vcpu->arch.emul_inst) :
1177                                 vcpu->arch.emul_inst;
1178                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1180                         spin_unlock(&vcpu->arch.vcore->lock);
1181                         r = kvmppc_emulate_debug_inst(run, vcpu);
1182                         spin_lock(&vcpu->arch.vcore->lock);
1183                 } else {
1184                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1185                         r = RESUME_GUEST;
1186                 }
1187                 break;
1188         /*
1189          * This occurs if the guest (kernel or userspace), does something that
1190          * is prohibited by HFSCR.
1191          * On POWER9, this could be a doorbell instruction that we need
1192          * to emulate.
1193          * Otherwise, we just generate a program interrupt to the guest.
1194          */
1195         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1196                 r = EMULATE_FAIL;
1197                 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1198                     cpu_has_feature(CPU_FTR_ARCH_300)) {
1199                         /* Need vcore unlocked to call kvmppc_get_last_inst */
1200                         spin_unlock(&vcpu->arch.vcore->lock);
1201                         r = kvmppc_emulate_doorbell_instr(vcpu);
1202                         spin_lock(&vcpu->arch.vcore->lock);
1203                 }
1204                 if (r == EMULATE_FAIL) {
1205                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1206                         r = RESUME_GUEST;
1207                 }
1208                 break;
1209         case BOOK3S_INTERRUPT_HV_RM_HARD:
1210                 r = RESUME_PASSTHROUGH;
1211                 break;
1212         default:
1213                 kvmppc_dump_regs(vcpu);
1214                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1215                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1216                         vcpu->arch.shregs.msr);
1217                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1218                 r = RESUME_HOST;
1219                 break;
1220         }
1221
1222         return r;
1223 }
1224
1225 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1226                                             struct kvm_sregs *sregs)
1227 {
1228         int i;
1229
1230         memset(sregs, 0, sizeof(struct kvm_sregs));
1231         sregs->pvr = vcpu->arch.pvr;
1232         for (i = 0; i < vcpu->arch.slb_max; i++) {
1233                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1234                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1241                                             struct kvm_sregs *sregs)
1242 {
1243         int i, j;
1244
1245         /* Only accept the same PVR as the host's, since we can't spoof it */
1246         if (sregs->pvr != vcpu->arch.pvr)
1247                 return -EINVAL;
1248
1249         j = 0;
1250         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1251                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1252                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1253                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1254                         ++j;
1255                 }
1256         }
1257         vcpu->arch.slb_max = j;
1258
1259         return 0;
1260 }
1261
1262 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1263                 bool preserve_top32)
1264 {
1265         struct kvm *kvm = vcpu->kvm;
1266         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1267         u64 mask;
1268
1269         mutex_lock(&kvm->lock);
1270         spin_lock(&vc->lock);
1271         /*
1272          * If ILE (interrupt little-endian) has changed, update the
1273          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1274          */
1275         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1276                 struct kvm_vcpu *vcpu;
1277                 int i;
1278
1279                 kvm_for_each_vcpu(i, vcpu, kvm) {
1280                         if (vcpu->arch.vcore != vc)
1281                                 continue;
1282                         if (new_lpcr & LPCR_ILE)
1283                                 vcpu->arch.intr_msr |= MSR_LE;
1284                         else
1285                                 vcpu->arch.intr_msr &= ~MSR_LE;
1286                 }
1287         }
1288
1289         /*
1290          * Userspace can only modify DPFD (default prefetch depth),
1291          * ILE (interrupt little-endian) and TC (translation control).
1292          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1293          */
1294         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1295         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1296                 mask |= LPCR_AIL;
1297         /*
1298          * On POWER9, allow userspace to enable large decrementer for the
1299          * guest, whether or not the host has it enabled.
1300          */
1301         if (cpu_has_feature(CPU_FTR_ARCH_300))
1302                 mask |= LPCR_LD;
1303
1304         /* Broken 32-bit version of LPCR must not clear top bits */
1305         if (preserve_top32)
1306                 mask &= 0xFFFFFFFF;
1307         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1308         spin_unlock(&vc->lock);
1309         mutex_unlock(&kvm->lock);
1310 }
1311
1312 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1313                                  union kvmppc_one_reg *val)
1314 {
1315         int r = 0;
1316         long int i;
1317
1318         switch (id) {
1319         case KVM_REG_PPC_DEBUG_INST:
1320                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1321                 break;
1322         case KVM_REG_PPC_HIOR:
1323                 *val = get_reg_val(id, 0);
1324                 break;
1325         case KVM_REG_PPC_DABR:
1326                 *val = get_reg_val(id, vcpu->arch.dabr);
1327                 break;
1328         case KVM_REG_PPC_DABRX:
1329                 *val = get_reg_val(id, vcpu->arch.dabrx);
1330                 break;
1331         case KVM_REG_PPC_DSCR:
1332                 *val = get_reg_val(id, vcpu->arch.dscr);
1333                 break;
1334         case KVM_REG_PPC_PURR:
1335                 *val = get_reg_val(id, vcpu->arch.purr);
1336                 break;
1337         case KVM_REG_PPC_SPURR:
1338                 *val = get_reg_val(id, vcpu->arch.spurr);
1339                 break;
1340         case KVM_REG_PPC_AMR:
1341                 *val = get_reg_val(id, vcpu->arch.amr);
1342                 break;
1343         case KVM_REG_PPC_UAMOR:
1344                 *val = get_reg_val(id, vcpu->arch.uamor);
1345                 break;
1346         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1347                 i = id - KVM_REG_PPC_MMCR0;
1348                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1349                 break;
1350         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1351                 i = id - KVM_REG_PPC_PMC1;
1352                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1353                 break;
1354         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1355                 i = id - KVM_REG_PPC_SPMC1;
1356                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1357                 break;
1358         case KVM_REG_PPC_SIAR:
1359                 *val = get_reg_val(id, vcpu->arch.siar);
1360                 break;
1361         case KVM_REG_PPC_SDAR:
1362                 *val = get_reg_val(id, vcpu->arch.sdar);
1363                 break;
1364         case KVM_REG_PPC_SIER:
1365                 *val = get_reg_val(id, vcpu->arch.sier);
1366                 break;
1367         case KVM_REG_PPC_IAMR:
1368                 *val = get_reg_val(id, vcpu->arch.iamr);
1369                 break;
1370         case KVM_REG_PPC_PSPB:
1371                 *val = get_reg_val(id, vcpu->arch.pspb);
1372                 break;
1373         case KVM_REG_PPC_DPDES:
1374                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1375                 break;
1376         case KVM_REG_PPC_VTB:
1377                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1378                 break;
1379         case KVM_REG_PPC_DAWR:
1380                 *val = get_reg_val(id, vcpu->arch.dawr);
1381                 break;
1382         case KVM_REG_PPC_DAWRX:
1383                 *val = get_reg_val(id, vcpu->arch.dawrx);
1384                 break;
1385         case KVM_REG_PPC_CIABR:
1386                 *val = get_reg_val(id, vcpu->arch.ciabr);
1387                 break;
1388         case KVM_REG_PPC_CSIGR:
1389                 *val = get_reg_val(id, vcpu->arch.csigr);
1390                 break;
1391         case KVM_REG_PPC_TACR:
1392                 *val = get_reg_val(id, vcpu->arch.tacr);
1393                 break;
1394         case KVM_REG_PPC_TCSCR:
1395                 *val = get_reg_val(id, vcpu->arch.tcscr);
1396                 break;
1397         case KVM_REG_PPC_PID:
1398                 *val = get_reg_val(id, vcpu->arch.pid);
1399                 break;
1400         case KVM_REG_PPC_ACOP:
1401                 *val = get_reg_val(id, vcpu->arch.acop);
1402                 break;
1403         case KVM_REG_PPC_WORT:
1404                 *val = get_reg_val(id, vcpu->arch.wort);
1405                 break;
1406         case KVM_REG_PPC_TIDR:
1407                 *val = get_reg_val(id, vcpu->arch.tid);
1408                 break;
1409         case KVM_REG_PPC_PSSCR:
1410                 *val = get_reg_val(id, vcpu->arch.psscr);
1411                 break;
1412         case KVM_REG_PPC_VPA_ADDR:
1413                 spin_lock(&vcpu->arch.vpa_update_lock);
1414                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1415                 spin_unlock(&vcpu->arch.vpa_update_lock);
1416                 break;
1417         case KVM_REG_PPC_VPA_SLB:
1418                 spin_lock(&vcpu->arch.vpa_update_lock);
1419                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1420                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1421                 spin_unlock(&vcpu->arch.vpa_update_lock);
1422                 break;
1423         case KVM_REG_PPC_VPA_DTL:
1424                 spin_lock(&vcpu->arch.vpa_update_lock);
1425                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1426                 val->vpaval.length = vcpu->arch.dtl.len;
1427                 spin_unlock(&vcpu->arch.vpa_update_lock);
1428                 break;
1429         case KVM_REG_PPC_TB_OFFSET:
1430                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1431                 break;
1432         case KVM_REG_PPC_LPCR:
1433         case KVM_REG_PPC_LPCR_64:
1434                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1435                 break;
1436         case KVM_REG_PPC_PPR:
1437                 *val = get_reg_val(id, vcpu->arch.ppr);
1438                 break;
1439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1440         case KVM_REG_PPC_TFHAR:
1441                 *val = get_reg_val(id, vcpu->arch.tfhar);
1442                 break;
1443         case KVM_REG_PPC_TFIAR:
1444                 *val = get_reg_val(id, vcpu->arch.tfiar);
1445                 break;
1446         case KVM_REG_PPC_TEXASR:
1447                 *val = get_reg_val(id, vcpu->arch.texasr);
1448                 break;
1449         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1450                 i = id - KVM_REG_PPC_TM_GPR0;
1451                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1452                 break;
1453         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1454         {
1455                 int j;
1456                 i = id - KVM_REG_PPC_TM_VSR0;
1457                 if (i < 32)
1458                         for (j = 0; j < TS_FPRWIDTH; j++)
1459                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1460                 else {
1461                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1462                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1463                         else
1464                                 r = -ENXIO;
1465                 }
1466                 break;
1467         }
1468         case KVM_REG_PPC_TM_CR:
1469                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1470                 break;
1471         case KVM_REG_PPC_TM_XER:
1472                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1473                 break;
1474         case KVM_REG_PPC_TM_LR:
1475                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1476                 break;
1477         case KVM_REG_PPC_TM_CTR:
1478                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1479                 break;
1480         case KVM_REG_PPC_TM_FPSCR:
1481                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1482                 break;
1483         case KVM_REG_PPC_TM_AMR:
1484                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1485                 break;
1486         case KVM_REG_PPC_TM_PPR:
1487                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1488                 break;
1489         case KVM_REG_PPC_TM_VRSAVE:
1490                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1491                 break;
1492         case KVM_REG_PPC_TM_VSCR:
1493                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1494                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1495                 else
1496                         r = -ENXIO;
1497                 break;
1498         case KVM_REG_PPC_TM_DSCR:
1499                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1500                 break;
1501         case KVM_REG_PPC_TM_TAR:
1502                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1503                 break;
1504 #endif
1505         case KVM_REG_PPC_ARCH_COMPAT:
1506                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1507                 break;
1508         case KVM_REG_PPC_DEC_EXPIRY:
1509                 *val = get_reg_val(id, vcpu->arch.dec_expires +
1510                                    vcpu->arch.vcore->tb_offset);
1511                 break;
1512         default:
1513                 r = -EINVAL;
1514                 break;
1515         }
1516
1517         return r;
1518 }
1519
1520 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1521                                  union kvmppc_one_reg *val)
1522 {
1523         int r = 0;
1524         long int i;
1525         unsigned long addr, len;
1526
1527         switch (id) {
1528         case KVM_REG_PPC_HIOR:
1529                 /* Only allow this to be set to zero */
1530                 if (set_reg_val(id, *val))
1531                         r = -EINVAL;
1532                 break;
1533         case KVM_REG_PPC_DABR:
1534                 vcpu->arch.dabr = set_reg_val(id, *val);
1535                 break;
1536         case KVM_REG_PPC_DABRX:
1537                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1538                 break;
1539         case KVM_REG_PPC_DSCR:
1540                 vcpu->arch.dscr = set_reg_val(id, *val);
1541                 break;
1542         case KVM_REG_PPC_PURR:
1543                 vcpu->arch.purr = set_reg_val(id, *val);
1544                 break;
1545         case KVM_REG_PPC_SPURR:
1546                 vcpu->arch.spurr = set_reg_val(id, *val);
1547                 break;
1548         case KVM_REG_PPC_AMR:
1549                 vcpu->arch.amr = set_reg_val(id, *val);
1550                 break;
1551         case KVM_REG_PPC_UAMOR:
1552                 vcpu->arch.uamor = set_reg_val(id, *val);
1553                 break;
1554         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1555                 i = id - KVM_REG_PPC_MMCR0;
1556                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1557                 break;
1558         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1559                 i = id - KVM_REG_PPC_PMC1;
1560                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1561                 break;
1562         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1563                 i = id - KVM_REG_PPC_SPMC1;
1564                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1565                 break;
1566         case KVM_REG_PPC_SIAR:
1567                 vcpu->arch.siar = set_reg_val(id, *val);
1568                 break;
1569         case KVM_REG_PPC_SDAR:
1570                 vcpu->arch.sdar = set_reg_val(id, *val);
1571                 break;
1572         case KVM_REG_PPC_SIER:
1573                 vcpu->arch.sier = set_reg_val(id, *val);
1574                 break;
1575         case KVM_REG_PPC_IAMR:
1576                 vcpu->arch.iamr = set_reg_val(id, *val);
1577                 break;
1578         case KVM_REG_PPC_PSPB:
1579                 vcpu->arch.pspb = set_reg_val(id, *val);
1580                 break;
1581         case KVM_REG_PPC_DPDES:
1582                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1583                 break;
1584         case KVM_REG_PPC_VTB:
1585                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1586                 break;
1587         case KVM_REG_PPC_DAWR:
1588                 vcpu->arch.dawr = set_reg_val(id, *val);
1589                 break;
1590         case KVM_REG_PPC_DAWRX:
1591                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1592                 break;
1593         case KVM_REG_PPC_CIABR:
1594                 vcpu->arch.ciabr = set_reg_val(id, *val);
1595                 /* Don't allow setting breakpoints in hypervisor code */
1596                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1597                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1598                 break;
1599         case KVM_REG_PPC_CSIGR:
1600                 vcpu->arch.csigr = set_reg_val(id, *val);
1601                 break;
1602         case KVM_REG_PPC_TACR:
1603                 vcpu->arch.tacr = set_reg_val(id, *val);
1604                 break;
1605         case KVM_REG_PPC_TCSCR:
1606                 vcpu->arch.tcscr = set_reg_val(id, *val);
1607                 break;
1608         case KVM_REG_PPC_PID:
1609                 vcpu->arch.pid = set_reg_val(id, *val);
1610                 break;
1611         case KVM_REG_PPC_ACOP:
1612                 vcpu->arch.acop = set_reg_val(id, *val);
1613                 break;
1614         case KVM_REG_PPC_WORT:
1615                 vcpu->arch.wort = set_reg_val(id, *val);
1616                 break;
1617         case KVM_REG_PPC_TIDR:
1618                 vcpu->arch.tid = set_reg_val(id, *val);
1619                 break;
1620         case KVM_REG_PPC_PSSCR:
1621                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1622                 break;
1623         case KVM_REG_PPC_VPA_ADDR:
1624                 addr = set_reg_val(id, *val);
1625                 r = -EINVAL;
1626                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1627                               vcpu->arch.dtl.next_gpa))
1628                         break;
1629                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1630                 break;
1631         case KVM_REG_PPC_VPA_SLB:
1632                 addr = val->vpaval.addr;
1633                 len = val->vpaval.length;
1634                 r = -EINVAL;
1635                 if (addr && !vcpu->arch.vpa.next_gpa)
1636                         break;
1637                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1638                 break;
1639         case KVM_REG_PPC_VPA_DTL:
1640                 addr = val->vpaval.addr;
1641                 len = val->vpaval.length;
1642                 r = -EINVAL;
1643                 if (addr && (len < sizeof(struct dtl_entry) ||
1644                              !vcpu->arch.vpa.next_gpa))
1645                         break;
1646                 len -= len % sizeof(struct dtl_entry);
1647                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1648                 break;
1649         case KVM_REG_PPC_TB_OFFSET:
1650                 /*
1651                  * POWER9 DD1 has an erratum where writing TBU40 causes
1652                  * the timebase to lose ticks.  So we don't let the
1653                  * timebase offset be changed on P9 DD1.  (It is
1654                  * initialized to zero.)
1655                  */
1656                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1657                         break;
1658                 /* round up to multiple of 2^24 */
1659                 vcpu->arch.vcore->tb_offset =
1660                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1661                 break;
1662         case KVM_REG_PPC_LPCR:
1663                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1664                 break;
1665         case KVM_REG_PPC_LPCR_64:
1666                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1667                 break;
1668         case KVM_REG_PPC_PPR:
1669                 vcpu->arch.ppr = set_reg_val(id, *val);
1670                 break;
1671 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1672         case KVM_REG_PPC_TFHAR:
1673                 vcpu->arch.tfhar = set_reg_val(id, *val);
1674                 break;
1675         case KVM_REG_PPC_TFIAR:
1676                 vcpu->arch.tfiar = set_reg_val(id, *val);
1677                 break;
1678         case KVM_REG_PPC_TEXASR:
1679                 vcpu->arch.texasr = set_reg_val(id, *val);
1680                 break;
1681         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1682                 i = id - KVM_REG_PPC_TM_GPR0;
1683                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1684                 break;
1685         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1686         {
1687                 int j;
1688                 i = id - KVM_REG_PPC_TM_VSR0;
1689                 if (i < 32)
1690                         for (j = 0; j < TS_FPRWIDTH; j++)
1691                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1692                 else
1693                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1694                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1695                         else
1696                                 r = -ENXIO;
1697                 break;
1698         }
1699         case KVM_REG_PPC_TM_CR:
1700                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1701                 break;
1702         case KVM_REG_PPC_TM_XER:
1703                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1704                 break;
1705         case KVM_REG_PPC_TM_LR:
1706                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1707                 break;
1708         case KVM_REG_PPC_TM_CTR:
1709                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1710                 break;
1711         case KVM_REG_PPC_TM_FPSCR:
1712                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1713                 break;
1714         case KVM_REG_PPC_TM_AMR:
1715                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1716                 break;
1717         case KVM_REG_PPC_TM_PPR:
1718                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1719                 break;
1720         case KVM_REG_PPC_TM_VRSAVE:
1721                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1722                 break;
1723         case KVM_REG_PPC_TM_VSCR:
1724                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1725                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1726                 else
1727                         r = - ENXIO;
1728                 break;
1729         case KVM_REG_PPC_TM_DSCR:
1730                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1731                 break;
1732         case KVM_REG_PPC_TM_TAR:
1733                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1734                 break;
1735 #endif
1736         case KVM_REG_PPC_ARCH_COMPAT:
1737                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1738                 break;
1739         case KVM_REG_PPC_DEC_EXPIRY:
1740                 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1741                         vcpu->arch.vcore->tb_offset;
1742                 break;
1743         default:
1744                 r = -EINVAL;
1745                 break;
1746         }
1747
1748         return r;
1749 }
1750
1751 /*
1752  * On POWER9, threads are independent and can be in different partitions.
1753  * Therefore we consider each thread to be a subcore.
1754  * There is a restriction that all threads have to be in the same
1755  * MMU mode (radix or HPT), unfortunately, but since we only support
1756  * HPT guests on a HPT host so far, that isn't an impediment yet.
1757  */
1758 static int threads_per_vcore(struct kvm *kvm)
1759 {
1760         if (kvm->arch.threads_indep)
1761                 return 1;
1762         return threads_per_subcore;
1763 }
1764
1765 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1766 {
1767         struct kvmppc_vcore *vcore;
1768
1769         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1770
1771         if (vcore == NULL)
1772                 return NULL;
1773
1774         spin_lock_init(&vcore->lock);
1775         spin_lock_init(&vcore->stoltb_lock);
1776         init_swait_queue_head(&vcore->wq);
1777         vcore->preempt_tb = TB_NIL;
1778         vcore->lpcr = kvm->arch.lpcr;
1779         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1780         vcore->kvm = kvm;
1781         INIT_LIST_HEAD(&vcore->preempt_list);
1782
1783         return vcore;
1784 }
1785
1786 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1787 static struct debugfs_timings_element {
1788         const char *name;
1789         size_t offset;
1790 } timings[] = {
1791         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1792         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1793         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1794         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1795         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1796 };
1797
1798 #define N_TIMINGS       (ARRAY_SIZE(timings))
1799
1800 struct debugfs_timings_state {
1801         struct kvm_vcpu *vcpu;
1802         unsigned int    buflen;
1803         char            buf[N_TIMINGS * 100];
1804 };
1805
1806 static int debugfs_timings_open(struct inode *inode, struct file *file)
1807 {
1808         struct kvm_vcpu *vcpu = inode->i_private;
1809         struct debugfs_timings_state *p;
1810
1811         p = kzalloc(sizeof(*p), GFP_KERNEL);
1812         if (!p)
1813                 return -ENOMEM;
1814
1815         kvm_get_kvm(vcpu->kvm);
1816         p->vcpu = vcpu;
1817         file->private_data = p;
1818
1819         return nonseekable_open(inode, file);
1820 }
1821
1822 static int debugfs_timings_release(struct inode *inode, struct file *file)
1823 {
1824         struct debugfs_timings_state *p = file->private_data;
1825
1826         kvm_put_kvm(p->vcpu->kvm);
1827         kfree(p);
1828         return 0;
1829 }
1830
1831 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1832                                     size_t len, loff_t *ppos)
1833 {
1834         struct debugfs_timings_state *p = file->private_data;
1835         struct kvm_vcpu *vcpu = p->vcpu;
1836         char *s, *buf_end;
1837         struct kvmhv_tb_accumulator tb;
1838         u64 count;
1839         loff_t pos;
1840         ssize_t n;
1841         int i, loops;
1842         bool ok;
1843
1844         if (!p->buflen) {
1845                 s = p->buf;
1846                 buf_end = s + sizeof(p->buf);
1847                 for (i = 0; i < N_TIMINGS; ++i) {
1848                         struct kvmhv_tb_accumulator *acc;
1849
1850                         acc = (struct kvmhv_tb_accumulator *)
1851                                 ((unsigned long)vcpu + timings[i].offset);
1852                         ok = false;
1853                         for (loops = 0; loops < 1000; ++loops) {
1854                                 count = acc->seqcount;
1855                                 if (!(count & 1)) {
1856                                         smp_rmb();
1857                                         tb = *acc;
1858                                         smp_rmb();
1859                                         if (count == acc->seqcount) {
1860                                                 ok = true;
1861                                                 break;
1862                                         }
1863                                 }
1864                                 udelay(1);
1865                         }
1866                         if (!ok)
1867                                 snprintf(s, buf_end - s, "%s: stuck\n",
1868                                         timings[i].name);
1869                         else
1870                                 snprintf(s, buf_end - s,
1871                                         "%s: %llu %llu %llu %llu\n",
1872                                         timings[i].name, count / 2,
1873                                         tb_to_ns(tb.tb_total),
1874                                         tb_to_ns(tb.tb_min),
1875                                         tb_to_ns(tb.tb_max));
1876                         s += strlen(s);
1877                 }
1878                 p->buflen = s - p->buf;
1879         }
1880
1881         pos = *ppos;
1882         if (pos >= p->buflen)
1883                 return 0;
1884         if (len > p->buflen - pos)
1885                 len = p->buflen - pos;
1886         n = copy_to_user(buf, p->buf + pos, len);
1887         if (n) {
1888                 if (n == len)
1889                         return -EFAULT;
1890                 len -= n;
1891         }
1892         *ppos = pos + len;
1893         return len;
1894 }
1895
1896 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1897                                      size_t len, loff_t *ppos)
1898 {
1899         return -EACCES;
1900 }
1901
1902 static const struct file_operations debugfs_timings_ops = {
1903         .owner   = THIS_MODULE,
1904         .open    = debugfs_timings_open,
1905         .release = debugfs_timings_release,
1906         .read    = debugfs_timings_read,
1907         .write   = debugfs_timings_write,
1908         .llseek  = generic_file_llseek,
1909 };
1910
1911 /* Create a debugfs directory for the vcpu */
1912 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1913 {
1914         char buf[16];
1915         struct kvm *kvm = vcpu->kvm;
1916
1917         snprintf(buf, sizeof(buf), "vcpu%u", id);
1918         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1919                 return;
1920         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1921         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1922                 return;
1923         vcpu->arch.debugfs_timings =
1924                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1925                                     vcpu, &debugfs_timings_ops);
1926 }
1927
1928 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930 {
1931 }
1932 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1933
1934 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1935                                                    unsigned int id)
1936 {
1937         struct kvm_vcpu *vcpu;
1938         int err;
1939         int core;
1940         struct kvmppc_vcore *vcore;
1941
1942         err = -ENOMEM;
1943         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1944         if (!vcpu)
1945                 goto out;
1946
1947         err = kvm_vcpu_init(vcpu, kvm, id);
1948         if (err)
1949                 goto free_vcpu;
1950
1951         vcpu->arch.shared = &vcpu->arch.shregs;
1952 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1953         /*
1954          * The shared struct is never shared on HV,
1955          * so we can always use host endianness
1956          */
1957 #ifdef __BIG_ENDIAN__
1958         vcpu->arch.shared_big_endian = true;
1959 #else
1960         vcpu->arch.shared_big_endian = false;
1961 #endif
1962 #endif
1963         vcpu->arch.mmcr[0] = MMCR0_FC;
1964         vcpu->arch.ctrl = CTRL_RUNLATCH;
1965         /* default to host PVR, since we can't spoof it */
1966         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1967         spin_lock_init(&vcpu->arch.vpa_update_lock);
1968         spin_lock_init(&vcpu->arch.tbacct_lock);
1969         vcpu->arch.busy_preempt = TB_NIL;
1970         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1971
1972         /*
1973          * Set the default HFSCR for the guest from the host value.
1974          * This value is only used on POWER9.
1975          * On POWER9 DD1, TM doesn't work, so we make sure to
1976          * prevent the guest from using it.
1977          * On POWER9, we want to virtualize the doorbell facility, so we
1978          * turn off the HFSCR bit, which causes those instructions to trap.
1979          */
1980         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1981         if (!cpu_has_feature(CPU_FTR_TM))
1982                 vcpu->arch.hfscr &= ~HFSCR_TM;
1983         if (cpu_has_feature(CPU_FTR_ARCH_300))
1984                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1985
1986         kvmppc_mmu_book3s_hv_init(vcpu);
1987
1988         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1989
1990         init_waitqueue_head(&vcpu->arch.cpu_run);
1991
1992         mutex_lock(&kvm->lock);
1993         vcore = NULL;
1994         err = -EINVAL;
1995         core = id / kvm->arch.smt_mode;
1996         if (core < KVM_MAX_VCORES) {
1997                 vcore = kvm->arch.vcores[core];
1998                 if (!vcore) {
1999                         err = -ENOMEM;
2000                         vcore = kvmppc_vcore_create(kvm, core);
2001                         kvm->arch.vcores[core] = vcore;
2002                         kvm->arch.online_vcores++;
2003                 }
2004         }
2005         mutex_unlock(&kvm->lock);
2006
2007         if (!vcore)
2008                 goto free_vcpu;
2009
2010         spin_lock(&vcore->lock);
2011         ++vcore->num_threads;
2012         spin_unlock(&vcore->lock);
2013         vcpu->arch.vcore = vcore;
2014         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2015         vcpu->arch.thread_cpu = -1;
2016         vcpu->arch.prev_cpu = -1;
2017
2018         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2019         kvmppc_sanity_check(vcpu);
2020
2021         debugfs_vcpu_init(vcpu, id);
2022
2023         return vcpu;
2024
2025 free_vcpu:
2026         kmem_cache_free(kvm_vcpu_cache, vcpu);
2027 out:
2028         return ERR_PTR(err);
2029 }
2030
2031 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2032                               unsigned long flags)
2033 {
2034         int err;
2035         int esmt = 0;
2036
2037         if (flags)
2038                 return -EINVAL;
2039         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2040                 return -EINVAL;
2041         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2042                 /*
2043                  * On POWER8 (or POWER7), the threading mode is "strict",
2044                  * so we pack smt_mode vcpus per vcore.
2045                  */
2046                 if (smt_mode > threads_per_subcore)
2047                         return -EINVAL;
2048         } else {
2049                 /*
2050                  * On POWER9, the threading mode is "loose",
2051                  * so each vcpu gets its own vcore.
2052                  */
2053                 esmt = smt_mode;
2054                 smt_mode = 1;
2055         }
2056         mutex_lock(&kvm->lock);
2057         err = -EBUSY;
2058         if (!kvm->arch.online_vcores) {
2059                 kvm->arch.smt_mode = smt_mode;
2060                 kvm->arch.emul_smt_mode = esmt;
2061                 err = 0;
2062         }
2063         mutex_unlock(&kvm->lock);
2064
2065         return err;
2066 }
2067
2068 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2069 {
2070         if (vpa->pinned_addr)
2071                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2072                                         vpa->dirty);
2073 }
2074
2075 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2076 {
2077         spin_lock(&vcpu->arch.vpa_update_lock);
2078         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2079         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2080         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2081         spin_unlock(&vcpu->arch.vpa_update_lock);
2082         kvm_vcpu_uninit(vcpu);
2083         kmem_cache_free(kvm_vcpu_cache, vcpu);
2084 }
2085
2086 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2087 {
2088         /* Indicate we want to get back into the guest */
2089         return 1;
2090 }
2091
2092 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2093 {
2094         unsigned long dec_nsec, now;
2095
2096         now = get_tb();
2097         if (now > vcpu->arch.dec_expires) {
2098                 /* decrementer has already gone negative */
2099                 kvmppc_core_queue_dec(vcpu);
2100                 kvmppc_core_prepare_to_enter(vcpu);
2101                 return;
2102         }
2103         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2104                    / tb_ticks_per_sec;
2105         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2106         vcpu->arch.timer_running = 1;
2107 }
2108
2109 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2110 {
2111         vcpu->arch.ceded = 0;
2112         if (vcpu->arch.timer_running) {
2113                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2114                 vcpu->arch.timer_running = 0;
2115         }
2116 }
2117
2118 extern int __kvmppc_vcore_entry(void);
2119
2120 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2121                                    struct kvm_vcpu *vcpu)
2122 {
2123         u64 now;
2124
2125         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2126                 return;
2127         spin_lock_irq(&vcpu->arch.tbacct_lock);
2128         now = mftb();
2129         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2130                 vcpu->arch.stolen_logged;
2131         vcpu->arch.busy_preempt = now;
2132         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2133         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2134         --vc->n_runnable;
2135         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2136 }
2137
2138 static int kvmppc_grab_hwthread(int cpu)
2139 {
2140         struct paca_struct *tpaca;
2141         long timeout = 10000;
2142
2143         tpaca = &paca[cpu];
2144
2145         /* Ensure the thread won't go into the kernel if it wakes */
2146         tpaca->kvm_hstate.kvm_vcpu = NULL;
2147         tpaca->kvm_hstate.kvm_vcore = NULL;
2148         tpaca->kvm_hstate.napping = 0;
2149         smp_wmb();
2150         tpaca->kvm_hstate.hwthread_req = 1;
2151
2152         /*
2153          * If the thread is already executing in the kernel (e.g. handling
2154          * a stray interrupt), wait for it to get back to nap mode.
2155          * The smp_mb() is to ensure that our setting of hwthread_req
2156          * is visible before we look at hwthread_state, so if this
2157          * races with the code at system_reset_pSeries and the thread
2158          * misses our setting of hwthread_req, we are sure to see its
2159          * setting of hwthread_state, and vice versa.
2160          */
2161         smp_mb();
2162         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2163                 if (--timeout <= 0) {
2164                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2165                         return -EBUSY;
2166                 }
2167                 udelay(1);
2168         }
2169         return 0;
2170 }
2171
2172 static void kvmppc_release_hwthread(int cpu)
2173 {
2174         struct paca_struct *tpaca;
2175
2176         tpaca = &paca[cpu];
2177         tpaca->kvm_hstate.hwthread_req = 0;
2178         tpaca->kvm_hstate.kvm_vcpu = NULL;
2179         tpaca->kvm_hstate.kvm_vcore = NULL;
2180         tpaca->kvm_hstate.kvm_split_mode = NULL;
2181 }
2182
2183 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2184 {
2185         int i;
2186
2187         cpu = cpu_first_thread_sibling(cpu);
2188         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2189         /*
2190          * Make sure setting of bit in need_tlb_flush precedes
2191          * testing of cpu_in_guest bits.  The matching barrier on
2192          * the other side is the first smp_mb() in kvmppc_run_core().
2193          */
2194         smp_mb();
2195         for (i = 0; i < threads_per_core; ++i)
2196                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2197                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2198 }
2199
2200 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2201 {
2202         struct kvm *kvm = vcpu->kvm;
2203
2204         /*
2205          * With radix, the guest can do TLB invalidations itself,
2206          * and it could choose to use the local form (tlbiel) if
2207          * it is invalidating a translation that has only ever been
2208          * used on one vcpu.  However, that doesn't mean it has
2209          * only ever been used on one physical cpu, since vcpus
2210          * can move around between pcpus.  To cope with this, when
2211          * a vcpu moves from one pcpu to another, we need to tell
2212          * any vcpus running on the same core as this vcpu previously
2213          * ran to flush the TLB.  The TLB is shared between threads,
2214          * so we use a single bit in .need_tlb_flush for all 4 threads.
2215          */
2216         if (vcpu->arch.prev_cpu != pcpu) {
2217                 if (vcpu->arch.prev_cpu >= 0 &&
2218                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2219                     cpu_first_thread_sibling(pcpu))
2220                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2221                 vcpu->arch.prev_cpu = pcpu;
2222         }
2223 }
2224
2225 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2226 {
2227         int cpu;
2228         struct paca_struct *tpaca;
2229         struct kvm *kvm = vc->kvm;
2230
2231         cpu = vc->pcpu;
2232         if (vcpu) {
2233                 if (vcpu->arch.timer_running) {
2234                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2235                         vcpu->arch.timer_running = 0;
2236                 }
2237                 cpu += vcpu->arch.ptid;
2238                 vcpu->cpu = vc->pcpu;
2239                 vcpu->arch.thread_cpu = cpu;
2240                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2241         }
2242         tpaca = &paca[cpu];
2243         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2244         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2245         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2246         smp_wmb();
2247         tpaca->kvm_hstate.kvm_vcore = vc;
2248         if (cpu != smp_processor_id())
2249                 kvmppc_ipi_thread(cpu);
2250 }
2251
2252 static void kvmppc_wait_for_nap(int n_threads)
2253 {
2254         int cpu = smp_processor_id();
2255         int i, loops;
2256
2257         if (n_threads <= 1)
2258                 return;
2259         for (loops = 0; loops < 1000000; ++loops) {
2260                 /*
2261                  * Check if all threads are finished.
2262                  * We set the vcore pointer when starting a thread
2263                  * and the thread clears it when finished, so we look
2264                  * for any threads that still have a non-NULL vcore ptr.
2265                  */
2266                 for (i = 1; i < n_threads; ++i)
2267                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2268                                 break;
2269                 if (i == n_threads) {
2270                         HMT_medium();
2271                         return;
2272                 }
2273                 HMT_low();
2274         }
2275         HMT_medium();
2276         for (i = 1; i < n_threads; ++i)
2277                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2278                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2279 }
2280
2281 /*
2282  * Check that we are on thread 0 and that any other threads in
2283  * this core are off-line.  Then grab the threads so they can't
2284  * enter the kernel.
2285  */
2286 static int on_primary_thread(void)
2287 {
2288         int cpu = smp_processor_id();
2289         int thr;
2290
2291         /* Are we on a primary subcore? */
2292         if (cpu_thread_in_subcore(cpu))
2293                 return 0;
2294
2295         thr = 0;
2296         while (++thr < threads_per_subcore)
2297                 if (cpu_online(cpu + thr))
2298                         return 0;
2299
2300         /* Grab all hw threads so they can't go into the kernel */
2301         for (thr = 1; thr < threads_per_subcore; ++thr) {
2302                 if (kvmppc_grab_hwthread(cpu + thr)) {
2303                         /* Couldn't grab one; let the others go */
2304                         do {
2305                                 kvmppc_release_hwthread(cpu + thr);
2306                         } while (--thr > 0);
2307                         return 0;
2308                 }
2309         }
2310         return 1;
2311 }
2312
2313 /*
2314  * A list of virtual cores for each physical CPU.
2315  * These are vcores that could run but their runner VCPU tasks are
2316  * (or may be) preempted.
2317  */
2318 struct preempted_vcore_list {
2319         struct list_head        list;
2320         spinlock_t              lock;
2321 };
2322
2323 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2324
2325 static void init_vcore_lists(void)
2326 {
2327         int cpu;
2328
2329         for_each_possible_cpu(cpu) {
2330                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2331                 spin_lock_init(&lp->lock);
2332                 INIT_LIST_HEAD(&lp->list);
2333         }
2334 }
2335
2336 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2337 {
2338         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2339
2340         vc->vcore_state = VCORE_PREEMPT;
2341         vc->pcpu = smp_processor_id();
2342         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2343                 spin_lock(&lp->lock);
2344                 list_add_tail(&vc->preempt_list, &lp->list);
2345                 spin_unlock(&lp->lock);
2346         }
2347
2348         /* Start accumulating stolen time */
2349         kvmppc_core_start_stolen(vc);
2350 }
2351
2352 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2353 {
2354         struct preempted_vcore_list *lp;
2355
2356         kvmppc_core_end_stolen(vc);
2357         if (!list_empty(&vc->preempt_list)) {
2358                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2359                 spin_lock(&lp->lock);
2360                 list_del_init(&vc->preempt_list);
2361                 spin_unlock(&lp->lock);
2362         }
2363         vc->vcore_state = VCORE_INACTIVE;
2364 }
2365
2366 /*
2367  * This stores information about the virtual cores currently
2368  * assigned to a physical core.
2369  */
2370 struct core_info {
2371         int             n_subcores;
2372         int             max_subcore_threads;
2373         int             total_threads;
2374         int             subcore_threads[MAX_SUBCORES];
2375         struct kvmppc_vcore *vc[MAX_SUBCORES];
2376 };
2377
2378 /*
2379  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2380  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2381  */
2382 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2383
2384 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2385 {
2386         memset(cip, 0, sizeof(*cip));
2387         cip->n_subcores = 1;
2388         cip->max_subcore_threads = vc->num_threads;
2389         cip->total_threads = vc->num_threads;
2390         cip->subcore_threads[0] = vc->num_threads;
2391         cip->vc[0] = vc;
2392 }
2393
2394 static bool subcore_config_ok(int n_subcores, int n_threads)
2395 {
2396         /*
2397          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2398          * split-core mode, with one thread per subcore.
2399          */
2400         if (cpu_has_feature(CPU_FTR_ARCH_300))
2401                 return n_subcores <= 4 && n_threads == 1;
2402
2403         /* On POWER8, can only dynamically split if unsplit to begin with */
2404         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2405                 return false;
2406         if (n_subcores > MAX_SUBCORES)
2407                 return false;
2408         if (n_subcores > 1) {
2409                 if (!(dynamic_mt_modes & 2))
2410                         n_subcores = 4;
2411                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2412                         return false;
2413         }
2414
2415         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2416 }
2417
2418 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2419 {
2420         vc->entry_exit_map = 0;
2421         vc->in_guest = 0;
2422         vc->napping_threads = 0;
2423         vc->conferring_threads = 0;
2424 }
2425
2426 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2427 {
2428         int n_threads = vc->num_threads;
2429         int sub;
2430
2431         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2432                 return false;
2433
2434         /* Some POWER9 chips require all threads to be in the same MMU mode */
2435         if (no_mixing_hpt_and_radix &&
2436             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2437                 return false;
2438
2439         if (n_threads < cip->max_subcore_threads)
2440                 n_threads = cip->max_subcore_threads;
2441         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2442                 return false;
2443         cip->max_subcore_threads = n_threads;
2444
2445         sub = cip->n_subcores;
2446         ++cip->n_subcores;
2447         cip->total_threads += vc->num_threads;
2448         cip->subcore_threads[sub] = vc->num_threads;
2449         cip->vc[sub] = vc;
2450         init_vcore_to_run(vc);
2451         list_del_init(&vc->preempt_list);
2452
2453         return true;
2454 }
2455
2456 /*
2457  * Work out whether it is possible to piggyback the execution of
2458  * vcore *pvc onto the execution of the other vcores described in *cip.
2459  */
2460 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2461                           int target_threads)
2462 {
2463         if (cip->total_threads + pvc->num_threads > target_threads)
2464                 return false;
2465
2466         return can_dynamic_split(pvc, cip);
2467 }
2468
2469 static void prepare_threads(struct kvmppc_vcore *vc)
2470 {
2471         int i;
2472         struct kvm_vcpu *vcpu;
2473
2474         for_each_runnable_thread(i, vcpu, vc) {
2475                 if (signal_pending(vcpu->arch.run_task))
2476                         vcpu->arch.ret = -EINTR;
2477                 else if (vcpu->arch.vpa.update_pending ||
2478                          vcpu->arch.slb_shadow.update_pending ||
2479                          vcpu->arch.dtl.update_pending)
2480                         vcpu->arch.ret = RESUME_GUEST;
2481                 else
2482                         continue;
2483                 kvmppc_remove_runnable(vc, vcpu);
2484                 wake_up(&vcpu->arch.cpu_run);
2485         }
2486 }
2487
2488 static void collect_piggybacks(struct core_info *cip, int target_threads)
2489 {
2490         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2491         struct kvmppc_vcore *pvc, *vcnext;
2492
2493         spin_lock(&lp->lock);
2494         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2495                 if (!spin_trylock(&pvc->lock))
2496                         continue;
2497                 prepare_threads(pvc);
2498                 if (!pvc->n_runnable) {
2499                         list_del_init(&pvc->preempt_list);
2500                         if (pvc->runner == NULL) {
2501                                 pvc->vcore_state = VCORE_INACTIVE;
2502                                 kvmppc_core_end_stolen(pvc);
2503                         }
2504                         spin_unlock(&pvc->lock);
2505                         continue;
2506                 }
2507                 if (!can_piggyback(pvc, cip, target_threads)) {
2508                         spin_unlock(&pvc->lock);
2509                         continue;
2510                 }
2511                 kvmppc_core_end_stolen(pvc);
2512                 pvc->vcore_state = VCORE_PIGGYBACK;
2513                 if (cip->total_threads >= target_threads)
2514                         break;
2515         }
2516         spin_unlock(&lp->lock);
2517 }
2518
2519 static bool recheck_signals(struct core_info *cip)
2520 {
2521         int sub, i;
2522         struct kvm_vcpu *vcpu;
2523
2524         for (sub = 0; sub < cip->n_subcores; ++sub)
2525                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2526                         if (signal_pending(vcpu->arch.run_task))
2527                                 return true;
2528         return false;
2529 }
2530
2531 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2532 {
2533         int still_running = 0, i;
2534         u64 now;
2535         long ret;
2536         struct kvm_vcpu *vcpu;
2537
2538         spin_lock(&vc->lock);
2539         now = get_tb();
2540         for_each_runnable_thread(i, vcpu, vc) {
2541                 /* cancel pending dec exception if dec is positive */
2542                 if (now < vcpu->arch.dec_expires &&
2543                     kvmppc_core_pending_dec(vcpu))
2544                         kvmppc_core_dequeue_dec(vcpu);
2545
2546                 trace_kvm_guest_exit(vcpu);
2547
2548                 ret = RESUME_GUEST;
2549                 if (vcpu->arch.trap)
2550                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2551                                                     vcpu->arch.run_task);
2552
2553                 vcpu->arch.ret = ret;
2554                 vcpu->arch.trap = 0;
2555
2556                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2557                         if (vcpu->arch.pending_exceptions)
2558                                 kvmppc_core_prepare_to_enter(vcpu);
2559                         if (vcpu->arch.ceded)
2560                                 kvmppc_set_timer(vcpu);
2561                         else
2562                                 ++still_running;
2563                 } else {
2564                         kvmppc_remove_runnable(vc, vcpu);
2565                         wake_up(&vcpu->arch.cpu_run);
2566                 }
2567         }
2568         if (!is_master) {
2569                 if (still_running > 0) {
2570                         kvmppc_vcore_preempt(vc);
2571                 } else if (vc->runner) {
2572                         vc->vcore_state = VCORE_PREEMPT;
2573                         kvmppc_core_start_stolen(vc);
2574                 } else {
2575                         vc->vcore_state = VCORE_INACTIVE;
2576                 }
2577                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2578                         /* make sure there's a candidate runner awake */
2579                         i = -1;
2580                         vcpu = next_runnable_thread(vc, &i);
2581                         wake_up(&vcpu->arch.cpu_run);
2582                 }
2583         }
2584         spin_unlock(&vc->lock);
2585 }
2586
2587 /*
2588  * Clear core from the list of active host cores as we are about to
2589  * enter the guest. Only do this if it is the primary thread of the
2590  * core (not if a subcore) that is entering the guest.
2591  */
2592 static inline int kvmppc_clear_host_core(unsigned int cpu)
2593 {
2594         int core;
2595
2596         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2597                 return 0;
2598         /*
2599          * Memory barrier can be omitted here as we will do a smp_wmb()
2600          * later in kvmppc_start_thread and we need ensure that state is
2601          * visible to other CPUs only after we enter guest.
2602          */
2603         core = cpu >> threads_shift;
2604         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2605         return 0;
2606 }
2607
2608 /*
2609  * Advertise this core as an active host core since we exited the guest
2610  * Only need to do this if it is the primary thread of the core that is
2611  * exiting.
2612  */
2613 static inline int kvmppc_set_host_core(unsigned int cpu)
2614 {
2615         int core;
2616
2617         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2618                 return 0;
2619
2620         /*
2621          * Memory barrier can be omitted here because we do a spin_unlock
2622          * immediately after this which provides the memory barrier.
2623          */
2624         core = cpu >> threads_shift;
2625         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2626         return 0;
2627 }
2628
2629 static void set_irq_happened(int trap)
2630 {
2631         switch (trap) {
2632         case BOOK3S_INTERRUPT_EXTERNAL:
2633                 local_paca->irq_happened |= PACA_IRQ_EE;
2634                 break;
2635         case BOOK3S_INTERRUPT_H_DOORBELL:
2636                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2637                 break;
2638         case BOOK3S_INTERRUPT_HMI:
2639                 local_paca->irq_happened |= PACA_IRQ_HMI;
2640                 break;
2641         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2642                 replay_system_reset();
2643                 break;
2644         }
2645 }
2646
2647 /*
2648  * Run a set of guest threads on a physical core.
2649  * Called with vc->lock held.
2650  */
2651 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2652 {
2653         struct kvm_vcpu *vcpu;
2654         int i;
2655         int srcu_idx;
2656         struct core_info core_info;
2657         struct kvmppc_vcore *pvc;
2658         struct kvm_split_mode split_info, *sip;
2659         int split, subcore_size, active;
2660         int sub;
2661         bool thr0_done;
2662         unsigned long cmd_bit, stat_bit;
2663         int pcpu, thr;
2664         int target_threads;
2665         int controlled_threads;
2666         int trap;
2667         bool is_power8;
2668         bool hpt_on_radix;
2669
2670         /*
2671          * Remove from the list any threads that have a signal pending
2672          * or need a VPA update done
2673          */
2674         prepare_threads(vc);
2675
2676         /* if the runner is no longer runnable, let the caller pick a new one */
2677         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2678                 return;
2679
2680         /*
2681          * Initialize *vc.
2682          */
2683         init_vcore_to_run(vc);
2684         vc->preempt_tb = TB_NIL;
2685
2686         /*
2687          * Number of threads that we will be controlling: the same as
2688          * the number of threads per subcore, except on POWER9,
2689          * where it's 1 because the threads are (mostly) independent.
2690          */
2691         controlled_threads = threads_per_vcore(vc->kvm);
2692
2693         /*
2694          * Make sure we are running on primary threads, and that secondary
2695          * threads are offline.  Also check if the number of threads in this
2696          * guest are greater than the current system threads per guest.
2697          * On POWER9, we need to be not in independent-threads mode if
2698          * this is a HPT guest on a radix host machine where the
2699          * CPU threads may not be in different MMU modes.
2700          */
2701         hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2702                 !kvm_is_radix(vc->kvm);
2703         if (((controlled_threads > 1) &&
2704              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2705             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2706                 for_each_runnable_thread(i, vcpu, vc) {
2707                         vcpu->arch.ret = -EBUSY;
2708                         kvmppc_remove_runnable(vc, vcpu);
2709                         wake_up(&vcpu->arch.cpu_run);
2710                 }
2711                 goto out;
2712         }
2713
2714         /*
2715          * See if we could run any other vcores on the physical core
2716          * along with this one.
2717          */
2718         init_core_info(&core_info, vc);
2719         pcpu = smp_processor_id();
2720         target_threads = controlled_threads;
2721         if (target_smt_mode && target_smt_mode < target_threads)
2722                 target_threads = target_smt_mode;
2723         if (vc->num_threads < target_threads)
2724                 collect_piggybacks(&core_info, target_threads);
2725
2726         /*
2727          * On radix, arrange for TLB flushing if necessary.
2728          * This has to be done before disabling interrupts since
2729          * it uses smp_call_function().
2730          */
2731         pcpu = smp_processor_id();
2732         if (kvm_is_radix(vc->kvm)) {
2733                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2734                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2735                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2736         }
2737
2738         /*
2739          * Hard-disable interrupts, and check resched flag and signals.
2740          * If we need to reschedule or deliver a signal, clean up
2741          * and return without going into the guest(s).
2742          * If the mmu_ready flag has been cleared, don't go into the
2743          * guest because that means a HPT resize operation is in progress.
2744          */
2745         local_irq_disable();
2746         hard_irq_disable();
2747         if (lazy_irq_pending() || need_resched() ||
2748             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2749                 local_irq_enable();
2750                 vc->vcore_state = VCORE_INACTIVE;
2751                 /* Unlock all except the primary vcore */
2752                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2753                         pvc = core_info.vc[sub];
2754                         /* Put back on to the preempted vcores list */
2755                         kvmppc_vcore_preempt(pvc);
2756                         spin_unlock(&pvc->lock);
2757                 }
2758                 for (i = 0; i < controlled_threads; ++i)
2759                         kvmppc_release_hwthread(pcpu + i);
2760                 return;
2761         }
2762
2763         kvmppc_clear_host_core(pcpu);
2764
2765         /* Decide on micro-threading (split-core) mode */
2766         subcore_size = threads_per_subcore;
2767         cmd_bit = stat_bit = 0;
2768         split = core_info.n_subcores;
2769         sip = NULL;
2770         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2771                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2772
2773         if (split > 1 || hpt_on_radix) {
2774                 sip = &split_info;
2775                 memset(&split_info, 0, sizeof(split_info));
2776                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2777                         split_info.vc[sub] = core_info.vc[sub];
2778
2779                 if (is_power8) {
2780                         if (split == 2 && (dynamic_mt_modes & 2)) {
2781                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2782                                 stat_bit = HID0_POWER8_2LPARMODE;
2783                         } else {
2784                                 split = 4;
2785                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2786                                 stat_bit = HID0_POWER8_4LPARMODE;
2787                         }
2788                         subcore_size = MAX_SMT_THREADS / split;
2789                         split_info.rpr = mfspr(SPRN_RPR);
2790                         split_info.pmmar = mfspr(SPRN_PMMAR);
2791                         split_info.ldbar = mfspr(SPRN_LDBAR);
2792                         split_info.subcore_size = subcore_size;
2793                 } else {
2794                         split_info.subcore_size = 1;
2795                         if (hpt_on_radix) {
2796                                 /* Use the split_info for LPCR/LPIDR changes */
2797                                 split_info.lpcr_req = vc->lpcr;
2798                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2799                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2800                                 split_info.do_set = 1;
2801                         }
2802                 }
2803
2804                 /* order writes to split_info before kvm_split_mode pointer */
2805                 smp_wmb();
2806         }
2807
2808         for (thr = 0; thr < controlled_threads; ++thr) {
2809                 paca[pcpu + thr].kvm_hstate.tid = thr;
2810                 paca[pcpu + thr].kvm_hstate.napping = 0;
2811                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2812         }
2813
2814         /* Initiate micro-threading (split-core) on POWER8 if required */
2815         if (cmd_bit) {
2816                 unsigned long hid0 = mfspr(SPRN_HID0);
2817
2818                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2819                 mb();
2820                 mtspr(SPRN_HID0, hid0);
2821                 isync();
2822                 for (;;) {
2823                         hid0 = mfspr(SPRN_HID0);
2824                         if (hid0 & stat_bit)
2825                                 break;
2826                         cpu_relax();
2827                 }
2828         }
2829
2830         /* Start all the threads */
2831         active = 0;
2832         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2833                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2834                 thr0_done = false;
2835                 active |= 1 << thr;
2836                 pvc = core_info.vc[sub];
2837                 pvc->pcpu = pcpu + thr;
2838                 for_each_runnable_thread(i, vcpu, pvc) {
2839                         kvmppc_start_thread(vcpu, pvc);
2840                         kvmppc_create_dtl_entry(vcpu, pvc);
2841                         trace_kvm_guest_enter(vcpu);
2842                         if (!vcpu->arch.ptid)
2843                                 thr0_done = true;
2844                         active |= 1 << (thr + vcpu->arch.ptid);
2845                 }
2846                 /*
2847                  * We need to start the first thread of each subcore
2848                  * even if it doesn't have a vcpu.
2849                  */
2850                 if (!thr0_done)
2851                         kvmppc_start_thread(NULL, pvc);
2852         }
2853
2854         /*
2855          * Ensure that split_info.do_nap is set after setting
2856          * the vcore pointer in the PACA of the secondaries.
2857          */
2858         smp_mb();
2859
2860         /*
2861          * When doing micro-threading, poke the inactive threads as well.
2862          * This gets them to the nap instruction after kvm_do_nap,
2863          * which reduces the time taken to unsplit later.
2864          * For POWER9 HPT guest on radix host, we need all the secondary
2865          * threads woken up so they can do the LPCR/LPIDR change.
2866          */
2867         if (cmd_bit || hpt_on_radix) {
2868                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2869                 for (thr = 1; thr < threads_per_subcore; ++thr)
2870                         if (!(active & (1 << thr)))
2871                                 kvmppc_ipi_thread(pcpu + thr);
2872         }
2873
2874         vc->vcore_state = VCORE_RUNNING;
2875         preempt_disable();
2876
2877         trace_kvmppc_run_core(vc, 0);
2878
2879         for (sub = 0; sub < core_info.n_subcores; ++sub)
2880                 spin_unlock(&core_info.vc[sub]->lock);
2881
2882         /*
2883          * Interrupts will be enabled once we get into the guest,
2884          * so tell lockdep that we're about to enable interrupts.
2885          */
2886         trace_hardirqs_on();
2887
2888         guest_enter();
2889
2890         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2891
2892         trap = __kvmppc_vcore_entry();
2893
2894         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2895
2896         guest_exit();
2897
2898         trace_hardirqs_off();
2899         set_irq_happened(trap);
2900
2901         spin_lock(&vc->lock);
2902         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2903         vc->vcore_state = VCORE_EXITING;
2904
2905         /* wait for secondary threads to finish writing their state to memory */
2906         kvmppc_wait_for_nap(controlled_threads);
2907
2908         /* Return to whole-core mode if we split the core earlier */
2909         if (cmd_bit) {
2910                 unsigned long hid0 = mfspr(SPRN_HID0);
2911                 unsigned long loops = 0;
2912
2913                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2914                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2915                 mb();
2916                 mtspr(SPRN_HID0, hid0);
2917                 isync();
2918                 for (;;) {
2919                         hid0 = mfspr(SPRN_HID0);
2920                         if (!(hid0 & stat_bit))
2921                                 break;
2922                         cpu_relax();
2923                         ++loops;
2924                 }
2925         } else if (hpt_on_radix) {
2926                 /* Wait for all threads to have seen final sync */
2927                 for (thr = 1; thr < controlled_threads; ++thr) {
2928                         while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2929                                 HMT_low();
2930                                 barrier();
2931                         }
2932                         HMT_medium();
2933                 }
2934         }
2935         split_info.do_nap = 0;
2936
2937         kvmppc_set_host_core(pcpu);
2938
2939         local_irq_enable();
2940
2941         /* Let secondaries go back to the offline loop */
2942         for (i = 0; i < controlled_threads; ++i) {
2943                 kvmppc_release_hwthread(pcpu + i);
2944                 if (sip && sip->napped[i])
2945                         kvmppc_ipi_thread(pcpu + i);
2946                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2947         }
2948
2949         spin_unlock(&vc->lock);
2950
2951         /* make sure updates to secondary vcpu structs are visible now */
2952         smp_mb();
2953
2954         preempt_enable();
2955
2956         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2957                 pvc = core_info.vc[sub];
2958                 post_guest_process(pvc, pvc == vc);
2959         }
2960
2961         spin_lock(&vc->lock);
2962
2963  out:
2964         vc->vcore_state = VCORE_INACTIVE;
2965         trace_kvmppc_run_core(vc, 1);
2966 }
2967
2968 /*
2969  * Wait for some other vcpu thread to execute us, and
2970  * wake us up when we need to handle something in the host.
2971  */
2972 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2973                                  struct kvm_vcpu *vcpu, int wait_state)
2974 {
2975         DEFINE_WAIT(wait);
2976
2977         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2978         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2979                 spin_unlock(&vc->lock);
2980                 schedule();
2981                 spin_lock(&vc->lock);
2982         }
2983         finish_wait(&vcpu->arch.cpu_run, &wait);
2984 }
2985
2986 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2987 {
2988         /* 10us base */
2989         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2990                 vc->halt_poll_ns = 10000;
2991         else
2992                 vc->halt_poll_ns *= halt_poll_ns_grow;
2993 }
2994
2995 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2996 {
2997         if (halt_poll_ns_shrink == 0)
2998                 vc->halt_poll_ns = 0;
2999         else
3000                 vc->halt_poll_ns /= halt_poll_ns_shrink;
3001 }
3002
3003 #ifdef CONFIG_KVM_XICS
3004 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3005 {
3006         if (!xive_enabled())
3007                 return false;
3008         return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3009                 vcpu->arch.xive_saved_state.cppr;
3010 }
3011 #else
3012 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3013 {
3014         return false;
3015 }
3016 #endif /* CONFIG_KVM_XICS */
3017
3018 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3019 {
3020         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3021             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3022                 return true;
3023
3024         return false;
3025 }
3026
3027 /*
3028  * Check to see if any of the runnable vcpus on the vcore have pending
3029  * exceptions or are no longer ceded
3030  */
3031 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3032 {
3033         struct kvm_vcpu *vcpu;
3034         int i;
3035
3036         for_each_runnable_thread(i, vcpu, vc) {
3037                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3038                         return 1;
3039         }
3040
3041         return 0;
3042 }
3043
3044 /*
3045  * All the vcpus in this vcore are idle, so wait for a decrementer
3046  * or external interrupt to one of the vcpus.  vc->lock is held.
3047  */
3048 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3049 {
3050         ktime_t cur, start_poll, start_wait;
3051         int do_sleep = 1;
3052         u64 block_ns;
3053         DECLARE_SWAITQUEUE(wait);
3054
3055         /* Poll for pending exceptions and ceded state */
3056         cur = start_poll = ktime_get();
3057         if (vc->halt_poll_ns) {
3058                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3059                 ++vc->runner->stat.halt_attempted_poll;
3060
3061                 vc->vcore_state = VCORE_POLLING;
3062                 spin_unlock(&vc->lock);
3063
3064                 do {
3065                         if (kvmppc_vcore_check_block(vc)) {
3066                                 do_sleep = 0;
3067                                 break;
3068                         }
3069                         cur = ktime_get();
3070                 } while (single_task_running() && ktime_before(cur, stop));
3071
3072                 spin_lock(&vc->lock);
3073                 vc->vcore_state = VCORE_INACTIVE;
3074
3075                 if (!do_sleep) {
3076                         ++vc->runner->stat.halt_successful_poll;
3077                         goto out;
3078                 }
3079         }
3080
3081         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3082
3083         if (kvmppc_vcore_check_block(vc)) {
3084                 finish_swait(&vc->wq, &wait);
3085                 do_sleep = 0;
3086                 /* If we polled, count this as a successful poll */
3087                 if (vc->halt_poll_ns)
3088                         ++vc->runner->stat.halt_successful_poll;
3089                 goto out;
3090         }
3091
3092         start_wait = ktime_get();
3093
3094         vc->vcore_state = VCORE_SLEEPING;
3095         trace_kvmppc_vcore_blocked(vc, 0);
3096         spin_unlock(&vc->lock);
3097         schedule();
3098         finish_swait(&vc->wq, &wait);
3099         spin_lock(&vc->lock);
3100         vc->vcore_state = VCORE_INACTIVE;
3101         trace_kvmppc_vcore_blocked(vc, 1);
3102         ++vc->runner->stat.halt_successful_wait;
3103
3104         cur = ktime_get();
3105
3106 out:
3107         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3108
3109         /* Attribute wait time */
3110         if (do_sleep) {
3111                 vc->runner->stat.halt_wait_ns +=
3112                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3113                 /* Attribute failed poll time */
3114                 if (vc->halt_poll_ns)
3115                         vc->runner->stat.halt_poll_fail_ns +=
3116                                 ktime_to_ns(start_wait) -
3117                                 ktime_to_ns(start_poll);
3118         } else {
3119                 /* Attribute successful poll time */
3120                 if (vc->halt_poll_ns)
3121                         vc->runner->stat.halt_poll_success_ns +=
3122                                 ktime_to_ns(cur) -
3123                                 ktime_to_ns(start_poll);
3124         }
3125
3126         /* Adjust poll time */
3127         if (halt_poll_ns) {
3128                 if (block_ns <= vc->halt_poll_ns)
3129                         ;
3130                 /* We slept and blocked for longer than the max halt time */
3131                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3132                         shrink_halt_poll_ns(vc);
3133                 /* We slept and our poll time is too small */
3134                 else if (vc->halt_poll_ns < halt_poll_ns &&
3135                                 block_ns < halt_poll_ns)
3136                         grow_halt_poll_ns(vc);
3137                 if (vc->halt_poll_ns > halt_poll_ns)
3138                         vc->halt_poll_ns = halt_poll_ns;
3139         } else
3140                 vc->halt_poll_ns = 0;
3141
3142         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3143 }
3144
3145 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3146 {
3147         int r = 0;
3148         struct kvm *kvm = vcpu->kvm;
3149
3150         mutex_lock(&kvm->lock);
3151         if (!kvm->arch.mmu_ready) {
3152                 if (!kvm_is_radix(kvm))
3153                         r = kvmppc_hv_setup_htab_rma(vcpu);
3154                 if (!r) {
3155                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3156                                 kvmppc_setup_partition_table(kvm);
3157                         kvm->arch.mmu_ready = 1;
3158                 }
3159         }
3160         mutex_unlock(&kvm->lock);
3161         return r;
3162 }
3163
3164 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3165 {
3166         int n_ceded, i, r;
3167         struct kvmppc_vcore *vc;
3168         struct kvm_vcpu *v;
3169
3170         trace_kvmppc_run_vcpu_enter(vcpu);
3171
3172         kvm_run->exit_reason = 0;
3173         vcpu->arch.ret = RESUME_GUEST;
3174         vcpu->arch.trap = 0;
3175         kvmppc_update_vpas(vcpu);
3176
3177         /*
3178          * Synchronize with other threads in this virtual core
3179          */
3180         vc = vcpu->arch.vcore;
3181         spin_lock(&vc->lock);
3182         vcpu->arch.ceded = 0;
3183         vcpu->arch.run_task = current;
3184         vcpu->arch.kvm_run = kvm_run;
3185         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3186         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3187         vcpu->arch.busy_preempt = TB_NIL;
3188         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3189         ++vc->n_runnable;
3190
3191         /*
3192          * This happens the first time this is called for a vcpu.
3193          * If the vcore is already running, we may be able to start
3194          * this thread straight away and have it join in.
3195          */
3196         if (!signal_pending(current)) {
3197                 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3198                      vc->vcore_state == VCORE_RUNNING) &&
3199                            !VCORE_IS_EXITING(vc)) {
3200                         kvmppc_create_dtl_entry(vcpu, vc);
3201                         kvmppc_start_thread(vcpu, vc);
3202                         trace_kvm_guest_enter(vcpu);
3203                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3204                         swake_up(&vc->wq);
3205                 }
3206
3207         }
3208
3209         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3210                !signal_pending(current)) {
3211                 /* See if the MMU is ready to go */
3212                 if (!vcpu->kvm->arch.mmu_ready) {
3213                         spin_unlock(&vc->lock);
3214                         r = kvmhv_setup_mmu(vcpu);
3215                         spin_lock(&vc->lock);
3216                         if (r) {
3217                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3218                                 kvm_run->fail_entry.
3219                                         hardware_entry_failure_reason = 0;
3220                                 vcpu->arch.ret = r;
3221                                 break;
3222                         }
3223                 }
3224
3225                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3226                         kvmppc_vcore_end_preempt(vc);
3227
3228                 if (vc->vcore_state != VCORE_INACTIVE) {
3229                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3230                         continue;
3231                 }
3232                 for_each_runnable_thread(i, v, vc) {
3233                         kvmppc_core_prepare_to_enter(v);
3234                         if (signal_pending(v->arch.run_task)) {
3235                                 kvmppc_remove_runnable(vc, v);
3236                                 v->stat.signal_exits++;
3237                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3238                                 v->arch.ret = -EINTR;
3239                                 wake_up(&v->arch.cpu_run);
3240                         }
3241                 }
3242                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3243                         break;
3244                 n_ceded = 0;
3245                 for_each_runnable_thread(i, v, vc) {
3246                         if (!kvmppc_vcpu_woken(v))
3247                                 n_ceded += v->arch.ceded;
3248                         else
3249                                 v->arch.ceded = 0;
3250                 }
3251                 vc->runner = vcpu;
3252                 if (n_ceded == vc->n_runnable) {
3253                         kvmppc_vcore_blocked(vc);
3254                 } else if (need_resched()) {
3255                         kvmppc_vcore_preempt(vc);
3256                         /* Let something else run */
3257                         cond_resched_lock(&vc->lock);
3258                         if (vc->vcore_state == VCORE_PREEMPT)
3259                                 kvmppc_vcore_end_preempt(vc);
3260                 } else {
3261                         kvmppc_run_core(vc);
3262                 }
3263                 vc->runner = NULL;
3264         }
3265
3266         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3267                (vc->vcore_state == VCORE_RUNNING ||
3268                 vc->vcore_state == VCORE_EXITING ||
3269                 vc->vcore_state == VCORE_PIGGYBACK))
3270                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3271
3272         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3273                 kvmppc_vcore_end_preempt(vc);
3274
3275         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3276                 kvmppc_remove_runnable(vc, vcpu);
3277                 vcpu->stat.signal_exits++;
3278                 kvm_run->exit_reason = KVM_EXIT_INTR;
3279                 vcpu->arch.ret = -EINTR;
3280         }
3281
3282         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3283                 /* Wake up some vcpu to run the core */
3284                 i = -1;
3285                 v = next_runnable_thread(vc, &i);
3286                 wake_up(&v->arch.cpu_run);
3287         }
3288
3289         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3290         spin_unlock(&vc->lock);
3291         return vcpu->arch.ret;
3292 }
3293
3294 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3295 {
3296         int r;
3297         int srcu_idx;
3298         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3299         unsigned long user_tar = 0;
3300         unsigned int user_vrsave;
3301         struct kvm *kvm;
3302
3303         if (!vcpu->arch.sane) {
3304                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3305                 return -EINVAL;
3306         }
3307
3308         /*
3309          * Don't allow entry with a suspended transaction, because
3310          * the guest entry/exit code will lose it.
3311          * If the guest has TM enabled, save away their TM-related SPRs
3312          * (they will get restored by the TM unavailable interrupt).
3313          */
3314 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3315         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3316             (current->thread.regs->msr & MSR_TM)) {
3317                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3318                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3319                         run->fail_entry.hardware_entry_failure_reason = 0;
3320                         return -EINVAL;
3321                 }
3322                 /* Enable TM so we can read the TM SPRs */
3323                 mtmsr(mfmsr() | MSR_TM);
3324                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3325                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3326                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3327                 current->thread.regs->msr &= ~MSR_TM;
3328         }
3329 #endif
3330
3331         kvmppc_core_prepare_to_enter(vcpu);
3332
3333         /* No need to go into the guest when all we'll do is come back out */
3334         if (signal_pending(current)) {
3335                 run->exit_reason = KVM_EXIT_INTR;
3336                 return -EINTR;
3337         }
3338
3339         kvm = vcpu->kvm;
3340         atomic_inc(&kvm->arch.vcpus_running);
3341         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3342         smp_mb();
3343
3344         flush_all_to_thread(current);
3345
3346         /* Save userspace EBB and other register values */
3347         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3348                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3349                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3350                 ebb_regs[2] = mfspr(SPRN_BESCR);
3351                 user_tar = mfspr(SPRN_TAR);
3352         }
3353         user_vrsave = mfspr(SPRN_VRSAVE);
3354
3355         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3356         vcpu->arch.pgdir = current->mm->pgd;
3357         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3358
3359         do {
3360                 r = kvmppc_run_vcpu(run, vcpu);
3361
3362                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3363                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3364                         trace_kvm_hcall_enter(vcpu);
3365                         r = kvmppc_pseries_do_hcall(vcpu);
3366                         trace_kvm_hcall_exit(vcpu, r);
3367                         kvmppc_core_prepare_to_enter(vcpu);
3368                 } else if (r == RESUME_PAGE_FAULT) {
3369                         srcu_idx = srcu_read_lock(&kvm->srcu);
3370                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3371                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3372                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3373                 } else if (r == RESUME_PASSTHROUGH) {
3374                         if (WARN_ON(xive_enabled()))
3375                                 r = H_SUCCESS;
3376                         else
3377                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3378                 }
3379         } while (is_kvmppc_resume_guest(r));
3380
3381         /* Restore userspace EBB and other register values */
3382         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3383                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3384                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3385                 mtspr(SPRN_BESCR, ebb_regs[2]);
3386                 mtspr(SPRN_TAR, user_tar);
3387                 mtspr(SPRN_FSCR, current->thread.fscr);
3388         }
3389         mtspr(SPRN_VRSAVE, user_vrsave);
3390
3391         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3392         atomic_dec(&kvm->arch.vcpus_running);
3393         return r;
3394 }
3395
3396 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3397                                      int shift, int sllp)
3398 {
3399         (*sps)->page_shift = shift;
3400         (*sps)->slb_enc = sllp;
3401         (*sps)->enc[0].page_shift = shift;
3402         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3403         /*
3404          * Add 16MB MPSS support (may get filtered out by userspace)
3405          */
3406         if (shift != 24) {
3407                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3408                 if (penc != -1) {
3409                         (*sps)->enc[1].page_shift = 24;
3410                         (*sps)->enc[1].pte_enc = penc;
3411                 }
3412         }
3413         (*sps)++;
3414 }
3415
3416 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3417                                          struct kvm_ppc_smmu_info *info)
3418 {
3419         struct kvm_ppc_one_seg_page_size *sps;
3420
3421         /*
3422          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3423          * POWER7 doesn't support keys for instruction accesses,
3424          * POWER8 and POWER9 do.
3425          */
3426         info->data_keys = 32;
3427         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3428
3429         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3430         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3431         info->slb_size = 32;
3432
3433         /* We only support these sizes for now, and no muti-size segments */
3434         sps = &info->sps[0];
3435         kvmppc_add_seg_page_size(&sps, 12, 0);
3436         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3437         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3438
3439         return 0;
3440 }
3441
3442 /*
3443  * Get (and clear) the dirty memory log for a memory slot.
3444  */
3445 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3446                                          struct kvm_dirty_log *log)
3447 {
3448         struct kvm_memslots *slots;
3449         struct kvm_memory_slot *memslot;
3450         int i, r;
3451         unsigned long n;
3452         unsigned long *buf, *p;
3453         struct kvm_vcpu *vcpu;
3454
3455         mutex_lock(&kvm->slots_lock);
3456
3457         r = -EINVAL;
3458         if (log->slot >= KVM_USER_MEM_SLOTS)
3459                 goto out;
3460
3461         slots = kvm_memslots(kvm);
3462         memslot = id_to_memslot(slots, log->slot);
3463         r = -ENOENT;
3464         if (!memslot->dirty_bitmap)
3465                 goto out;
3466
3467         /*
3468          * Use second half of bitmap area because both HPT and radix
3469          * accumulate bits in the first half.
3470          */
3471         n = kvm_dirty_bitmap_bytes(memslot);
3472         buf = memslot->dirty_bitmap + n / sizeof(long);
3473         memset(buf, 0, n);
3474
3475         if (kvm_is_radix(kvm))
3476                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3477         else
3478                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3479         if (r)
3480                 goto out;
3481
3482         /*
3483          * We accumulate dirty bits in the first half of the
3484          * memslot's dirty_bitmap area, for when pages are paged
3485          * out or modified by the host directly.  Pick up these
3486          * bits and add them to the map.
3487          */
3488         p = memslot->dirty_bitmap;
3489         for (i = 0; i < n / sizeof(long); ++i)
3490                 buf[i] |= xchg(&p[i], 0);
3491
3492         /* Harvest dirty bits from VPA and DTL updates */
3493         /* Note: we never modify the SLB shadow buffer areas */
3494         kvm_for_each_vcpu(i, vcpu, kvm) {
3495                 spin_lock(&vcpu->arch.vpa_update_lock);
3496                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3497                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3498                 spin_unlock(&vcpu->arch.vpa_update_lock);
3499         }
3500
3501         r = -EFAULT;
3502         if (copy_to_user(log->dirty_bitmap, buf, n))
3503                 goto out;
3504
3505         r = 0;
3506 out:
3507         mutex_unlock(&kvm->slots_lock);
3508         return r;
3509 }
3510
3511 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3512                                         struct kvm_memory_slot *dont)
3513 {
3514         if (!dont || free->arch.rmap != dont->arch.rmap) {
3515                 vfree(free->arch.rmap);
3516                 free->arch.rmap = NULL;
3517         }
3518 }
3519
3520 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3521                                          unsigned long npages)
3522 {
3523         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3524         if (!slot->arch.rmap)
3525                 return -ENOMEM;
3526
3527         return 0;
3528 }
3529
3530 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3531                                         struct kvm_memory_slot *memslot,
3532                                         const struct kvm_userspace_memory_region *mem)
3533 {
3534         return 0;
3535 }
3536
3537 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3538                                 const struct kvm_userspace_memory_region *mem,
3539                                 const struct kvm_memory_slot *old,
3540                                 const struct kvm_memory_slot *new)
3541 {
3542         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3543
3544         /*
3545          * If we are making a new memslot, it might make
3546          * some address that was previously cached as emulated
3547          * MMIO be no longer emulated MMIO, so invalidate
3548          * all the caches of emulated MMIO translations.
3549          */
3550         if (npages)
3551                 atomic64_inc(&kvm->arch.mmio_update);
3552 }
3553
3554 /*
3555  * Update LPCR values in kvm->arch and in vcores.
3556  * Caller must hold kvm->lock.
3557  */
3558 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3559 {
3560         long int i;
3561         u32 cores_done = 0;
3562
3563         if ((kvm->arch.lpcr & mask) == lpcr)
3564                 return;
3565
3566         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3567
3568         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3569                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3570                 if (!vc)
3571                         continue;
3572                 spin_lock(&vc->lock);
3573                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3574                 spin_unlock(&vc->lock);
3575                 if (++cores_done >= kvm->arch.online_vcores)
3576                         break;
3577         }
3578 }
3579
3580 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3581 {
3582         return;
3583 }
3584
3585 void kvmppc_setup_partition_table(struct kvm *kvm)
3586 {
3587         unsigned long dw0, dw1;
3588
3589         if (!kvm_is_radix(kvm)) {
3590                 /* PS field - page size for VRMA */
3591                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3592                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3593                 /* HTABSIZE and HTABORG fields */
3594                 dw0 |= kvm->arch.sdr1;
3595
3596                 /* Second dword as set by userspace */
3597                 dw1 = kvm->arch.process_table;
3598         } else {
3599                 dw0 = PATB_HR | radix__get_tree_size() |
3600                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3601                 dw1 = PATB_GR | kvm->arch.process_table;
3602         }
3603
3604         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3605 }
3606
3607 /*
3608  * Set up HPT (hashed page table) and RMA (real-mode area).
3609  * Must be called with kvm->lock held.
3610  */
3611 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3612 {
3613         int err = 0;
3614         struct kvm *kvm = vcpu->kvm;
3615         unsigned long hva;
3616         struct kvm_memory_slot *memslot;
3617         struct vm_area_struct *vma;
3618         unsigned long lpcr = 0, senc;
3619         unsigned long psize, porder;
3620         int srcu_idx;
3621
3622         /* Allocate hashed page table (if not done already) and reset it */
3623         if (!kvm->arch.hpt.virt) {
3624                 int order = KVM_DEFAULT_HPT_ORDER;
3625                 struct kvm_hpt_info info;
3626
3627                 err = kvmppc_allocate_hpt(&info, order);
3628                 /* If we get here, it means userspace didn't specify a
3629                  * size explicitly.  So, try successively smaller
3630                  * sizes if the default failed. */
3631                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3632                         err  = kvmppc_allocate_hpt(&info, order);
3633
3634                 if (err < 0) {
3635                         pr_err("KVM: Couldn't alloc HPT\n");
3636                         goto out;
3637                 }
3638
3639                 kvmppc_set_hpt(kvm, &info);
3640         }
3641
3642         /* Look up the memslot for guest physical address 0 */
3643         srcu_idx = srcu_read_lock(&kvm->srcu);
3644         memslot = gfn_to_memslot(kvm, 0);
3645
3646         /* We must have some memory at 0 by now */
3647         err = -EINVAL;
3648         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3649                 goto out_srcu;
3650
3651         /* Look up the VMA for the start of this memory slot */
3652         hva = memslot->userspace_addr;
3653         down_read(&current->mm->mmap_sem);
3654         vma = find_vma(current->mm, hva);
3655         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3656                 goto up_out;
3657
3658         psize = vma_kernel_pagesize(vma);
3659         porder = __ilog2(psize);
3660
3661         up_read(&current->mm->mmap_sem);
3662
3663         /* We can handle 4k, 64k or 16M pages in the VRMA */
3664         err = -EINVAL;
3665         if (!(psize == 0x1000 || psize == 0x10000 ||
3666               psize == 0x1000000))
3667                 goto out_srcu;
3668
3669         senc = slb_pgsize_encoding(psize);
3670         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3671                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3672         /* Create HPTEs in the hash page table for the VRMA */
3673         kvmppc_map_vrma(vcpu, memslot, porder);
3674
3675         /* Update VRMASD field in the LPCR */
3676         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3677                 /* the -4 is to account for senc values starting at 0x10 */
3678                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3679                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3680         }
3681
3682         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3683         smp_wmb();
3684         err = 0;
3685  out_srcu:
3686         srcu_read_unlock(&kvm->srcu, srcu_idx);
3687  out:
3688         return err;
3689
3690  up_out:
3691         up_read(&current->mm->mmap_sem);
3692         goto out_srcu;
3693 }
3694
3695 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3696 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3697 {
3698         kvmppc_free_radix(kvm);
3699         kvmppc_update_lpcr(kvm, LPCR_VPM1,
3700                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3701         kvmppc_rmap_reset(kvm);
3702         kvm->arch.radix = 0;
3703         kvm->arch.process_table = 0;
3704         return 0;
3705 }
3706
3707 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3708 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3709 {
3710         int err;
3711
3712         err = kvmppc_init_vm_radix(kvm);
3713         if (err)
3714                 return err;
3715
3716         kvmppc_free_hpt(&kvm->arch.hpt);
3717         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3718                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3719         kvm->arch.radix = 1;
3720         return 0;
3721 }
3722
3723 #ifdef CONFIG_KVM_XICS
3724 /*
3725  * Allocate a per-core structure for managing state about which cores are
3726  * running in the host versus the guest and for exchanging data between
3727  * real mode KVM and CPU running in the host.
3728  * This is only done for the first VM.
3729  * The allocated structure stays even if all VMs have stopped.
3730  * It is only freed when the kvm-hv module is unloaded.
3731  * It's OK for this routine to fail, we just don't support host
3732  * core operations like redirecting H_IPI wakeups.
3733  */
3734 void kvmppc_alloc_host_rm_ops(void)
3735 {
3736         struct kvmppc_host_rm_ops *ops;
3737         unsigned long l_ops;
3738         int cpu, core;
3739         int size;
3740
3741         /* Not the first time here ? */
3742         if (kvmppc_host_rm_ops_hv != NULL)
3743                 return;
3744
3745         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3746         if (!ops)
3747                 return;
3748
3749         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3750         ops->rm_core = kzalloc(size, GFP_KERNEL);
3751
3752         if (!ops->rm_core) {
3753                 kfree(ops);
3754                 return;
3755         }
3756
3757         cpus_read_lock();
3758
3759         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3760                 if (!cpu_online(cpu))
3761                         continue;
3762
3763                 core = cpu >> threads_shift;
3764                 ops->rm_core[core].rm_state.in_host = 1;
3765         }
3766
3767         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3768
3769         /*
3770          * Make the contents of the kvmppc_host_rm_ops structure visible
3771          * to other CPUs before we assign it to the global variable.
3772          * Do an atomic assignment (no locks used here), but if someone
3773          * beats us to it, just free our copy and return.
3774          */
3775         smp_wmb();
3776         l_ops = (unsigned long) ops;
3777
3778         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3779                 cpus_read_unlock();
3780                 kfree(ops->rm_core);
3781                 kfree(ops);
3782                 return;
3783         }
3784
3785         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3786                                              "ppc/kvm_book3s:prepare",
3787                                              kvmppc_set_host_core,
3788                                              kvmppc_clear_host_core);
3789         cpus_read_unlock();
3790 }
3791
3792 void kvmppc_free_host_rm_ops(void)
3793 {
3794         if (kvmppc_host_rm_ops_hv) {
3795                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3796                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3797                 kfree(kvmppc_host_rm_ops_hv);
3798                 kvmppc_host_rm_ops_hv = NULL;
3799         }
3800 }
3801 #endif
3802
3803 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3804 {
3805         unsigned long lpcr, lpid;
3806         char buf[32];
3807         int ret;
3808
3809         /* Allocate the guest's logical partition ID */
3810
3811         lpid = kvmppc_alloc_lpid();
3812         if ((long)lpid < 0)
3813                 return -ENOMEM;
3814         kvm->arch.lpid = lpid;
3815
3816         kvmppc_alloc_host_rm_ops();
3817
3818         /*
3819          * Since we don't flush the TLB when tearing down a VM,
3820          * and this lpid might have previously been used,
3821          * make sure we flush on each core before running the new VM.
3822          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3823          * does this flush for us.
3824          */
3825         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3826                 cpumask_setall(&kvm->arch.need_tlb_flush);
3827
3828         /* Start out with the default set of hcalls enabled */
3829         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3830                sizeof(kvm->arch.enabled_hcalls));
3831
3832         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3833                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3834
3835         /* Init LPCR for virtual RMA mode */
3836         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3837         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3838         lpcr &= LPCR_PECE | LPCR_LPES;
3839         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3840                 LPCR_VPM0 | LPCR_VPM1;
3841         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3842                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3843         /* On POWER8 turn on online bit to enable PURR/SPURR */
3844         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3845                 lpcr |= LPCR_ONL;
3846         /*
3847          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3848          * Set HVICE bit to enable hypervisor virtualization interrupts.
3849          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3850          * be unnecessary but better safe than sorry in case we re-enable
3851          * EE in HV mode with this LPCR still set)
3852          */
3853         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3854                 lpcr &= ~LPCR_VPM0;
3855                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3856
3857                 /*
3858                  * If xive is enabled, we route 0x500 interrupts directly
3859                  * to the guest.
3860                  */
3861                 if (xive_enabled())
3862                         lpcr |= LPCR_LPES;
3863         }
3864
3865         /*
3866          * If the host uses radix, the guest starts out as radix.
3867          */
3868         if (radix_enabled()) {
3869                 kvm->arch.radix = 1;
3870                 kvm->arch.mmu_ready = 1;
3871                 lpcr &= ~LPCR_VPM1;
3872                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3873                 ret = kvmppc_init_vm_radix(kvm);
3874                 if (ret) {
3875                         kvmppc_free_lpid(kvm->arch.lpid);
3876                         return ret;
3877                 }
3878                 kvmppc_setup_partition_table(kvm);
3879         }
3880
3881         kvm->arch.lpcr = lpcr;
3882
3883         /* Initialization for future HPT resizes */
3884         kvm->arch.resize_hpt = NULL;
3885
3886         /*
3887          * Work out how many sets the TLB has, for the use of
3888          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3889          */
3890         if (radix_enabled())
3891                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3892         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3893                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3894         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3895                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3896         else
3897                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3898
3899         /*
3900          * Track that we now have a HV mode VM active. This blocks secondary
3901          * CPU threads from coming online.
3902          * On POWER9, we only need to do this if the "indep_threads_mode"
3903          * module parameter has been set to N.
3904          */
3905         if (cpu_has_feature(CPU_FTR_ARCH_300))
3906                 kvm->arch.threads_indep = indep_threads_mode;
3907         if (!kvm->arch.threads_indep)
3908                 kvm_hv_vm_activated();
3909
3910         /*
3911          * Initialize smt_mode depending on processor.
3912          * POWER8 and earlier have to use "strict" threading, where
3913          * all vCPUs in a vcore have to run on the same (sub)core,
3914          * whereas on POWER9 the threads can each run a different
3915          * guest.
3916          */
3917         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3918                 kvm->arch.smt_mode = threads_per_subcore;
3919         else
3920                 kvm->arch.smt_mode = 1;
3921         kvm->arch.emul_smt_mode = 1;
3922
3923         /*
3924          * Create a debugfs directory for the VM
3925          */
3926         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3927         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3928         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3929                 kvmppc_mmu_debugfs_init(kvm);
3930
3931         return 0;
3932 }
3933
3934 static void kvmppc_free_vcores(struct kvm *kvm)
3935 {
3936         long int i;
3937
3938         for (i = 0; i < KVM_MAX_VCORES; ++i)
3939                 kfree(kvm->arch.vcores[i]);
3940         kvm->arch.online_vcores = 0;
3941 }
3942
3943 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3944 {
3945         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3946
3947         if (!kvm->arch.threads_indep)
3948                 kvm_hv_vm_deactivated();
3949
3950         kvmppc_free_vcores(kvm);
3951
3952         kvmppc_free_lpid(kvm->arch.lpid);
3953
3954         if (kvm_is_radix(kvm))
3955                 kvmppc_free_radix(kvm);
3956         else
3957                 kvmppc_free_hpt(&kvm->arch.hpt);
3958
3959         kvmppc_free_pimap(kvm);
3960 }
3961
3962 /* We don't need to emulate any privileged instructions or dcbz */
3963 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3964                                      unsigned int inst, int *advance)
3965 {
3966         return EMULATE_FAIL;
3967 }
3968
3969 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3970                                         ulong spr_val)
3971 {
3972         return EMULATE_FAIL;
3973 }
3974
3975 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3976                                         ulong *spr_val)
3977 {
3978         return EMULATE_FAIL;
3979 }
3980
3981 static int kvmppc_core_check_processor_compat_hv(void)
3982 {
3983         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3984             !cpu_has_feature(CPU_FTR_ARCH_206))
3985                 return -EIO;
3986
3987         return 0;
3988 }
3989
3990 #ifdef CONFIG_KVM_XICS
3991
3992 void kvmppc_free_pimap(struct kvm *kvm)
3993 {
3994         kfree(kvm->arch.pimap);
3995 }
3996
3997 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3998 {
3999         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4000 }
4001
4002 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4003 {
4004         struct irq_desc *desc;
4005         struct kvmppc_irq_map *irq_map;
4006         struct kvmppc_passthru_irqmap *pimap;
4007         struct irq_chip *chip;
4008         int i, rc = 0;
4009
4010         if (!kvm_irq_bypass)
4011                 return 1;
4012
4013         desc = irq_to_desc(host_irq);
4014         if (!desc)
4015                 return -EIO;
4016
4017         mutex_lock(&kvm->lock);
4018
4019         pimap = kvm->arch.pimap;
4020         if (pimap == NULL) {
4021                 /* First call, allocate structure to hold IRQ map */
4022                 pimap = kvmppc_alloc_pimap();
4023                 if (pimap == NULL) {
4024                         mutex_unlock(&kvm->lock);
4025                         return -ENOMEM;
4026                 }
4027                 kvm->arch.pimap = pimap;
4028         }
4029
4030         /*
4031          * For now, we only support interrupts for which the EOI operation
4032          * is an OPAL call followed by a write to XIRR, since that's
4033          * what our real-mode EOI code does, or a XIVE interrupt
4034          */
4035         chip = irq_data_get_irq_chip(&desc->irq_data);
4036         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4037                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4038                         host_irq, guest_gsi);
4039                 mutex_unlock(&kvm->lock);
4040                 return -ENOENT;
4041         }
4042
4043         /*
4044          * See if we already have an entry for this guest IRQ number.
4045          * If it's mapped to a hardware IRQ number, that's an error,
4046          * otherwise re-use this entry.
4047          */
4048         for (i = 0; i < pimap->n_mapped; i++) {
4049                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4050                         if (pimap->mapped[i].r_hwirq) {
4051                                 mutex_unlock(&kvm->lock);
4052                                 return -EINVAL;
4053                         }
4054                         break;
4055                 }
4056         }
4057
4058         if (i == KVMPPC_PIRQ_MAPPED) {
4059                 mutex_unlock(&kvm->lock);
4060                 return -EAGAIN;         /* table is full */
4061         }
4062
4063         irq_map = &pimap->mapped[i];
4064
4065         irq_map->v_hwirq = guest_gsi;
4066         irq_map->desc = desc;
4067
4068         /*
4069          * Order the above two stores before the next to serialize with
4070          * the KVM real mode handler.
4071          */
4072         smp_wmb();
4073         irq_map->r_hwirq = desc->irq_data.hwirq;
4074
4075         if (i == pimap->n_mapped)
4076                 pimap->n_mapped++;
4077
4078         if (xive_enabled())
4079                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4080         else
4081                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4082         if (rc)
4083                 irq_map->r_hwirq = 0;
4084
4085         mutex_unlock(&kvm->lock);
4086
4087         return 0;
4088 }
4089
4090 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4091 {
4092         struct irq_desc *desc;
4093         struct kvmppc_passthru_irqmap *pimap;
4094         int i, rc = 0;
4095
4096         if (!kvm_irq_bypass)
4097                 return 0;
4098
4099         desc = irq_to_desc(host_irq);
4100         if (!desc)
4101                 return -EIO;
4102
4103         mutex_lock(&kvm->lock);
4104         if (!kvm->arch.pimap)
4105                 goto unlock;
4106
4107         pimap = kvm->arch.pimap;
4108
4109         for (i = 0; i < pimap->n_mapped; i++) {
4110                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4111                         break;
4112         }
4113
4114         if (i == pimap->n_mapped) {
4115                 mutex_unlock(&kvm->lock);
4116                 return -ENODEV;
4117         }
4118
4119         if (xive_enabled())
4120                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4121         else
4122                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4123
4124         /* invalidate the entry (what do do on error from the above ?) */
4125         pimap->mapped[i].r_hwirq = 0;
4126
4127         /*
4128          * We don't free this structure even when the count goes to
4129          * zero. The structure is freed when we destroy the VM.
4130          */
4131  unlock:
4132         mutex_unlock(&kvm->lock);
4133         return rc;
4134 }
4135
4136 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4137                                              struct irq_bypass_producer *prod)
4138 {
4139         int ret = 0;
4140         struct kvm_kernel_irqfd *irqfd =
4141                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4142
4143         irqfd->producer = prod;
4144
4145         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4146         if (ret)
4147                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4148                         prod->irq, irqfd->gsi, ret);
4149
4150         return ret;
4151 }
4152
4153 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4154                                               struct irq_bypass_producer *prod)
4155 {
4156         int ret;
4157         struct kvm_kernel_irqfd *irqfd =
4158                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4159
4160         irqfd->producer = NULL;
4161
4162         /*
4163          * When producer of consumer is unregistered, we change back to
4164          * default external interrupt handling mode - KVM real mode
4165          * will switch back to host.
4166          */
4167         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4168         if (ret)
4169                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4170                         prod->irq, irqfd->gsi, ret);
4171 }
4172 #endif
4173
4174 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4175                                  unsigned int ioctl, unsigned long arg)
4176 {
4177         struct kvm *kvm __maybe_unused = filp->private_data;
4178         void __user *argp = (void __user *)arg;
4179         long r;
4180
4181         switch (ioctl) {
4182
4183         case KVM_PPC_ALLOCATE_HTAB: {
4184                 u32 htab_order;
4185
4186                 r = -EFAULT;
4187                 if (get_user(htab_order, (u32 __user *)argp))
4188                         break;
4189                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4190                 if (r)
4191                         break;
4192                 r = 0;
4193                 break;
4194         }
4195
4196         case KVM_PPC_GET_HTAB_FD: {
4197                 struct kvm_get_htab_fd ghf;
4198
4199                 r = -EFAULT;
4200                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4201                         break;
4202                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4203                 break;
4204         }
4205
4206         case KVM_PPC_RESIZE_HPT_PREPARE: {
4207                 struct kvm_ppc_resize_hpt rhpt;
4208
4209                 r = -EFAULT;
4210                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4211                         break;
4212
4213                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4214                 break;
4215         }
4216
4217         case KVM_PPC_RESIZE_HPT_COMMIT: {
4218                 struct kvm_ppc_resize_hpt rhpt;
4219
4220                 r = -EFAULT;
4221                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4222                         break;
4223
4224                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4225                 break;
4226         }
4227
4228         default:
4229                 r = -ENOTTY;
4230         }
4231
4232         return r;
4233 }
4234
4235 /*
4236  * List of hcall numbers to enable by default.
4237  * For compatibility with old userspace, we enable by default
4238  * all hcalls that were implemented before the hcall-enabling
4239  * facility was added.  Note this list should not include H_RTAS.
4240  */
4241 static unsigned int default_hcall_list[] = {
4242         H_REMOVE,
4243         H_ENTER,
4244         H_READ,
4245         H_PROTECT,
4246         H_BULK_REMOVE,
4247         H_GET_TCE,
4248         H_PUT_TCE,
4249         H_SET_DABR,
4250         H_SET_XDABR,
4251         H_CEDE,
4252         H_PROD,
4253         H_CONFER,
4254         H_REGISTER_VPA,
4255 #ifdef CONFIG_KVM_XICS
4256         H_EOI,
4257         H_CPPR,
4258         H_IPI,
4259         H_IPOLL,
4260         H_XIRR,
4261         H_XIRR_X,
4262 #endif
4263         0
4264 };
4265
4266 static void init_default_hcalls(void)
4267 {
4268         int i;
4269         unsigned int hcall;
4270
4271         for (i = 0; default_hcall_list[i]; ++i) {
4272                 hcall = default_hcall_list[i];
4273                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4274                 __set_bit(hcall / 4, default_enabled_hcalls);
4275         }
4276 }
4277
4278 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4279 {
4280         unsigned long lpcr;
4281         int radix;
4282         int err;
4283
4284         /* If not on a POWER9, reject it */
4285         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4286                 return -ENODEV;
4287
4288         /* If any unknown flags set, reject it */
4289         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4290                 return -EINVAL;
4291
4292         /* GR (guest radix) bit in process_table field must match */
4293         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4294         if (!!(cfg->process_table & PATB_GR) != radix)
4295                 return -EINVAL;
4296
4297         /* Process table size field must be reasonable, i.e. <= 24 */
4298         if ((cfg->process_table & PRTS_MASK) > 24)
4299                 return -EINVAL;
4300
4301         /* We can change a guest to/from radix now, if the host is radix */
4302         if (radix && !radix_enabled())
4303                 return -EINVAL;
4304
4305         mutex_lock(&kvm->lock);
4306         if (radix != kvm_is_radix(kvm)) {
4307                 if (kvm->arch.mmu_ready) {
4308                         kvm->arch.mmu_ready = 0;
4309                         /* order mmu_ready vs. vcpus_running */
4310                         smp_mb();
4311                         if (atomic_read(&kvm->arch.vcpus_running)) {
4312                                 kvm->arch.mmu_ready = 1;
4313                                 err = -EBUSY;
4314                                 goto out_unlock;
4315                         }
4316                 }
4317                 if (radix)
4318                         err = kvmppc_switch_mmu_to_radix(kvm);
4319                 else
4320                         err = kvmppc_switch_mmu_to_hpt(kvm);
4321                 if (err)
4322                         goto out_unlock;
4323         }
4324
4325         kvm->arch.process_table = cfg->process_table;
4326         kvmppc_setup_partition_table(kvm);
4327
4328         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4329         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4330         err = 0;
4331
4332  out_unlock:
4333         mutex_unlock(&kvm->lock);
4334         return err;
4335 }
4336
4337 static struct kvmppc_ops kvm_ops_hv = {
4338         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4339         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4340         .get_one_reg = kvmppc_get_one_reg_hv,
4341         .set_one_reg = kvmppc_set_one_reg_hv,
4342         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4343         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4344         .set_msr     = kvmppc_set_msr_hv,
4345         .vcpu_run    = kvmppc_vcpu_run_hv,
4346         .vcpu_create = kvmppc_core_vcpu_create_hv,
4347         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4348         .check_requests = kvmppc_core_check_requests_hv,
4349         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4350         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4351         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4352         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4353         .unmap_hva = kvm_unmap_hva_hv,
4354         .unmap_hva_range = kvm_unmap_hva_range_hv,
4355         .age_hva  = kvm_age_hva_hv,
4356         .test_age_hva = kvm_test_age_hva_hv,
4357         .set_spte_hva = kvm_set_spte_hva_hv,
4358         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4359         .free_memslot = kvmppc_core_free_memslot_hv,
4360         .create_memslot = kvmppc_core_create_memslot_hv,
4361         .init_vm =  kvmppc_core_init_vm_hv,
4362         .destroy_vm = kvmppc_core_destroy_vm_hv,
4363         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4364         .emulate_op = kvmppc_core_emulate_op_hv,
4365         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4366         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4367         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4368         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4369         .hcall_implemented = kvmppc_hcall_impl_hv,
4370 #ifdef CONFIG_KVM_XICS
4371         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4372         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4373 #endif
4374         .configure_mmu = kvmhv_configure_mmu,
4375         .get_rmmu_info = kvmhv_get_rmmu_info,
4376         .set_smt_mode = kvmhv_set_smt_mode,
4377 };
4378
4379 static int kvm_init_subcore_bitmap(void)
4380 {
4381         int i, j;
4382         int nr_cores = cpu_nr_cores();
4383         struct sibling_subcore_state *sibling_subcore_state;
4384
4385         for (i = 0; i < nr_cores; i++) {
4386                 int first_cpu = i * threads_per_core;
4387                 int node = cpu_to_node(first_cpu);
4388
4389                 /* Ignore if it is already allocated. */
4390                 if (paca[first_cpu].sibling_subcore_state)
4391                         continue;
4392
4393                 sibling_subcore_state =
4394                         kmalloc_node(sizeof(struct sibling_subcore_state),
4395                                                         GFP_KERNEL, node);
4396                 if (!sibling_subcore_state)
4397                         return -ENOMEM;
4398
4399                 memset(sibling_subcore_state, 0,
4400                                 sizeof(struct sibling_subcore_state));
4401
4402                 for (j = 0; j < threads_per_core; j++) {
4403                         int cpu = first_cpu + j;
4404
4405                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4406                 }
4407         }
4408         return 0;
4409 }
4410
4411 static int kvmppc_radix_possible(void)
4412 {
4413         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4414 }
4415
4416 static int kvmppc_book3s_init_hv(void)
4417 {
4418         int r;
4419         /*
4420          * FIXME!! Do we need to check on all cpus ?
4421          */
4422         r = kvmppc_core_check_processor_compat_hv();
4423         if (r < 0)
4424                 return -ENODEV;
4425
4426         r = kvm_init_subcore_bitmap();
4427         if (r)
4428                 return r;
4429
4430         /*
4431          * We need a way of accessing the XICS interrupt controller,
4432          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4433          * indirectly, via OPAL.
4434          */
4435 #ifdef CONFIG_SMP
4436         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4437                 struct device_node *np;
4438
4439                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4440                 if (!np) {
4441                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4442                         return -ENODEV;
4443                 }
4444         }
4445 #endif
4446
4447         kvm_ops_hv.owner = THIS_MODULE;
4448         kvmppc_hv_ops = &kvm_ops_hv;
4449
4450         init_default_hcalls();
4451
4452         init_vcore_lists();
4453
4454         r = kvmppc_mmu_hv_init();
4455         if (r)
4456                 return r;
4457
4458         if (kvmppc_radix_possible())
4459                 r = kvmppc_radix_init();
4460
4461         /*
4462          * POWER9 chips before version 2.02 can't have some threads in
4463          * HPT mode and some in radix mode on the same core.
4464          */
4465         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4466                 unsigned int pvr = mfspr(SPRN_PVR);
4467                 if ((pvr >> 16) == PVR_POWER9 &&
4468                     (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4469                      ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4470                         no_mixing_hpt_and_radix = true;
4471         }
4472
4473         return r;
4474 }
4475
4476 static void kvmppc_book3s_exit_hv(void)
4477 {
4478         kvmppc_free_host_rm_ops();
4479         if (kvmppc_radix_possible())
4480                 kvmppc_radix_exit();
4481         kvmppc_hv_ops = NULL;
4482 }
4483
4484 module_init(kvmppc_book3s_init_hv);
4485 module_exit(kvmppc_book3s_exit_hv);
4486 MODULE_LICENSE("GPL");
4487 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4488 MODULE_ALIAS("devname:kvm");