Merge branch 'akpm' (patches from Andrew)
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
62 #include <asm/page.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
65 #include <asm/smp.h>
66 #include <asm/dbell.h>
67 #include <asm/hmi.h>
68 #include <asm/pnv-pci.h>
69 #include <asm/mmu.h>
70 #include <asm/opal.h>
71 #include <asm/xics.h>
72 #include <asm/xive.h>
73
74 #include "book3s.h"
75
76 #define CREATE_TRACE_POINTS
77 #include "trace_hv.h"
78
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
82
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
87
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL  (~(u64)0)
90
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102         .set = param_set_int,
103         .get = param_get_int,
104 };
105
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107                                                         S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111                                                         S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113 #endif
114
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117
118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119                 int *ip)
120 {
121         int i = *ip;
122         struct kvm_vcpu *vcpu;
123
124         while (++i < MAX_SMT_THREADS) {
125                 vcpu = READ_ONCE(vc->runnable_threads[i]);
126                 if (vcpu) {
127                         *ip = i;
128                         return vcpu;
129                 }
130         }
131         return NULL;
132 }
133
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137
138 static bool kvmppc_ipi_thread(int cpu)
139 {
140         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141
142         /* On POWER9 we can use msgsnd to IPI any cpu */
143         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144                 msg |= get_hard_smp_processor_id(cpu);
145                 smp_mb();
146                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147                 return true;
148         }
149
150         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152                 preempt_disable();
153                 if (cpu_first_thread_sibling(cpu) ==
154                     cpu_first_thread_sibling(smp_processor_id())) {
155                         msg |= cpu_thread_in_core(cpu);
156                         smp_mb();
157                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158                         preempt_enable();
159                         return true;
160                 }
161                 preempt_enable();
162         }
163
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165         if (cpu >= 0 && cpu < nr_cpu_ids) {
166                 if (paca[cpu].kvm_hstate.xics_phys) {
167                         xics_wake_cpu(cpu);
168                         return true;
169                 }
170                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171                 return true;
172         }
173 #endif
174
175         return false;
176 }
177
178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179 {
180         int cpu;
181         struct swait_queue_head *wqp;
182
183         wqp = kvm_arch_vcpu_wq(vcpu);
184         if (swait_active(wqp)) {
185                 swake_up(wqp);
186                 ++vcpu->stat.halt_wakeup;
187         }
188
189         cpu = READ_ONCE(vcpu->arch.thread_cpu);
190         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191                 return;
192
193         /* CPU points to the first thread of the core */
194         cpu = vcpu->cpu;
195         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196                 smp_send_reschedule(cpu);
197 }
198
199 /*
200  * We use the vcpu_load/put functions to measure stolen time.
201  * Stolen time is counted as time when either the vcpu is able to
202  * run as part of a virtual core, but the task running the vcore
203  * is preempted or sleeping, or when the vcpu needs something done
204  * in the kernel by the task running the vcpu, but that task is
205  * preempted or sleeping.  Those two things have to be counted
206  * separately, since one of the vcpu tasks will take on the job
207  * of running the core, and the other vcpu tasks in the vcore will
208  * sleep waiting for it to do that, but that sleep shouldn't count
209  * as stolen time.
210  *
211  * Hence we accumulate stolen time when the vcpu can run as part of
212  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213  * needs its task to do other things in the kernel (for example,
214  * service a page fault) in busy_stolen.  We don't accumulate
215  * stolen time for a vcore when it is inactive, or for a vcpu
216  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
217  * a misnomer; it means that the vcpu task is not executing in
218  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219  * the kernel.  We don't have any way of dividing up that time
220  * between time that the vcpu is genuinely stopped, time that
221  * the task is actively working on behalf of the vcpu, and time
222  * that the task is preempted, so we don't count any of it as
223  * stolen.
224  *
225  * Updates to busy_stolen are protected by arch.tbacct_lock;
226  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227  * lock.  The stolen times are measured in units of timebase ticks.
228  * (Note that the != TB_NIL checks below are purely defensive;
229  * they should never fail.)
230  */
231
232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233 {
234         unsigned long flags;
235
236         spin_lock_irqsave(&vc->stoltb_lock, flags);
237         vc->preempt_tb = mftb();
238         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239 }
240
241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242 {
243         unsigned long flags;
244
245         spin_lock_irqsave(&vc->stoltb_lock, flags);
246         if (vc->preempt_tb != TB_NIL) {
247                 vc->stolen_tb += mftb() - vc->preempt_tb;
248                 vc->preempt_tb = TB_NIL;
249         }
250         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251 }
252
253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254 {
255         struct kvmppc_vcore *vc = vcpu->arch.vcore;
256         unsigned long flags;
257
258         /*
259          * We can test vc->runner without taking the vcore lock,
260          * because only this task ever sets vc->runner to this
261          * vcpu, and once it is set to this vcpu, only this task
262          * ever sets it to NULL.
263          */
264         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265                 kvmppc_core_end_stolen(vc);
266
267         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269             vcpu->arch.busy_preempt != TB_NIL) {
270                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271                 vcpu->arch.busy_preempt = TB_NIL;
272         }
273         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 }
275
276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277 {
278         struct kvmppc_vcore *vc = vcpu->arch.vcore;
279         unsigned long flags;
280
281         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282                 kvmppc_core_start_stolen(vc);
283
284         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286                 vcpu->arch.busy_preempt = mftb();
287         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 }
289
290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291 {
292         /*
293          * Check for illegal transactional state bit combination
294          * and if we find it, force the TS field to a safe state.
295          */
296         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297                 msr &= ~MSR_TS_MASK;
298         vcpu->arch.shregs.msr = msr;
299         kvmppc_end_cede(vcpu);
300 }
301
302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 {
304         vcpu->arch.pvr = pvr;
305 }
306
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
309
310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311 {
312         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313         struct kvmppc_vcore *vc = vcpu->arch.vcore;
314
315         /* We can (emulate) our own architecture version and anything older */
316         if (cpu_has_feature(CPU_FTR_ARCH_300))
317                 host_pcr_bit = PCR_ARCH_300;
318         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319                 host_pcr_bit = PCR_ARCH_207;
320         else if (cpu_has_feature(CPU_FTR_ARCH_206))
321                 host_pcr_bit = PCR_ARCH_206;
322         else
323                 host_pcr_bit = PCR_ARCH_205;
324
325         /* Determine lowest PCR bit needed to run guest in given PVR level */
326         guest_pcr_bit = host_pcr_bit;
327         if (arch_compat) {
328                 switch (arch_compat) {
329                 case PVR_ARCH_205:
330                         guest_pcr_bit = PCR_ARCH_205;
331                         break;
332                 case PVR_ARCH_206:
333                 case PVR_ARCH_206p:
334                         guest_pcr_bit = PCR_ARCH_206;
335                         break;
336                 case PVR_ARCH_207:
337                         guest_pcr_bit = PCR_ARCH_207;
338                         break;
339                 case PVR_ARCH_300:
340                         guest_pcr_bit = PCR_ARCH_300;
341                         break;
342                 default:
343                         return -EINVAL;
344                 }
345         }
346
347         /* Check requested PCR bits don't exceed our capabilities */
348         if (guest_pcr_bit > host_pcr_bit)
349                 return -EINVAL;
350
351         spin_lock(&vc->lock);
352         vc->arch_compat = arch_compat;
353         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354         vc->pcr = host_pcr_bit - guest_pcr_bit;
355         spin_unlock(&vc->lock);
356
357         return 0;
358 }
359
360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 {
362         int r;
363
364         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
366                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367         for (r = 0; r < 16; ++r)
368                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
369                        r, kvmppc_get_gpr(vcpu, r),
370                        r+16, kvmppc_get_gpr(vcpu, r+16));
371         pr_err("ctr = %.16lx  lr  = %.16lx\n",
372                vcpu->arch.ctr, vcpu->arch.lr);
373         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
380                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382         pr_err("fault dar = %.16lx dsisr = %.8x\n",
383                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385         for (r = 0; r < vcpu->arch.slb_max; ++r)
386                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
387                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390                vcpu->arch.last_inst);
391 }
392
393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394 {
395         struct kvm_vcpu *ret;
396
397         mutex_lock(&kvm->lock);
398         ret = kvm_get_vcpu_by_id(kvm, id);
399         mutex_unlock(&kvm->lock);
400         return ret;
401 }
402
403 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
404 {
405         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
406         vpa->yield_count = cpu_to_be32(1);
407 }
408
409 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
410                    unsigned long addr, unsigned long len)
411 {
412         /* check address is cacheline aligned */
413         if (addr & (L1_CACHE_BYTES - 1))
414                 return -EINVAL;
415         spin_lock(&vcpu->arch.vpa_update_lock);
416         if (v->next_gpa != addr || v->len != len) {
417                 v->next_gpa = addr;
418                 v->len = addr ? len : 0;
419                 v->update_pending = 1;
420         }
421         spin_unlock(&vcpu->arch.vpa_update_lock);
422         return 0;
423 }
424
425 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
426 struct reg_vpa {
427         u32 dummy;
428         union {
429                 __be16 hword;
430                 __be32 word;
431         } length;
432 };
433
434 static int vpa_is_registered(struct kvmppc_vpa *vpap)
435 {
436         if (vpap->update_pending)
437                 return vpap->next_gpa != 0;
438         return vpap->pinned_addr != NULL;
439 }
440
441 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
442                                        unsigned long flags,
443                                        unsigned long vcpuid, unsigned long vpa)
444 {
445         struct kvm *kvm = vcpu->kvm;
446         unsigned long len, nb;
447         void *va;
448         struct kvm_vcpu *tvcpu;
449         int err;
450         int subfunc;
451         struct kvmppc_vpa *vpap;
452
453         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
454         if (!tvcpu)
455                 return H_PARAMETER;
456
457         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
458         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
459             subfunc == H_VPA_REG_SLB) {
460                 /* Registering new area - address must be cache-line aligned */
461                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
462                         return H_PARAMETER;
463
464                 /* convert logical addr to kernel addr and read length */
465                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
466                 if (va == NULL)
467                         return H_PARAMETER;
468                 if (subfunc == H_VPA_REG_VPA)
469                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
470                 else
471                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
472                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
473
474                 /* Check length */
475                 if (len > nb || len < sizeof(struct reg_vpa))
476                         return H_PARAMETER;
477         } else {
478                 vpa = 0;
479                 len = 0;
480         }
481
482         err = H_PARAMETER;
483         vpap = NULL;
484         spin_lock(&tvcpu->arch.vpa_update_lock);
485
486         switch (subfunc) {
487         case H_VPA_REG_VPA:             /* register VPA */
488                 /*
489                  * The size of our lppaca is 1kB because of the way we align
490                  * it for the guest to avoid crossing a 4kB boundary. We only
491                  * use 640 bytes of the structure though, so we should accept
492                  * clients that set a size of 640.
493                  */
494                 if (len < 640)
495                         break;
496                 vpap = &tvcpu->arch.vpa;
497                 err = 0;
498                 break;
499
500         case H_VPA_REG_DTL:             /* register DTL */
501                 if (len < sizeof(struct dtl_entry))
502                         break;
503                 len -= len % sizeof(struct dtl_entry);
504
505                 /* Check that they have previously registered a VPA */
506                 err = H_RESOURCE;
507                 if (!vpa_is_registered(&tvcpu->arch.vpa))
508                         break;
509
510                 vpap = &tvcpu->arch.dtl;
511                 err = 0;
512                 break;
513
514         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
515                 /* Check that they have previously registered a VPA */
516                 err = H_RESOURCE;
517                 if (!vpa_is_registered(&tvcpu->arch.vpa))
518                         break;
519
520                 vpap = &tvcpu->arch.slb_shadow;
521                 err = 0;
522                 break;
523
524         case H_VPA_DEREG_VPA:           /* deregister VPA */
525                 /* Check they don't still have a DTL or SLB buf registered */
526                 err = H_RESOURCE;
527                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
528                     vpa_is_registered(&tvcpu->arch.slb_shadow))
529                         break;
530
531                 vpap = &tvcpu->arch.vpa;
532                 err = 0;
533                 break;
534
535         case H_VPA_DEREG_DTL:           /* deregister DTL */
536                 vpap = &tvcpu->arch.dtl;
537                 err = 0;
538                 break;
539
540         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
541                 vpap = &tvcpu->arch.slb_shadow;
542                 err = 0;
543                 break;
544         }
545
546         if (vpap) {
547                 vpap->next_gpa = vpa;
548                 vpap->len = len;
549                 vpap->update_pending = 1;
550         }
551
552         spin_unlock(&tvcpu->arch.vpa_update_lock);
553
554         return err;
555 }
556
557 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
558 {
559         struct kvm *kvm = vcpu->kvm;
560         void *va;
561         unsigned long nb;
562         unsigned long gpa;
563
564         /*
565          * We need to pin the page pointed to by vpap->next_gpa,
566          * but we can't call kvmppc_pin_guest_page under the lock
567          * as it does get_user_pages() and down_read().  So we
568          * have to drop the lock, pin the page, then get the lock
569          * again and check that a new area didn't get registered
570          * in the meantime.
571          */
572         for (;;) {
573                 gpa = vpap->next_gpa;
574                 spin_unlock(&vcpu->arch.vpa_update_lock);
575                 va = NULL;
576                 nb = 0;
577                 if (gpa)
578                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
579                 spin_lock(&vcpu->arch.vpa_update_lock);
580                 if (gpa == vpap->next_gpa)
581                         break;
582                 /* sigh... unpin that one and try again */
583                 if (va)
584                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
585         }
586
587         vpap->update_pending = 0;
588         if (va && nb < vpap->len) {
589                 /*
590                  * If it's now too short, it must be that userspace
591                  * has changed the mappings underlying guest memory,
592                  * so unregister the region.
593                  */
594                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
595                 va = NULL;
596         }
597         if (vpap->pinned_addr)
598                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
599                                         vpap->dirty);
600         vpap->gpa = gpa;
601         vpap->pinned_addr = va;
602         vpap->dirty = false;
603         if (va)
604                 vpap->pinned_end = va + vpap->len;
605 }
606
607 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
608 {
609         if (!(vcpu->arch.vpa.update_pending ||
610               vcpu->arch.slb_shadow.update_pending ||
611               vcpu->arch.dtl.update_pending))
612                 return;
613
614         spin_lock(&vcpu->arch.vpa_update_lock);
615         if (vcpu->arch.vpa.update_pending) {
616                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
617                 if (vcpu->arch.vpa.pinned_addr)
618                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
619         }
620         if (vcpu->arch.dtl.update_pending) {
621                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
622                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
623                 vcpu->arch.dtl_index = 0;
624         }
625         if (vcpu->arch.slb_shadow.update_pending)
626                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
627         spin_unlock(&vcpu->arch.vpa_update_lock);
628 }
629
630 /*
631  * Return the accumulated stolen time for the vcore up until `now'.
632  * The caller should hold the vcore lock.
633  */
634 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
635 {
636         u64 p;
637         unsigned long flags;
638
639         spin_lock_irqsave(&vc->stoltb_lock, flags);
640         p = vc->stolen_tb;
641         if (vc->vcore_state != VCORE_INACTIVE &&
642             vc->preempt_tb != TB_NIL)
643                 p += now - vc->preempt_tb;
644         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
645         return p;
646 }
647
648 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
649                                     struct kvmppc_vcore *vc)
650 {
651         struct dtl_entry *dt;
652         struct lppaca *vpa;
653         unsigned long stolen;
654         unsigned long core_stolen;
655         u64 now;
656         unsigned long flags;
657
658         dt = vcpu->arch.dtl_ptr;
659         vpa = vcpu->arch.vpa.pinned_addr;
660         now = mftb();
661         core_stolen = vcore_stolen_time(vc, now);
662         stolen = core_stolen - vcpu->arch.stolen_logged;
663         vcpu->arch.stolen_logged = core_stolen;
664         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
665         stolen += vcpu->arch.busy_stolen;
666         vcpu->arch.busy_stolen = 0;
667         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
668         if (!dt || !vpa)
669                 return;
670         memset(dt, 0, sizeof(struct dtl_entry));
671         dt->dispatch_reason = 7;
672         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
673         dt->timebase = cpu_to_be64(now + vc->tb_offset);
674         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
675         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
676         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
677         ++dt;
678         if (dt == vcpu->arch.dtl.pinned_end)
679                 dt = vcpu->arch.dtl.pinned_addr;
680         vcpu->arch.dtl_ptr = dt;
681         /* order writing *dt vs. writing vpa->dtl_idx */
682         smp_wmb();
683         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
684         vcpu->arch.dtl.dirty = true;
685 }
686
687 /* See if there is a doorbell interrupt pending for a vcpu */
688 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
689 {
690         int thr;
691         struct kvmppc_vcore *vc;
692
693         if (vcpu->arch.doorbell_request)
694                 return true;
695         /*
696          * Ensure that the read of vcore->dpdes comes after the read
697          * of vcpu->doorbell_request.  This barrier matches the
698          * lwsync in book3s_hv_rmhandlers.S just before the
699          * fast_guest_return label.
700          */
701         smp_rmb();
702         vc = vcpu->arch.vcore;
703         thr = vcpu->vcpu_id - vc->first_vcpuid;
704         return !!(vc->dpdes & (1 << thr));
705 }
706
707 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
708 {
709         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
710                 return true;
711         if ((!vcpu->arch.vcore->arch_compat) &&
712             cpu_has_feature(CPU_FTR_ARCH_207S))
713                 return true;
714         return false;
715 }
716
717 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
718                              unsigned long resource, unsigned long value1,
719                              unsigned long value2)
720 {
721         switch (resource) {
722         case H_SET_MODE_RESOURCE_SET_CIABR:
723                 if (!kvmppc_power8_compatible(vcpu))
724                         return H_P2;
725                 if (value2)
726                         return H_P4;
727                 if (mflags)
728                         return H_UNSUPPORTED_FLAG_START;
729                 /* Guests can't breakpoint the hypervisor */
730                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
731                         return H_P3;
732                 vcpu->arch.ciabr  = value1;
733                 return H_SUCCESS;
734         case H_SET_MODE_RESOURCE_SET_DAWR:
735                 if (!kvmppc_power8_compatible(vcpu))
736                         return H_P2;
737                 if (mflags)
738                         return H_UNSUPPORTED_FLAG_START;
739                 if (value2 & DABRX_HYP)
740                         return H_P4;
741                 vcpu->arch.dawr  = value1;
742                 vcpu->arch.dawrx = value2;
743                 return H_SUCCESS;
744         default:
745                 return H_TOO_HARD;
746         }
747 }
748
749 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
750 {
751         struct kvmppc_vcore *vcore = target->arch.vcore;
752
753         /*
754          * We expect to have been called by the real mode handler
755          * (kvmppc_rm_h_confer()) which would have directly returned
756          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
757          * have useful work to do and should not confer) so we don't
758          * recheck that here.
759          */
760
761         spin_lock(&vcore->lock);
762         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
763             vcore->vcore_state != VCORE_INACTIVE &&
764             vcore->runner)
765                 target = vcore->runner;
766         spin_unlock(&vcore->lock);
767
768         return kvm_vcpu_yield_to(target);
769 }
770
771 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
772 {
773         int yield_count = 0;
774         struct lppaca *lppaca;
775
776         spin_lock(&vcpu->arch.vpa_update_lock);
777         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
778         if (lppaca)
779                 yield_count = be32_to_cpu(lppaca->yield_count);
780         spin_unlock(&vcpu->arch.vpa_update_lock);
781         return yield_count;
782 }
783
784 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
785 {
786         unsigned long req = kvmppc_get_gpr(vcpu, 3);
787         unsigned long target, ret = H_SUCCESS;
788         int yield_count;
789         struct kvm_vcpu *tvcpu;
790         int idx, rc;
791
792         if (req <= MAX_HCALL_OPCODE &&
793             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
794                 return RESUME_HOST;
795
796         switch (req) {
797         case H_CEDE:
798                 break;
799         case H_PROD:
800                 target = kvmppc_get_gpr(vcpu, 4);
801                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
802                 if (!tvcpu) {
803                         ret = H_PARAMETER;
804                         break;
805                 }
806                 tvcpu->arch.prodded = 1;
807                 smp_mb();
808                 if (tvcpu->arch.ceded)
809                         kvmppc_fast_vcpu_kick_hv(tvcpu);
810                 break;
811         case H_CONFER:
812                 target = kvmppc_get_gpr(vcpu, 4);
813                 if (target == -1)
814                         break;
815                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
816                 if (!tvcpu) {
817                         ret = H_PARAMETER;
818                         break;
819                 }
820                 yield_count = kvmppc_get_gpr(vcpu, 5);
821                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
822                         break;
823                 kvm_arch_vcpu_yield_to(tvcpu);
824                 break;
825         case H_REGISTER_VPA:
826                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
827                                         kvmppc_get_gpr(vcpu, 5),
828                                         kvmppc_get_gpr(vcpu, 6));
829                 break;
830         case H_RTAS:
831                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
832                         return RESUME_HOST;
833
834                 idx = srcu_read_lock(&vcpu->kvm->srcu);
835                 rc = kvmppc_rtas_hcall(vcpu);
836                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
837
838                 if (rc == -ENOENT)
839                         return RESUME_HOST;
840                 else if (rc == 0)
841                         break;
842
843                 /* Send the error out to userspace via KVM_RUN */
844                 return rc;
845         case H_LOGICAL_CI_LOAD:
846                 ret = kvmppc_h_logical_ci_load(vcpu);
847                 if (ret == H_TOO_HARD)
848                         return RESUME_HOST;
849                 break;
850         case H_LOGICAL_CI_STORE:
851                 ret = kvmppc_h_logical_ci_store(vcpu);
852                 if (ret == H_TOO_HARD)
853                         return RESUME_HOST;
854                 break;
855         case H_SET_MODE:
856                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
857                                         kvmppc_get_gpr(vcpu, 5),
858                                         kvmppc_get_gpr(vcpu, 6),
859                                         kvmppc_get_gpr(vcpu, 7));
860                 if (ret == H_TOO_HARD)
861                         return RESUME_HOST;
862                 break;
863         case H_XIRR:
864         case H_CPPR:
865         case H_EOI:
866         case H_IPI:
867         case H_IPOLL:
868         case H_XIRR_X:
869                 if (kvmppc_xics_enabled(vcpu)) {
870                         if (xive_enabled()) {
871                                 ret = H_NOT_AVAILABLE;
872                                 return RESUME_GUEST;
873                         }
874                         ret = kvmppc_xics_hcall(vcpu, req);
875                         break;
876                 }
877                 return RESUME_HOST;
878         case H_PUT_TCE:
879                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
880                                                 kvmppc_get_gpr(vcpu, 5),
881                                                 kvmppc_get_gpr(vcpu, 6));
882                 if (ret == H_TOO_HARD)
883                         return RESUME_HOST;
884                 break;
885         case H_PUT_TCE_INDIRECT:
886                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
887                                                 kvmppc_get_gpr(vcpu, 5),
888                                                 kvmppc_get_gpr(vcpu, 6),
889                                                 kvmppc_get_gpr(vcpu, 7));
890                 if (ret == H_TOO_HARD)
891                         return RESUME_HOST;
892                 break;
893         case H_STUFF_TCE:
894                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
895                                                 kvmppc_get_gpr(vcpu, 5),
896                                                 kvmppc_get_gpr(vcpu, 6),
897                                                 kvmppc_get_gpr(vcpu, 7));
898                 if (ret == H_TOO_HARD)
899                         return RESUME_HOST;
900                 break;
901         default:
902                 return RESUME_HOST;
903         }
904         kvmppc_set_gpr(vcpu, 3, ret);
905         vcpu->arch.hcall_needed = 0;
906         return RESUME_GUEST;
907 }
908
909 static int kvmppc_hcall_impl_hv(unsigned long cmd)
910 {
911         switch (cmd) {
912         case H_CEDE:
913         case H_PROD:
914         case H_CONFER:
915         case H_REGISTER_VPA:
916         case H_SET_MODE:
917         case H_LOGICAL_CI_LOAD:
918         case H_LOGICAL_CI_STORE:
919 #ifdef CONFIG_KVM_XICS
920         case H_XIRR:
921         case H_CPPR:
922         case H_EOI:
923         case H_IPI:
924         case H_IPOLL:
925         case H_XIRR_X:
926 #endif
927                 return 1;
928         }
929
930         /* See if it's in the real-mode table */
931         return kvmppc_hcall_impl_hv_realmode(cmd);
932 }
933
934 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
935                                         struct kvm_vcpu *vcpu)
936 {
937         u32 last_inst;
938
939         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
940                                         EMULATE_DONE) {
941                 /*
942                  * Fetch failed, so return to guest and
943                  * try executing it again.
944                  */
945                 return RESUME_GUEST;
946         }
947
948         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
949                 run->exit_reason = KVM_EXIT_DEBUG;
950                 run->debug.arch.address = kvmppc_get_pc(vcpu);
951                 return RESUME_HOST;
952         } else {
953                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
954                 return RESUME_GUEST;
955         }
956 }
957
958 static void do_nothing(void *x)
959 {
960 }
961
962 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
963 {
964         int thr, cpu, pcpu, nthreads;
965         struct kvm_vcpu *v;
966         unsigned long dpdes;
967
968         nthreads = vcpu->kvm->arch.emul_smt_mode;
969         dpdes = 0;
970         cpu = vcpu->vcpu_id & ~(nthreads - 1);
971         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
972                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
973                 if (!v)
974                         continue;
975                 /*
976                  * If the vcpu is currently running on a physical cpu thread,
977                  * interrupt it in order to pull it out of the guest briefly,
978                  * which will update its vcore->dpdes value.
979                  */
980                 pcpu = READ_ONCE(v->cpu);
981                 if (pcpu >= 0)
982                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
983                 if (kvmppc_doorbell_pending(v))
984                         dpdes |= 1 << thr;
985         }
986         return dpdes;
987 }
988
989 /*
990  * On POWER9, emulate doorbell-related instructions in order to
991  * give the guest the illusion of running on a multi-threaded core.
992  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
993  * and mfspr DPDES.
994  */
995 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
996 {
997         u32 inst, rb, thr;
998         unsigned long arg;
999         struct kvm *kvm = vcpu->kvm;
1000         struct kvm_vcpu *tvcpu;
1001
1002         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1003                 return EMULATE_FAIL;
1004         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1005                 return RESUME_GUEST;
1006         if (get_op(inst) != 31)
1007                 return EMULATE_FAIL;
1008         rb = get_rb(inst);
1009         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1010         switch (get_xop(inst)) {
1011         case OP_31_XOP_MSGSNDP:
1012                 arg = kvmppc_get_gpr(vcpu, rb);
1013                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1014                         break;
1015                 arg &= 0x3f;
1016                 if (arg >= kvm->arch.emul_smt_mode)
1017                         break;
1018                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1019                 if (!tvcpu)
1020                         break;
1021                 if (!tvcpu->arch.doorbell_request) {
1022                         tvcpu->arch.doorbell_request = 1;
1023                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1024                 }
1025                 break;
1026         case OP_31_XOP_MSGCLRP:
1027                 arg = kvmppc_get_gpr(vcpu, rb);
1028                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1029                         break;
1030                 vcpu->arch.vcore->dpdes = 0;
1031                 vcpu->arch.doorbell_request = 0;
1032                 break;
1033         case OP_31_XOP_MFSPR:
1034                 switch (get_sprn(inst)) {
1035                 case SPRN_TIR:
1036                         arg = thr;
1037                         break;
1038                 case SPRN_DPDES:
1039                         arg = kvmppc_read_dpdes(vcpu);
1040                         break;
1041                 default:
1042                         return EMULATE_FAIL;
1043                 }
1044                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1045                 break;
1046         default:
1047                 return EMULATE_FAIL;
1048         }
1049         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1050         return RESUME_GUEST;
1051 }
1052
1053 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1054                                  struct task_struct *tsk)
1055 {
1056         int r = RESUME_HOST;
1057
1058         vcpu->stat.sum_exits++;
1059
1060         /*
1061          * This can happen if an interrupt occurs in the last stages
1062          * of guest entry or the first stages of guest exit (i.e. after
1063          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1064          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1065          * That can happen due to a bug, or due to a machine check
1066          * occurring at just the wrong time.
1067          */
1068         if (vcpu->arch.shregs.msr & MSR_HV) {
1069                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1070                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1071                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1072                         vcpu->arch.shregs.msr);
1073                 kvmppc_dump_regs(vcpu);
1074                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1075                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1076                 return RESUME_HOST;
1077         }
1078         run->exit_reason = KVM_EXIT_UNKNOWN;
1079         run->ready_for_interrupt_injection = 1;
1080         switch (vcpu->arch.trap) {
1081         /* We're good on these - the host merely wanted to get our attention */
1082         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1083                 vcpu->stat.dec_exits++;
1084                 r = RESUME_GUEST;
1085                 break;
1086         case BOOK3S_INTERRUPT_EXTERNAL:
1087         case BOOK3S_INTERRUPT_H_DOORBELL:
1088         case BOOK3S_INTERRUPT_H_VIRT:
1089                 vcpu->stat.ext_intr_exits++;
1090                 r = RESUME_GUEST;
1091                 break;
1092         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1093         case BOOK3S_INTERRUPT_HMI:
1094         case BOOK3S_INTERRUPT_PERFMON:
1095                 r = RESUME_GUEST;
1096                 break;
1097         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1098                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1099                 run->exit_reason = KVM_EXIT_NMI;
1100                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1101                 /* Clear out the old NMI status from run->flags */
1102                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1103                 /* Now set the NMI status */
1104                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1105                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1106                 else
1107                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1108
1109                 r = RESUME_HOST;
1110                 /* Print the MCE event to host console. */
1111                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1112                 break;
1113         case BOOK3S_INTERRUPT_PROGRAM:
1114         {
1115                 ulong flags;
1116                 /*
1117                  * Normally program interrupts are delivered directly
1118                  * to the guest by the hardware, but we can get here
1119                  * as a result of a hypervisor emulation interrupt
1120                  * (e40) getting turned into a 700 by BML RTAS.
1121                  */
1122                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1123                 kvmppc_core_queue_program(vcpu, flags);
1124                 r = RESUME_GUEST;
1125                 break;
1126         }
1127         case BOOK3S_INTERRUPT_SYSCALL:
1128         {
1129                 /* hcall - punt to userspace */
1130                 int i;
1131
1132                 /* hypercall with MSR_PR has already been handled in rmode,
1133                  * and never reaches here.
1134                  */
1135
1136                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1137                 for (i = 0; i < 9; ++i)
1138                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1139                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1140                 vcpu->arch.hcall_needed = 1;
1141                 r = RESUME_HOST;
1142                 break;
1143         }
1144         /*
1145          * We get these next two if the guest accesses a page which it thinks
1146          * it has mapped but which is not actually present, either because
1147          * it is for an emulated I/O device or because the corresonding
1148          * host page has been paged out.  Any other HDSI/HISI interrupts
1149          * have been handled already.
1150          */
1151         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1152                 r = RESUME_PAGE_FAULT;
1153                 break;
1154         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1155                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1156                 vcpu->arch.fault_dsisr = 0;
1157                 r = RESUME_PAGE_FAULT;
1158                 break;
1159         /*
1160          * This occurs if the guest executes an illegal instruction.
1161          * If the guest debug is disabled, generate a program interrupt
1162          * to the guest. If guest debug is enabled, we need to check
1163          * whether the instruction is a software breakpoint instruction.
1164          * Accordingly return to Guest or Host.
1165          */
1166         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1167                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1168                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1169                                 swab32(vcpu->arch.emul_inst) :
1170                                 vcpu->arch.emul_inst;
1171                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1172                         r = kvmppc_emulate_debug_inst(run, vcpu);
1173                 } else {
1174                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1175                         r = RESUME_GUEST;
1176                 }
1177                 break;
1178         /*
1179          * This occurs if the guest (kernel or userspace), does something that
1180          * is prohibited by HFSCR.
1181          * On POWER9, this could be a doorbell instruction that we need
1182          * to emulate.
1183          * Otherwise, we just generate a program interrupt to the guest.
1184          */
1185         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1186                 r = EMULATE_FAIL;
1187                 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1188                         r = kvmppc_emulate_doorbell_instr(vcpu);
1189                 if (r == EMULATE_FAIL) {
1190                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1191                         r = RESUME_GUEST;
1192                 }
1193                 break;
1194         case BOOK3S_INTERRUPT_HV_RM_HARD:
1195                 r = RESUME_PASSTHROUGH;
1196                 break;
1197         default:
1198                 kvmppc_dump_regs(vcpu);
1199                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1200                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1201                         vcpu->arch.shregs.msr);
1202                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1203                 r = RESUME_HOST;
1204                 break;
1205         }
1206
1207         return r;
1208 }
1209
1210 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1211                                             struct kvm_sregs *sregs)
1212 {
1213         int i;
1214
1215         memset(sregs, 0, sizeof(struct kvm_sregs));
1216         sregs->pvr = vcpu->arch.pvr;
1217         for (i = 0; i < vcpu->arch.slb_max; i++) {
1218                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1219                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1220         }
1221
1222         return 0;
1223 }
1224
1225 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1226                                             struct kvm_sregs *sregs)
1227 {
1228         int i, j;
1229
1230         /* Only accept the same PVR as the host's, since we can't spoof it */
1231         if (sregs->pvr != vcpu->arch.pvr)
1232                 return -EINVAL;
1233
1234         j = 0;
1235         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1236                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1237                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1238                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1239                         ++j;
1240                 }
1241         }
1242         vcpu->arch.slb_max = j;
1243
1244         return 0;
1245 }
1246
1247 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1248                 bool preserve_top32)
1249 {
1250         struct kvm *kvm = vcpu->kvm;
1251         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1252         u64 mask;
1253
1254         mutex_lock(&kvm->lock);
1255         spin_lock(&vc->lock);
1256         /*
1257          * If ILE (interrupt little-endian) has changed, update the
1258          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1259          */
1260         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1261                 struct kvm_vcpu *vcpu;
1262                 int i;
1263
1264                 kvm_for_each_vcpu(i, vcpu, kvm) {
1265                         if (vcpu->arch.vcore != vc)
1266                                 continue;
1267                         if (new_lpcr & LPCR_ILE)
1268                                 vcpu->arch.intr_msr |= MSR_LE;
1269                         else
1270                                 vcpu->arch.intr_msr &= ~MSR_LE;
1271                 }
1272         }
1273
1274         /*
1275          * Userspace can only modify DPFD (default prefetch depth),
1276          * ILE (interrupt little-endian) and TC (translation control).
1277          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1278          */
1279         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1280         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1281                 mask |= LPCR_AIL;
1282         /*
1283          * On POWER9, allow userspace to enable large decrementer for the
1284          * guest, whether or not the host has it enabled.
1285          */
1286         if (cpu_has_feature(CPU_FTR_ARCH_300))
1287                 mask |= LPCR_LD;
1288
1289         /* Broken 32-bit version of LPCR must not clear top bits */
1290         if (preserve_top32)
1291                 mask &= 0xFFFFFFFF;
1292         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1293         spin_unlock(&vc->lock);
1294         mutex_unlock(&kvm->lock);
1295 }
1296
1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298                                  union kvmppc_one_reg *val)
1299 {
1300         int r = 0;
1301         long int i;
1302
1303         switch (id) {
1304         case KVM_REG_PPC_DEBUG_INST:
1305                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1306                 break;
1307         case KVM_REG_PPC_HIOR:
1308                 *val = get_reg_val(id, 0);
1309                 break;
1310         case KVM_REG_PPC_DABR:
1311                 *val = get_reg_val(id, vcpu->arch.dabr);
1312                 break;
1313         case KVM_REG_PPC_DABRX:
1314                 *val = get_reg_val(id, vcpu->arch.dabrx);
1315                 break;
1316         case KVM_REG_PPC_DSCR:
1317                 *val = get_reg_val(id, vcpu->arch.dscr);
1318                 break;
1319         case KVM_REG_PPC_PURR:
1320                 *val = get_reg_val(id, vcpu->arch.purr);
1321                 break;
1322         case KVM_REG_PPC_SPURR:
1323                 *val = get_reg_val(id, vcpu->arch.spurr);
1324                 break;
1325         case KVM_REG_PPC_AMR:
1326                 *val = get_reg_val(id, vcpu->arch.amr);
1327                 break;
1328         case KVM_REG_PPC_UAMOR:
1329                 *val = get_reg_val(id, vcpu->arch.uamor);
1330                 break;
1331         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332                 i = id - KVM_REG_PPC_MMCR0;
1333                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1334                 break;
1335         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336                 i = id - KVM_REG_PPC_PMC1;
1337                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1338                 break;
1339         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340                 i = id - KVM_REG_PPC_SPMC1;
1341                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1342                 break;
1343         case KVM_REG_PPC_SIAR:
1344                 *val = get_reg_val(id, vcpu->arch.siar);
1345                 break;
1346         case KVM_REG_PPC_SDAR:
1347                 *val = get_reg_val(id, vcpu->arch.sdar);
1348                 break;
1349         case KVM_REG_PPC_SIER:
1350                 *val = get_reg_val(id, vcpu->arch.sier);
1351                 break;
1352         case KVM_REG_PPC_IAMR:
1353                 *val = get_reg_val(id, vcpu->arch.iamr);
1354                 break;
1355         case KVM_REG_PPC_PSPB:
1356                 *val = get_reg_val(id, vcpu->arch.pspb);
1357                 break;
1358         case KVM_REG_PPC_DPDES:
1359                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1360                 break;
1361         case KVM_REG_PPC_VTB:
1362                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1363                 break;
1364         case KVM_REG_PPC_DAWR:
1365                 *val = get_reg_val(id, vcpu->arch.dawr);
1366                 break;
1367         case KVM_REG_PPC_DAWRX:
1368                 *val = get_reg_val(id, vcpu->arch.dawrx);
1369                 break;
1370         case KVM_REG_PPC_CIABR:
1371                 *val = get_reg_val(id, vcpu->arch.ciabr);
1372                 break;
1373         case KVM_REG_PPC_CSIGR:
1374                 *val = get_reg_val(id, vcpu->arch.csigr);
1375                 break;
1376         case KVM_REG_PPC_TACR:
1377                 *val = get_reg_val(id, vcpu->arch.tacr);
1378                 break;
1379         case KVM_REG_PPC_TCSCR:
1380                 *val = get_reg_val(id, vcpu->arch.tcscr);
1381                 break;
1382         case KVM_REG_PPC_PID:
1383                 *val = get_reg_val(id, vcpu->arch.pid);
1384                 break;
1385         case KVM_REG_PPC_ACOP:
1386                 *val = get_reg_val(id, vcpu->arch.acop);
1387                 break;
1388         case KVM_REG_PPC_WORT:
1389                 *val = get_reg_val(id, vcpu->arch.wort);
1390                 break;
1391         case KVM_REG_PPC_TIDR:
1392                 *val = get_reg_val(id, vcpu->arch.tid);
1393                 break;
1394         case KVM_REG_PPC_PSSCR:
1395                 *val = get_reg_val(id, vcpu->arch.psscr);
1396                 break;
1397         case KVM_REG_PPC_VPA_ADDR:
1398                 spin_lock(&vcpu->arch.vpa_update_lock);
1399                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1400                 spin_unlock(&vcpu->arch.vpa_update_lock);
1401                 break;
1402         case KVM_REG_PPC_VPA_SLB:
1403                 spin_lock(&vcpu->arch.vpa_update_lock);
1404                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1405                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1406                 spin_unlock(&vcpu->arch.vpa_update_lock);
1407                 break;
1408         case KVM_REG_PPC_VPA_DTL:
1409                 spin_lock(&vcpu->arch.vpa_update_lock);
1410                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1411                 val->vpaval.length = vcpu->arch.dtl.len;
1412                 spin_unlock(&vcpu->arch.vpa_update_lock);
1413                 break;
1414         case KVM_REG_PPC_TB_OFFSET:
1415                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1416                 break;
1417         case KVM_REG_PPC_LPCR:
1418         case KVM_REG_PPC_LPCR_64:
1419                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1420                 break;
1421         case KVM_REG_PPC_PPR:
1422                 *val = get_reg_val(id, vcpu->arch.ppr);
1423                 break;
1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425         case KVM_REG_PPC_TFHAR:
1426                 *val = get_reg_val(id, vcpu->arch.tfhar);
1427                 break;
1428         case KVM_REG_PPC_TFIAR:
1429                 *val = get_reg_val(id, vcpu->arch.tfiar);
1430                 break;
1431         case KVM_REG_PPC_TEXASR:
1432                 *val = get_reg_val(id, vcpu->arch.texasr);
1433                 break;
1434         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1435                 i = id - KVM_REG_PPC_TM_GPR0;
1436                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1437                 break;
1438         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1439         {
1440                 int j;
1441                 i = id - KVM_REG_PPC_TM_VSR0;
1442                 if (i < 32)
1443                         for (j = 0; j < TS_FPRWIDTH; j++)
1444                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1445                 else {
1446                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1447                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1448                         else
1449                                 r = -ENXIO;
1450                 }
1451                 break;
1452         }
1453         case KVM_REG_PPC_TM_CR:
1454                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1455                 break;
1456         case KVM_REG_PPC_TM_XER:
1457                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1458                 break;
1459         case KVM_REG_PPC_TM_LR:
1460                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1461                 break;
1462         case KVM_REG_PPC_TM_CTR:
1463                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1464                 break;
1465         case KVM_REG_PPC_TM_FPSCR:
1466                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1467                 break;
1468         case KVM_REG_PPC_TM_AMR:
1469                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1470                 break;
1471         case KVM_REG_PPC_TM_PPR:
1472                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1473                 break;
1474         case KVM_REG_PPC_TM_VRSAVE:
1475                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1476                 break;
1477         case KVM_REG_PPC_TM_VSCR:
1478                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1479                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1480                 else
1481                         r = -ENXIO;
1482                 break;
1483         case KVM_REG_PPC_TM_DSCR:
1484                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1485                 break;
1486         case KVM_REG_PPC_TM_TAR:
1487                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1488                 break;
1489 #endif
1490         case KVM_REG_PPC_ARCH_COMPAT:
1491                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1492                 break;
1493         default:
1494                 r = -EINVAL;
1495                 break;
1496         }
1497
1498         return r;
1499 }
1500
1501 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1502                                  union kvmppc_one_reg *val)
1503 {
1504         int r = 0;
1505         long int i;
1506         unsigned long addr, len;
1507
1508         switch (id) {
1509         case KVM_REG_PPC_HIOR:
1510                 /* Only allow this to be set to zero */
1511                 if (set_reg_val(id, *val))
1512                         r = -EINVAL;
1513                 break;
1514         case KVM_REG_PPC_DABR:
1515                 vcpu->arch.dabr = set_reg_val(id, *val);
1516                 break;
1517         case KVM_REG_PPC_DABRX:
1518                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1519                 break;
1520         case KVM_REG_PPC_DSCR:
1521                 vcpu->arch.dscr = set_reg_val(id, *val);
1522                 break;
1523         case KVM_REG_PPC_PURR:
1524                 vcpu->arch.purr = set_reg_val(id, *val);
1525                 break;
1526         case KVM_REG_PPC_SPURR:
1527                 vcpu->arch.spurr = set_reg_val(id, *val);
1528                 break;
1529         case KVM_REG_PPC_AMR:
1530                 vcpu->arch.amr = set_reg_val(id, *val);
1531                 break;
1532         case KVM_REG_PPC_UAMOR:
1533                 vcpu->arch.uamor = set_reg_val(id, *val);
1534                 break;
1535         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1536                 i = id - KVM_REG_PPC_MMCR0;
1537                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1538                 break;
1539         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1540                 i = id - KVM_REG_PPC_PMC1;
1541                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1542                 break;
1543         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1544                 i = id - KVM_REG_PPC_SPMC1;
1545                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1546                 break;
1547         case KVM_REG_PPC_SIAR:
1548                 vcpu->arch.siar = set_reg_val(id, *val);
1549                 break;
1550         case KVM_REG_PPC_SDAR:
1551                 vcpu->arch.sdar = set_reg_val(id, *val);
1552                 break;
1553         case KVM_REG_PPC_SIER:
1554                 vcpu->arch.sier = set_reg_val(id, *val);
1555                 break;
1556         case KVM_REG_PPC_IAMR:
1557                 vcpu->arch.iamr = set_reg_val(id, *val);
1558                 break;
1559         case KVM_REG_PPC_PSPB:
1560                 vcpu->arch.pspb = set_reg_val(id, *val);
1561                 break;
1562         case KVM_REG_PPC_DPDES:
1563                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1564                 break;
1565         case KVM_REG_PPC_VTB:
1566                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1567                 break;
1568         case KVM_REG_PPC_DAWR:
1569                 vcpu->arch.dawr = set_reg_val(id, *val);
1570                 break;
1571         case KVM_REG_PPC_DAWRX:
1572                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1573                 break;
1574         case KVM_REG_PPC_CIABR:
1575                 vcpu->arch.ciabr = set_reg_val(id, *val);
1576                 /* Don't allow setting breakpoints in hypervisor code */
1577                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1578                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1579                 break;
1580         case KVM_REG_PPC_CSIGR:
1581                 vcpu->arch.csigr = set_reg_val(id, *val);
1582                 break;
1583         case KVM_REG_PPC_TACR:
1584                 vcpu->arch.tacr = set_reg_val(id, *val);
1585                 break;
1586         case KVM_REG_PPC_TCSCR:
1587                 vcpu->arch.tcscr = set_reg_val(id, *val);
1588                 break;
1589         case KVM_REG_PPC_PID:
1590                 vcpu->arch.pid = set_reg_val(id, *val);
1591                 break;
1592         case KVM_REG_PPC_ACOP:
1593                 vcpu->arch.acop = set_reg_val(id, *val);
1594                 break;
1595         case KVM_REG_PPC_WORT:
1596                 vcpu->arch.wort = set_reg_val(id, *val);
1597                 break;
1598         case KVM_REG_PPC_TIDR:
1599                 vcpu->arch.tid = set_reg_val(id, *val);
1600                 break;
1601         case KVM_REG_PPC_PSSCR:
1602                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1603                 break;
1604         case KVM_REG_PPC_VPA_ADDR:
1605                 addr = set_reg_val(id, *val);
1606                 r = -EINVAL;
1607                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1608                               vcpu->arch.dtl.next_gpa))
1609                         break;
1610                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1611                 break;
1612         case KVM_REG_PPC_VPA_SLB:
1613                 addr = val->vpaval.addr;
1614                 len = val->vpaval.length;
1615                 r = -EINVAL;
1616                 if (addr && !vcpu->arch.vpa.next_gpa)
1617                         break;
1618                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1619                 break;
1620         case KVM_REG_PPC_VPA_DTL:
1621                 addr = val->vpaval.addr;
1622                 len = val->vpaval.length;
1623                 r = -EINVAL;
1624                 if (addr && (len < sizeof(struct dtl_entry) ||
1625                              !vcpu->arch.vpa.next_gpa))
1626                         break;
1627                 len -= len % sizeof(struct dtl_entry);
1628                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1629                 break;
1630         case KVM_REG_PPC_TB_OFFSET:
1631                 /*
1632                  * POWER9 DD1 has an erratum where writing TBU40 causes
1633                  * the timebase to lose ticks.  So we don't let the
1634                  * timebase offset be changed on P9 DD1.  (It is
1635                  * initialized to zero.)
1636                  */
1637                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1638                         break;
1639                 /* round up to multiple of 2^24 */
1640                 vcpu->arch.vcore->tb_offset =
1641                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1642                 break;
1643         case KVM_REG_PPC_LPCR:
1644                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1645                 break;
1646         case KVM_REG_PPC_LPCR_64:
1647                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1648                 break;
1649         case KVM_REG_PPC_PPR:
1650                 vcpu->arch.ppr = set_reg_val(id, *val);
1651                 break;
1652 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1653         case KVM_REG_PPC_TFHAR:
1654                 vcpu->arch.tfhar = set_reg_val(id, *val);
1655                 break;
1656         case KVM_REG_PPC_TFIAR:
1657                 vcpu->arch.tfiar = set_reg_val(id, *val);
1658                 break;
1659         case KVM_REG_PPC_TEXASR:
1660                 vcpu->arch.texasr = set_reg_val(id, *val);
1661                 break;
1662         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1663                 i = id - KVM_REG_PPC_TM_GPR0;
1664                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1665                 break;
1666         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1667         {
1668                 int j;
1669                 i = id - KVM_REG_PPC_TM_VSR0;
1670                 if (i < 32)
1671                         for (j = 0; j < TS_FPRWIDTH; j++)
1672                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1673                 else
1674                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1675                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1676                         else
1677                                 r = -ENXIO;
1678                 break;
1679         }
1680         case KVM_REG_PPC_TM_CR:
1681                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1682                 break;
1683         case KVM_REG_PPC_TM_XER:
1684                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1685                 break;
1686         case KVM_REG_PPC_TM_LR:
1687                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1688                 break;
1689         case KVM_REG_PPC_TM_CTR:
1690                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1691                 break;
1692         case KVM_REG_PPC_TM_FPSCR:
1693                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1694                 break;
1695         case KVM_REG_PPC_TM_AMR:
1696                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1697                 break;
1698         case KVM_REG_PPC_TM_PPR:
1699                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1700                 break;
1701         case KVM_REG_PPC_TM_VRSAVE:
1702                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1703                 break;
1704         case KVM_REG_PPC_TM_VSCR:
1705                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1706                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1707                 else
1708                         r = - ENXIO;
1709                 break;
1710         case KVM_REG_PPC_TM_DSCR:
1711                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1712                 break;
1713         case KVM_REG_PPC_TM_TAR:
1714                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1715                 break;
1716 #endif
1717         case KVM_REG_PPC_ARCH_COMPAT:
1718                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1719                 break;
1720         default:
1721                 r = -EINVAL;
1722                 break;
1723         }
1724
1725         return r;
1726 }
1727
1728 /*
1729  * On POWER9, threads are independent and can be in different partitions.
1730  * Therefore we consider each thread to be a subcore.
1731  * There is a restriction that all threads have to be in the same
1732  * MMU mode (radix or HPT), unfortunately, but since we only support
1733  * HPT guests on a HPT host so far, that isn't an impediment yet.
1734  */
1735 static int threads_per_vcore(void)
1736 {
1737         if (cpu_has_feature(CPU_FTR_ARCH_300))
1738                 return 1;
1739         return threads_per_subcore;
1740 }
1741
1742 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1743 {
1744         struct kvmppc_vcore *vcore;
1745
1746         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1747
1748         if (vcore == NULL)
1749                 return NULL;
1750
1751         spin_lock_init(&vcore->lock);
1752         spin_lock_init(&vcore->stoltb_lock);
1753         init_swait_queue_head(&vcore->wq);
1754         vcore->preempt_tb = TB_NIL;
1755         vcore->lpcr = kvm->arch.lpcr;
1756         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1757         vcore->kvm = kvm;
1758         INIT_LIST_HEAD(&vcore->preempt_list);
1759
1760         return vcore;
1761 }
1762
1763 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1764 static struct debugfs_timings_element {
1765         const char *name;
1766         size_t offset;
1767 } timings[] = {
1768         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1769         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1770         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1771         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1772         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1773 };
1774
1775 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1776
1777 struct debugfs_timings_state {
1778         struct kvm_vcpu *vcpu;
1779         unsigned int    buflen;
1780         char            buf[N_TIMINGS * 100];
1781 };
1782
1783 static int debugfs_timings_open(struct inode *inode, struct file *file)
1784 {
1785         struct kvm_vcpu *vcpu = inode->i_private;
1786         struct debugfs_timings_state *p;
1787
1788         p = kzalloc(sizeof(*p), GFP_KERNEL);
1789         if (!p)
1790                 return -ENOMEM;
1791
1792         kvm_get_kvm(vcpu->kvm);
1793         p->vcpu = vcpu;
1794         file->private_data = p;
1795
1796         return nonseekable_open(inode, file);
1797 }
1798
1799 static int debugfs_timings_release(struct inode *inode, struct file *file)
1800 {
1801         struct debugfs_timings_state *p = file->private_data;
1802
1803         kvm_put_kvm(p->vcpu->kvm);
1804         kfree(p);
1805         return 0;
1806 }
1807
1808 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1809                                     size_t len, loff_t *ppos)
1810 {
1811         struct debugfs_timings_state *p = file->private_data;
1812         struct kvm_vcpu *vcpu = p->vcpu;
1813         char *s, *buf_end;
1814         struct kvmhv_tb_accumulator tb;
1815         u64 count;
1816         loff_t pos;
1817         ssize_t n;
1818         int i, loops;
1819         bool ok;
1820
1821         if (!p->buflen) {
1822                 s = p->buf;
1823                 buf_end = s + sizeof(p->buf);
1824                 for (i = 0; i < N_TIMINGS; ++i) {
1825                         struct kvmhv_tb_accumulator *acc;
1826
1827                         acc = (struct kvmhv_tb_accumulator *)
1828                                 ((unsigned long)vcpu + timings[i].offset);
1829                         ok = false;
1830                         for (loops = 0; loops < 1000; ++loops) {
1831                                 count = acc->seqcount;
1832                                 if (!(count & 1)) {
1833                                         smp_rmb();
1834                                         tb = *acc;
1835                                         smp_rmb();
1836                                         if (count == acc->seqcount) {
1837                                                 ok = true;
1838                                                 break;
1839                                         }
1840                                 }
1841                                 udelay(1);
1842                         }
1843                         if (!ok)
1844                                 snprintf(s, buf_end - s, "%s: stuck\n",
1845                                         timings[i].name);
1846                         else
1847                                 snprintf(s, buf_end - s,
1848                                         "%s: %llu %llu %llu %llu\n",
1849                                         timings[i].name, count / 2,
1850                                         tb_to_ns(tb.tb_total),
1851                                         tb_to_ns(tb.tb_min),
1852                                         tb_to_ns(tb.tb_max));
1853                         s += strlen(s);
1854                 }
1855                 p->buflen = s - p->buf;
1856         }
1857
1858         pos = *ppos;
1859         if (pos >= p->buflen)
1860                 return 0;
1861         if (len > p->buflen - pos)
1862                 len = p->buflen - pos;
1863         n = copy_to_user(buf, p->buf + pos, len);
1864         if (n) {
1865                 if (n == len)
1866                         return -EFAULT;
1867                 len -= n;
1868         }
1869         *ppos = pos + len;
1870         return len;
1871 }
1872
1873 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1874                                      size_t len, loff_t *ppos)
1875 {
1876         return -EACCES;
1877 }
1878
1879 static const struct file_operations debugfs_timings_ops = {
1880         .owner   = THIS_MODULE,
1881         .open    = debugfs_timings_open,
1882         .release = debugfs_timings_release,
1883         .read    = debugfs_timings_read,
1884         .write   = debugfs_timings_write,
1885         .llseek  = generic_file_llseek,
1886 };
1887
1888 /* Create a debugfs directory for the vcpu */
1889 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1890 {
1891         char buf[16];
1892         struct kvm *kvm = vcpu->kvm;
1893
1894         snprintf(buf, sizeof(buf), "vcpu%u", id);
1895         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1896                 return;
1897         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1898         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1899                 return;
1900         vcpu->arch.debugfs_timings =
1901                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1902                                     vcpu, &debugfs_timings_ops);
1903 }
1904
1905 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1906 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1907 {
1908 }
1909 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1910
1911 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1912                                                    unsigned int id)
1913 {
1914         struct kvm_vcpu *vcpu;
1915         int err;
1916         int core;
1917         struct kvmppc_vcore *vcore;
1918
1919         err = -ENOMEM;
1920         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1921         if (!vcpu)
1922                 goto out;
1923
1924         err = kvm_vcpu_init(vcpu, kvm, id);
1925         if (err)
1926                 goto free_vcpu;
1927
1928         vcpu->arch.shared = &vcpu->arch.shregs;
1929 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1930         /*
1931          * The shared struct is never shared on HV,
1932          * so we can always use host endianness
1933          */
1934 #ifdef __BIG_ENDIAN__
1935         vcpu->arch.shared_big_endian = true;
1936 #else
1937         vcpu->arch.shared_big_endian = false;
1938 #endif
1939 #endif
1940         vcpu->arch.mmcr[0] = MMCR0_FC;
1941         vcpu->arch.ctrl = CTRL_RUNLATCH;
1942         /* default to host PVR, since we can't spoof it */
1943         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1944         spin_lock_init(&vcpu->arch.vpa_update_lock);
1945         spin_lock_init(&vcpu->arch.tbacct_lock);
1946         vcpu->arch.busy_preempt = TB_NIL;
1947         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1948
1949         /*
1950          * Set the default HFSCR for the guest from the host value.
1951          * This value is only used on POWER9.
1952          * On POWER9 DD1, TM doesn't work, so we make sure to
1953          * prevent the guest from using it.
1954          * On POWER9, we want to virtualize the doorbell facility, so we
1955          * turn off the HFSCR bit, which causes those instructions to trap.
1956          */
1957         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1958         if (!cpu_has_feature(CPU_FTR_TM))
1959                 vcpu->arch.hfscr &= ~HFSCR_TM;
1960         if (cpu_has_feature(CPU_FTR_ARCH_300))
1961                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1962
1963         kvmppc_mmu_book3s_hv_init(vcpu);
1964
1965         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1966
1967         init_waitqueue_head(&vcpu->arch.cpu_run);
1968
1969         mutex_lock(&kvm->lock);
1970         vcore = NULL;
1971         err = -EINVAL;
1972         core = id / kvm->arch.smt_mode;
1973         if (core < KVM_MAX_VCORES) {
1974                 vcore = kvm->arch.vcores[core];
1975                 if (!vcore) {
1976                         err = -ENOMEM;
1977                         vcore = kvmppc_vcore_create(kvm, core);
1978                         kvm->arch.vcores[core] = vcore;
1979                         kvm->arch.online_vcores++;
1980                 }
1981         }
1982         mutex_unlock(&kvm->lock);
1983
1984         if (!vcore)
1985                 goto free_vcpu;
1986
1987         spin_lock(&vcore->lock);
1988         ++vcore->num_threads;
1989         spin_unlock(&vcore->lock);
1990         vcpu->arch.vcore = vcore;
1991         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1992         vcpu->arch.thread_cpu = -1;
1993         vcpu->arch.prev_cpu = -1;
1994
1995         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1996         kvmppc_sanity_check(vcpu);
1997
1998         debugfs_vcpu_init(vcpu, id);
1999
2000         return vcpu;
2001
2002 free_vcpu:
2003         kmem_cache_free(kvm_vcpu_cache, vcpu);
2004 out:
2005         return ERR_PTR(err);
2006 }
2007
2008 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2009                               unsigned long flags)
2010 {
2011         int err;
2012         int esmt = 0;
2013
2014         if (flags)
2015                 return -EINVAL;
2016         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2017                 return -EINVAL;
2018         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2019                 /*
2020                  * On POWER8 (or POWER7), the threading mode is "strict",
2021                  * so we pack smt_mode vcpus per vcore.
2022                  */
2023                 if (smt_mode > threads_per_subcore)
2024                         return -EINVAL;
2025         } else {
2026                 /*
2027                  * On POWER9, the threading mode is "loose",
2028                  * so each vcpu gets its own vcore.
2029                  */
2030                 esmt = smt_mode;
2031                 smt_mode = 1;
2032         }
2033         mutex_lock(&kvm->lock);
2034         err = -EBUSY;
2035         if (!kvm->arch.online_vcores) {
2036                 kvm->arch.smt_mode = smt_mode;
2037                 kvm->arch.emul_smt_mode = esmt;
2038                 err = 0;
2039         }
2040         mutex_unlock(&kvm->lock);
2041
2042         return err;
2043 }
2044
2045 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2046 {
2047         if (vpa->pinned_addr)
2048                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2049                                         vpa->dirty);
2050 }
2051
2052 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2053 {
2054         spin_lock(&vcpu->arch.vpa_update_lock);
2055         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2056         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2057         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2058         spin_unlock(&vcpu->arch.vpa_update_lock);
2059         kvm_vcpu_uninit(vcpu);
2060         kmem_cache_free(kvm_vcpu_cache, vcpu);
2061 }
2062
2063 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2064 {
2065         /* Indicate we want to get back into the guest */
2066         return 1;
2067 }
2068
2069 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2070 {
2071         unsigned long dec_nsec, now;
2072
2073         now = get_tb();
2074         if (now > vcpu->arch.dec_expires) {
2075                 /* decrementer has already gone negative */
2076                 kvmppc_core_queue_dec(vcpu);
2077                 kvmppc_core_prepare_to_enter(vcpu);
2078                 return;
2079         }
2080         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2081                    / tb_ticks_per_sec;
2082         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2083         vcpu->arch.timer_running = 1;
2084 }
2085
2086 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2087 {
2088         vcpu->arch.ceded = 0;
2089         if (vcpu->arch.timer_running) {
2090                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2091                 vcpu->arch.timer_running = 0;
2092         }
2093 }
2094
2095 extern int __kvmppc_vcore_entry(void);
2096
2097 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2098                                    struct kvm_vcpu *vcpu)
2099 {
2100         u64 now;
2101
2102         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2103                 return;
2104         spin_lock_irq(&vcpu->arch.tbacct_lock);
2105         now = mftb();
2106         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2107                 vcpu->arch.stolen_logged;
2108         vcpu->arch.busy_preempt = now;
2109         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2110         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2111         --vc->n_runnable;
2112         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2113 }
2114
2115 static int kvmppc_grab_hwthread(int cpu)
2116 {
2117         struct paca_struct *tpaca;
2118         long timeout = 10000;
2119
2120         /*
2121          * ISA v3.0 idle routines do not set hwthread_state or test
2122          * hwthread_req, so they can not grab idle threads.
2123          */
2124         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2125                 WARN(1, "KVM: can not control sibling threads\n");
2126                 return -EBUSY;
2127         }
2128
2129         tpaca = &paca[cpu];
2130
2131         /* Ensure the thread won't go into the kernel if it wakes */
2132         tpaca->kvm_hstate.kvm_vcpu = NULL;
2133         tpaca->kvm_hstate.kvm_vcore = NULL;
2134         tpaca->kvm_hstate.napping = 0;
2135         smp_wmb();
2136         tpaca->kvm_hstate.hwthread_req = 1;
2137
2138         /*
2139          * If the thread is already executing in the kernel (e.g. handling
2140          * a stray interrupt), wait for it to get back to nap mode.
2141          * The smp_mb() is to ensure that our setting of hwthread_req
2142          * is visible before we look at hwthread_state, so if this
2143          * races with the code at system_reset_pSeries and the thread
2144          * misses our setting of hwthread_req, we are sure to see its
2145          * setting of hwthread_state, and vice versa.
2146          */
2147         smp_mb();
2148         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2149                 if (--timeout <= 0) {
2150                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2151                         return -EBUSY;
2152                 }
2153                 udelay(1);
2154         }
2155         return 0;
2156 }
2157
2158 static void kvmppc_release_hwthread(int cpu)
2159 {
2160         struct paca_struct *tpaca;
2161
2162         tpaca = &paca[cpu];
2163         tpaca->kvm_hstate.kvm_vcpu = NULL;
2164         tpaca->kvm_hstate.kvm_vcore = NULL;
2165         tpaca->kvm_hstate.kvm_split_mode = NULL;
2166         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2167                 tpaca->kvm_hstate.hwthread_req = 0;
2168
2169 }
2170
2171 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2172 {
2173         int i;
2174
2175         cpu = cpu_first_thread_sibling(cpu);
2176         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2177         /*
2178          * Make sure setting of bit in need_tlb_flush precedes
2179          * testing of cpu_in_guest bits.  The matching barrier on
2180          * the other side is the first smp_mb() in kvmppc_run_core().
2181          */
2182         smp_mb();
2183         for (i = 0; i < threads_per_core; ++i)
2184                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2185                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2186 }
2187
2188 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2189 {
2190         struct kvm *kvm = vcpu->kvm;
2191
2192         /*
2193          * With radix, the guest can do TLB invalidations itself,
2194          * and it could choose to use the local form (tlbiel) if
2195          * it is invalidating a translation that has only ever been
2196          * used on one vcpu.  However, that doesn't mean it has
2197          * only ever been used on one physical cpu, since vcpus
2198          * can move around between pcpus.  To cope with this, when
2199          * a vcpu moves from one pcpu to another, we need to tell
2200          * any vcpus running on the same core as this vcpu previously
2201          * ran to flush the TLB.  The TLB is shared between threads,
2202          * so we use a single bit in .need_tlb_flush for all 4 threads.
2203          */
2204         if (vcpu->arch.prev_cpu != pcpu) {
2205                 if (vcpu->arch.prev_cpu >= 0 &&
2206                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2207                     cpu_first_thread_sibling(pcpu))
2208                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2209                 vcpu->arch.prev_cpu = pcpu;
2210         }
2211 }
2212
2213 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2214 {
2215         int cpu;
2216         struct paca_struct *tpaca;
2217         struct kvm *kvm = vc->kvm;
2218
2219         cpu = vc->pcpu;
2220         if (vcpu) {
2221                 if (vcpu->arch.timer_running) {
2222                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2223                         vcpu->arch.timer_running = 0;
2224                 }
2225                 cpu += vcpu->arch.ptid;
2226                 vcpu->cpu = vc->pcpu;
2227                 vcpu->arch.thread_cpu = cpu;
2228                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2229         }
2230         tpaca = &paca[cpu];
2231         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2232         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2233         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2234         smp_wmb();
2235         tpaca->kvm_hstate.kvm_vcore = vc;
2236         if (cpu != smp_processor_id())
2237                 kvmppc_ipi_thread(cpu);
2238 }
2239
2240 static void kvmppc_wait_for_nap(void)
2241 {
2242         int cpu = smp_processor_id();
2243         int i, loops;
2244         int n_threads = threads_per_vcore();
2245
2246         if (n_threads <= 1)
2247                 return;
2248         for (loops = 0; loops < 1000000; ++loops) {
2249                 /*
2250                  * Check if all threads are finished.
2251                  * We set the vcore pointer when starting a thread
2252                  * and the thread clears it when finished, so we look
2253                  * for any threads that still have a non-NULL vcore ptr.
2254                  */
2255                 for (i = 1; i < n_threads; ++i)
2256                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2257                                 break;
2258                 if (i == n_threads) {
2259                         HMT_medium();
2260                         return;
2261                 }
2262                 HMT_low();
2263         }
2264         HMT_medium();
2265         for (i = 1; i < n_threads; ++i)
2266                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2267                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2268 }
2269
2270 /*
2271  * Check that we are on thread 0 and that any other threads in
2272  * this core are off-line.  Then grab the threads so they can't
2273  * enter the kernel.
2274  */
2275 static int on_primary_thread(void)
2276 {
2277         int cpu = smp_processor_id();
2278         int thr;
2279
2280         /* Are we on a primary subcore? */
2281         if (cpu_thread_in_subcore(cpu))
2282                 return 0;
2283
2284         thr = 0;
2285         while (++thr < threads_per_subcore)
2286                 if (cpu_online(cpu + thr))
2287                         return 0;
2288
2289         /* Grab all hw threads so they can't go into the kernel */
2290         for (thr = 1; thr < threads_per_subcore; ++thr) {
2291                 if (kvmppc_grab_hwthread(cpu + thr)) {
2292                         /* Couldn't grab one; let the others go */
2293                         do {
2294                                 kvmppc_release_hwthread(cpu + thr);
2295                         } while (--thr > 0);
2296                         return 0;
2297                 }
2298         }
2299         return 1;
2300 }
2301
2302 /*
2303  * A list of virtual cores for each physical CPU.
2304  * These are vcores that could run but their runner VCPU tasks are
2305  * (or may be) preempted.
2306  */
2307 struct preempted_vcore_list {
2308         struct list_head        list;
2309         spinlock_t              lock;
2310 };
2311
2312 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2313
2314 static void init_vcore_lists(void)
2315 {
2316         int cpu;
2317
2318         for_each_possible_cpu(cpu) {
2319                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2320                 spin_lock_init(&lp->lock);
2321                 INIT_LIST_HEAD(&lp->list);
2322         }
2323 }
2324
2325 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2326 {
2327         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2328
2329         vc->vcore_state = VCORE_PREEMPT;
2330         vc->pcpu = smp_processor_id();
2331         if (vc->num_threads < threads_per_vcore()) {
2332                 spin_lock(&lp->lock);
2333                 list_add_tail(&vc->preempt_list, &lp->list);
2334                 spin_unlock(&lp->lock);
2335         }
2336
2337         /* Start accumulating stolen time */
2338         kvmppc_core_start_stolen(vc);
2339 }
2340
2341 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2342 {
2343         struct preempted_vcore_list *lp;
2344
2345         kvmppc_core_end_stolen(vc);
2346         if (!list_empty(&vc->preempt_list)) {
2347                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2348                 spin_lock(&lp->lock);
2349                 list_del_init(&vc->preempt_list);
2350                 spin_unlock(&lp->lock);
2351         }
2352         vc->vcore_state = VCORE_INACTIVE;
2353 }
2354
2355 /*
2356  * This stores information about the virtual cores currently
2357  * assigned to a physical core.
2358  */
2359 struct core_info {
2360         int             n_subcores;
2361         int             max_subcore_threads;
2362         int             total_threads;
2363         int             subcore_threads[MAX_SUBCORES];
2364         struct kvmppc_vcore *vc[MAX_SUBCORES];
2365 };
2366
2367 /*
2368  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2369  * respectively in 2-way micro-threading (split-core) mode.
2370  */
2371 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2372
2373 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2374 {
2375         memset(cip, 0, sizeof(*cip));
2376         cip->n_subcores = 1;
2377         cip->max_subcore_threads = vc->num_threads;
2378         cip->total_threads = vc->num_threads;
2379         cip->subcore_threads[0] = vc->num_threads;
2380         cip->vc[0] = vc;
2381 }
2382
2383 static bool subcore_config_ok(int n_subcores, int n_threads)
2384 {
2385         /* Can only dynamically split if unsplit to begin with */
2386         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2387                 return false;
2388         if (n_subcores > MAX_SUBCORES)
2389                 return false;
2390         if (n_subcores > 1) {
2391                 if (!(dynamic_mt_modes & 2))
2392                         n_subcores = 4;
2393                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2394                         return false;
2395         }
2396
2397         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2398 }
2399
2400 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2401 {
2402         vc->entry_exit_map = 0;
2403         vc->in_guest = 0;
2404         vc->napping_threads = 0;
2405         vc->conferring_threads = 0;
2406 }
2407
2408 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2409 {
2410         int n_threads = vc->num_threads;
2411         int sub;
2412
2413         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2414                 return false;
2415
2416         if (n_threads < cip->max_subcore_threads)
2417                 n_threads = cip->max_subcore_threads;
2418         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2419                 return false;
2420         cip->max_subcore_threads = n_threads;
2421
2422         sub = cip->n_subcores;
2423         ++cip->n_subcores;
2424         cip->total_threads += vc->num_threads;
2425         cip->subcore_threads[sub] = vc->num_threads;
2426         cip->vc[sub] = vc;
2427         init_vcore_to_run(vc);
2428         list_del_init(&vc->preempt_list);
2429
2430         return true;
2431 }
2432
2433 /*
2434  * Work out whether it is possible to piggyback the execution of
2435  * vcore *pvc onto the execution of the other vcores described in *cip.
2436  */
2437 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2438                           int target_threads)
2439 {
2440         if (cip->total_threads + pvc->num_threads > target_threads)
2441                 return false;
2442
2443         return can_dynamic_split(pvc, cip);
2444 }
2445
2446 static void prepare_threads(struct kvmppc_vcore *vc)
2447 {
2448         int i;
2449         struct kvm_vcpu *vcpu;
2450
2451         for_each_runnable_thread(i, vcpu, vc) {
2452                 if (signal_pending(vcpu->arch.run_task))
2453                         vcpu->arch.ret = -EINTR;
2454                 else if (vcpu->arch.vpa.update_pending ||
2455                          vcpu->arch.slb_shadow.update_pending ||
2456                          vcpu->arch.dtl.update_pending)
2457                         vcpu->arch.ret = RESUME_GUEST;
2458                 else
2459                         continue;
2460                 kvmppc_remove_runnable(vc, vcpu);
2461                 wake_up(&vcpu->arch.cpu_run);
2462         }
2463 }
2464
2465 static void collect_piggybacks(struct core_info *cip, int target_threads)
2466 {
2467         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2468         struct kvmppc_vcore *pvc, *vcnext;
2469
2470         spin_lock(&lp->lock);
2471         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2472                 if (!spin_trylock(&pvc->lock))
2473                         continue;
2474                 prepare_threads(pvc);
2475                 if (!pvc->n_runnable) {
2476                         list_del_init(&pvc->preempt_list);
2477                         if (pvc->runner == NULL) {
2478                                 pvc->vcore_state = VCORE_INACTIVE;
2479                                 kvmppc_core_end_stolen(pvc);
2480                         }
2481                         spin_unlock(&pvc->lock);
2482                         continue;
2483                 }
2484                 if (!can_piggyback(pvc, cip, target_threads)) {
2485                         spin_unlock(&pvc->lock);
2486                         continue;
2487                 }
2488                 kvmppc_core_end_stolen(pvc);
2489                 pvc->vcore_state = VCORE_PIGGYBACK;
2490                 if (cip->total_threads >= target_threads)
2491                         break;
2492         }
2493         spin_unlock(&lp->lock);
2494 }
2495
2496 static bool recheck_signals(struct core_info *cip)
2497 {
2498         int sub, i;
2499         struct kvm_vcpu *vcpu;
2500
2501         for (sub = 0; sub < cip->n_subcores; ++sub)
2502                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2503                         if (signal_pending(vcpu->arch.run_task))
2504                                 return true;
2505         return false;
2506 }
2507
2508 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2509 {
2510         int still_running = 0, i;
2511         u64 now;
2512         long ret;
2513         struct kvm_vcpu *vcpu;
2514
2515         spin_lock(&vc->lock);
2516         now = get_tb();
2517         for_each_runnable_thread(i, vcpu, vc) {
2518                 /* cancel pending dec exception if dec is positive */
2519                 if (now < vcpu->arch.dec_expires &&
2520                     kvmppc_core_pending_dec(vcpu))
2521                         kvmppc_core_dequeue_dec(vcpu);
2522
2523                 trace_kvm_guest_exit(vcpu);
2524
2525                 ret = RESUME_GUEST;
2526                 if (vcpu->arch.trap)
2527                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2528                                                     vcpu->arch.run_task);
2529
2530                 vcpu->arch.ret = ret;
2531                 vcpu->arch.trap = 0;
2532
2533                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2534                         if (vcpu->arch.pending_exceptions)
2535                                 kvmppc_core_prepare_to_enter(vcpu);
2536                         if (vcpu->arch.ceded)
2537                                 kvmppc_set_timer(vcpu);
2538                         else
2539                                 ++still_running;
2540                 } else {
2541                         kvmppc_remove_runnable(vc, vcpu);
2542                         wake_up(&vcpu->arch.cpu_run);
2543                 }
2544         }
2545         if (!is_master) {
2546                 if (still_running > 0) {
2547                         kvmppc_vcore_preempt(vc);
2548                 } else if (vc->runner) {
2549                         vc->vcore_state = VCORE_PREEMPT;
2550                         kvmppc_core_start_stolen(vc);
2551                 } else {
2552                         vc->vcore_state = VCORE_INACTIVE;
2553                 }
2554                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2555                         /* make sure there's a candidate runner awake */
2556                         i = -1;
2557                         vcpu = next_runnable_thread(vc, &i);
2558                         wake_up(&vcpu->arch.cpu_run);
2559                 }
2560         }
2561         spin_unlock(&vc->lock);
2562 }
2563
2564 /*
2565  * Clear core from the list of active host cores as we are about to
2566  * enter the guest. Only do this if it is the primary thread of the
2567  * core (not if a subcore) that is entering the guest.
2568  */
2569 static inline int kvmppc_clear_host_core(unsigned int cpu)
2570 {
2571         int core;
2572
2573         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2574                 return 0;
2575         /*
2576          * Memory barrier can be omitted here as we will do a smp_wmb()
2577          * later in kvmppc_start_thread and we need ensure that state is
2578          * visible to other CPUs only after we enter guest.
2579          */
2580         core = cpu >> threads_shift;
2581         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2582         return 0;
2583 }
2584
2585 /*
2586  * Advertise this core as an active host core since we exited the guest
2587  * Only need to do this if it is the primary thread of the core that is
2588  * exiting.
2589  */
2590 static inline int kvmppc_set_host_core(unsigned int cpu)
2591 {
2592         int core;
2593
2594         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2595                 return 0;
2596
2597         /*
2598          * Memory barrier can be omitted here because we do a spin_unlock
2599          * immediately after this which provides the memory barrier.
2600          */
2601         core = cpu >> threads_shift;
2602         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2603         return 0;
2604 }
2605
2606 static void set_irq_happened(int trap)
2607 {
2608         switch (trap) {
2609         case BOOK3S_INTERRUPT_EXTERNAL:
2610                 local_paca->irq_happened |= PACA_IRQ_EE;
2611                 break;
2612         case BOOK3S_INTERRUPT_H_DOORBELL:
2613                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2614                 break;
2615         case BOOK3S_INTERRUPT_HMI:
2616                 local_paca->irq_happened |= PACA_IRQ_HMI;
2617                 break;
2618         }
2619 }
2620
2621 /*
2622  * Run a set of guest threads on a physical core.
2623  * Called with vc->lock held.
2624  */
2625 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2626 {
2627         struct kvm_vcpu *vcpu;
2628         int i;
2629         int srcu_idx;
2630         struct core_info core_info;
2631         struct kvmppc_vcore *pvc;
2632         struct kvm_split_mode split_info, *sip;
2633         int split, subcore_size, active;
2634         int sub;
2635         bool thr0_done;
2636         unsigned long cmd_bit, stat_bit;
2637         int pcpu, thr;
2638         int target_threads;
2639         int controlled_threads;
2640         int trap;
2641
2642         /*
2643          * Remove from the list any threads that have a signal pending
2644          * or need a VPA update done
2645          */
2646         prepare_threads(vc);
2647
2648         /* if the runner is no longer runnable, let the caller pick a new one */
2649         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2650                 return;
2651
2652         /*
2653          * Initialize *vc.
2654          */
2655         init_vcore_to_run(vc);
2656         vc->preempt_tb = TB_NIL;
2657
2658         /*
2659          * Number of threads that we will be controlling: the same as
2660          * the number of threads per subcore, except on POWER9,
2661          * where it's 1 because the threads are (mostly) independent.
2662          */
2663         controlled_threads = threads_per_vcore();
2664
2665         /*
2666          * Make sure we are running on primary threads, and that secondary
2667          * threads are offline.  Also check if the number of threads in this
2668          * guest are greater than the current system threads per guest.
2669          */
2670         if ((controlled_threads > 1) &&
2671             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2672                 for_each_runnable_thread(i, vcpu, vc) {
2673                         vcpu->arch.ret = -EBUSY;
2674                         kvmppc_remove_runnable(vc, vcpu);
2675                         wake_up(&vcpu->arch.cpu_run);
2676                 }
2677                 goto out;
2678         }
2679
2680         /*
2681          * See if we could run any other vcores on the physical core
2682          * along with this one.
2683          */
2684         init_core_info(&core_info, vc);
2685         pcpu = smp_processor_id();
2686         target_threads = controlled_threads;
2687         if (target_smt_mode && target_smt_mode < target_threads)
2688                 target_threads = target_smt_mode;
2689         if (vc->num_threads < target_threads)
2690                 collect_piggybacks(&core_info, target_threads);
2691
2692         /*
2693          * On radix, arrange for TLB flushing if necessary.
2694          * This has to be done before disabling interrupts since
2695          * it uses smp_call_function().
2696          */
2697         pcpu = smp_processor_id();
2698         if (kvm_is_radix(vc->kvm)) {
2699                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2700                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2701                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2702         }
2703
2704         /*
2705          * Hard-disable interrupts, and check resched flag and signals.
2706          * If we need to reschedule or deliver a signal, clean up
2707          * and return without going into the guest(s).
2708          */
2709         local_irq_disable();
2710         hard_irq_disable();
2711         if (lazy_irq_pending() || need_resched() ||
2712             recheck_signals(&core_info)) {
2713                 local_irq_enable();
2714                 vc->vcore_state = VCORE_INACTIVE;
2715                 /* Unlock all except the primary vcore */
2716                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2717                         pvc = core_info.vc[sub];
2718                         /* Put back on to the preempted vcores list */
2719                         kvmppc_vcore_preempt(pvc);
2720                         spin_unlock(&pvc->lock);
2721                 }
2722                 for (i = 0; i < controlled_threads; ++i)
2723                         kvmppc_release_hwthread(pcpu + i);
2724                 return;
2725         }
2726
2727         kvmppc_clear_host_core(pcpu);
2728
2729         /* Decide on micro-threading (split-core) mode */
2730         subcore_size = threads_per_subcore;
2731         cmd_bit = stat_bit = 0;
2732         split = core_info.n_subcores;
2733         sip = NULL;
2734         if (split > 1) {
2735                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2736                 if (split == 2 && (dynamic_mt_modes & 2)) {
2737                         cmd_bit = HID0_POWER8_1TO2LPAR;
2738                         stat_bit = HID0_POWER8_2LPARMODE;
2739                 } else {
2740                         split = 4;
2741                         cmd_bit = HID0_POWER8_1TO4LPAR;
2742                         stat_bit = HID0_POWER8_4LPARMODE;
2743                 }
2744                 subcore_size = MAX_SMT_THREADS / split;
2745                 sip = &split_info;
2746                 memset(&split_info, 0, sizeof(split_info));
2747                 split_info.rpr = mfspr(SPRN_RPR);
2748                 split_info.pmmar = mfspr(SPRN_PMMAR);
2749                 split_info.ldbar = mfspr(SPRN_LDBAR);
2750                 split_info.subcore_size = subcore_size;
2751                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2752                         split_info.vc[sub] = core_info.vc[sub];
2753                 /* order writes to split_info before kvm_split_mode pointer */
2754                 smp_wmb();
2755         }
2756         for (thr = 0; thr < controlled_threads; ++thr)
2757                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2758
2759         /* Initiate micro-threading (split-core) if required */
2760         if (cmd_bit) {
2761                 unsigned long hid0 = mfspr(SPRN_HID0);
2762
2763                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2764                 mb();
2765                 mtspr(SPRN_HID0, hid0);
2766                 isync();
2767                 for (;;) {
2768                         hid0 = mfspr(SPRN_HID0);
2769                         if (hid0 & stat_bit)
2770                                 break;
2771                         cpu_relax();
2772                 }
2773         }
2774
2775         /* Start all the threads */
2776         active = 0;
2777         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2778                 thr = subcore_thread_map[sub];
2779                 thr0_done = false;
2780                 active |= 1 << thr;
2781                 pvc = core_info.vc[sub];
2782                 pvc->pcpu = pcpu + thr;
2783                 for_each_runnable_thread(i, vcpu, pvc) {
2784                         kvmppc_start_thread(vcpu, pvc);
2785                         kvmppc_create_dtl_entry(vcpu, pvc);
2786                         trace_kvm_guest_enter(vcpu);
2787                         if (!vcpu->arch.ptid)
2788                                 thr0_done = true;
2789                         active |= 1 << (thr + vcpu->arch.ptid);
2790                 }
2791                 /*
2792                  * We need to start the first thread of each subcore
2793                  * even if it doesn't have a vcpu.
2794                  */
2795                 if (!thr0_done)
2796                         kvmppc_start_thread(NULL, pvc);
2797                 thr += pvc->num_threads;
2798         }
2799
2800         /*
2801          * Ensure that split_info.do_nap is set after setting
2802          * the vcore pointer in the PACA of the secondaries.
2803          */
2804         smp_mb();
2805         if (cmd_bit)
2806                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2807
2808         /*
2809          * When doing micro-threading, poke the inactive threads as well.
2810          * This gets them to the nap instruction after kvm_do_nap,
2811          * which reduces the time taken to unsplit later.
2812          */
2813         if (split > 1)
2814                 for (thr = 1; thr < threads_per_subcore; ++thr)
2815                         if (!(active & (1 << thr)))
2816                                 kvmppc_ipi_thread(pcpu + thr);
2817
2818         vc->vcore_state = VCORE_RUNNING;
2819         preempt_disable();
2820
2821         trace_kvmppc_run_core(vc, 0);
2822
2823         for (sub = 0; sub < core_info.n_subcores; ++sub)
2824                 spin_unlock(&core_info.vc[sub]->lock);
2825
2826         /*
2827          * Interrupts will be enabled once we get into the guest,
2828          * so tell lockdep that we're about to enable interrupts.
2829          */
2830         trace_hardirqs_on();
2831
2832         guest_enter();
2833
2834         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2835
2836         trap = __kvmppc_vcore_entry();
2837
2838         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2839
2840         guest_exit();
2841
2842         trace_hardirqs_off();
2843         set_irq_happened(trap);
2844
2845         spin_lock(&vc->lock);
2846         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2847         vc->vcore_state = VCORE_EXITING;
2848
2849         /* wait for secondary threads to finish writing their state to memory */
2850         kvmppc_wait_for_nap();
2851
2852         /* Return to whole-core mode if we split the core earlier */
2853         if (split > 1) {
2854                 unsigned long hid0 = mfspr(SPRN_HID0);
2855                 unsigned long loops = 0;
2856
2857                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2858                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2859                 mb();
2860                 mtspr(SPRN_HID0, hid0);
2861                 isync();
2862                 for (;;) {
2863                         hid0 = mfspr(SPRN_HID0);
2864                         if (!(hid0 & stat_bit))
2865                                 break;
2866                         cpu_relax();
2867                         ++loops;
2868                 }
2869                 split_info.do_nap = 0;
2870         }
2871
2872         kvmppc_set_host_core(pcpu);
2873
2874         local_irq_enable();
2875
2876         /* Let secondaries go back to the offline loop */
2877         for (i = 0; i < controlled_threads; ++i) {
2878                 kvmppc_release_hwthread(pcpu + i);
2879                 if (sip && sip->napped[i])
2880                         kvmppc_ipi_thread(pcpu + i);
2881                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2882         }
2883
2884         spin_unlock(&vc->lock);
2885
2886         /* make sure updates to secondary vcpu structs are visible now */
2887         smp_mb();
2888
2889         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2890                 pvc = core_info.vc[sub];
2891                 post_guest_process(pvc, pvc == vc);
2892         }
2893
2894         spin_lock(&vc->lock);
2895         preempt_enable();
2896
2897  out:
2898         vc->vcore_state = VCORE_INACTIVE;
2899         trace_kvmppc_run_core(vc, 1);
2900 }
2901
2902 /*
2903  * Wait for some other vcpu thread to execute us, and
2904  * wake us up when we need to handle something in the host.
2905  */
2906 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2907                                  struct kvm_vcpu *vcpu, int wait_state)
2908 {
2909         DEFINE_WAIT(wait);
2910
2911         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2912         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2913                 spin_unlock(&vc->lock);
2914                 schedule();
2915                 spin_lock(&vc->lock);
2916         }
2917         finish_wait(&vcpu->arch.cpu_run, &wait);
2918 }
2919
2920 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2921 {
2922         /* 10us base */
2923         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2924                 vc->halt_poll_ns = 10000;
2925         else
2926                 vc->halt_poll_ns *= halt_poll_ns_grow;
2927 }
2928
2929 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2930 {
2931         if (halt_poll_ns_shrink == 0)
2932                 vc->halt_poll_ns = 0;
2933         else
2934                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2935 }
2936
2937 #ifdef CONFIG_KVM_XICS
2938 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2939 {
2940         if (!xive_enabled())
2941                 return false;
2942         return vcpu->arch.xive_saved_state.pipr <
2943                 vcpu->arch.xive_saved_state.cppr;
2944 }
2945 #else
2946 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2947 {
2948         return false;
2949 }
2950 #endif /* CONFIG_KVM_XICS */
2951
2952 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2953 {
2954         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2955             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2956                 return true;
2957
2958         return false;
2959 }
2960
2961 /*
2962  * Check to see if any of the runnable vcpus on the vcore have pending
2963  * exceptions or are no longer ceded
2964  */
2965 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2966 {
2967         struct kvm_vcpu *vcpu;
2968         int i;
2969
2970         for_each_runnable_thread(i, vcpu, vc) {
2971                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2972                         return 1;
2973         }
2974
2975         return 0;
2976 }
2977
2978 /*
2979  * All the vcpus in this vcore are idle, so wait for a decrementer
2980  * or external interrupt to one of the vcpus.  vc->lock is held.
2981  */
2982 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2983 {
2984         ktime_t cur, start_poll, start_wait;
2985         int do_sleep = 1;
2986         u64 block_ns;
2987         DECLARE_SWAITQUEUE(wait);
2988
2989         /* Poll for pending exceptions and ceded state */
2990         cur = start_poll = ktime_get();
2991         if (vc->halt_poll_ns) {
2992                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2993                 ++vc->runner->stat.halt_attempted_poll;
2994
2995                 vc->vcore_state = VCORE_POLLING;
2996                 spin_unlock(&vc->lock);
2997
2998                 do {
2999                         if (kvmppc_vcore_check_block(vc)) {
3000                                 do_sleep = 0;
3001                                 break;
3002                         }
3003                         cur = ktime_get();
3004                 } while (single_task_running() && ktime_before(cur, stop));
3005
3006                 spin_lock(&vc->lock);
3007                 vc->vcore_state = VCORE_INACTIVE;
3008
3009                 if (!do_sleep) {
3010                         ++vc->runner->stat.halt_successful_poll;
3011                         goto out;
3012                 }
3013         }
3014
3015         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3016
3017         if (kvmppc_vcore_check_block(vc)) {
3018                 finish_swait(&vc->wq, &wait);
3019                 do_sleep = 0;
3020                 /* If we polled, count this as a successful poll */
3021                 if (vc->halt_poll_ns)
3022                         ++vc->runner->stat.halt_successful_poll;
3023                 goto out;
3024         }
3025
3026         start_wait = ktime_get();
3027
3028         vc->vcore_state = VCORE_SLEEPING;
3029         trace_kvmppc_vcore_blocked(vc, 0);
3030         spin_unlock(&vc->lock);
3031         schedule();
3032         finish_swait(&vc->wq, &wait);
3033         spin_lock(&vc->lock);
3034         vc->vcore_state = VCORE_INACTIVE;
3035         trace_kvmppc_vcore_blocked(vc, 1);
3036         ++vc->runner->stat.halt_successful_wait;
3037
3038         cur = ktime_get();
3039
3040 out:
3041         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3042
3043         /* Attribute wait time */
3044         if (do_sleep) {
3045                 vc->runner->stat.halt_wait_ns +=
3046                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3047                 /* Attribute failed poll time */
3048                 if (vc->halt_poll_ns)
3049                         vc->runner->stat.halt_poll_fail_ns +=
3050                                 ktime_to_ns(start_wait) -
3051                                 ktime_to_ns(start_poll);
3052         } else {
3053                 /* Attribute successful poll time */
3054                 if (vc->halt_poll_ns)
3055                         vc->runner->stat.halt_poll_success_ns +=
3056                                 ktime_to_ns(cur) -
3057                                 ktime_to_ns(start_poll);
3058         }
3059
3060         /* Adjust poll time */
3061         if (halt_poll_ns) {
3062                 if (block_ns <= vc->halt_poll_ns)
3063                         ;
3064                 /* We slept and blocked for longer than the max halt time */
3065                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3066                         shrink_halt_poll_ns(vc);
3067                 /* We slept and our poll time is too small */
3068                 else if (vc->halt_poll_ns < halt_poll_ns &&
3069                                 block_ns < halt_poll_ns)
3070                         grow_halt_poll_ns(vc);
3071                 if (vc->halt_poll_ns > halt_poll_ns)
3072                         vc->halt_poll_ns = halt_poll_ns;
3073         } else
3074                 vc->halt_poll_ns = 0;
3075
3076         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3077 }
3078
3079 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3080 {
3081         int n_ceded, i;
3082         struct kvmppc_vcore *vc;
3083         struct kvm_vcpu *v;
3084
3085         trace_kvmppc_run_vcpu_enter(vcpu);
3086
3087         kvm_run->exit_reason = 0;
3088         vcpu->arch.ret = RESUME_GUEST;
3089         vcpu->arch.trap = 0;
3090         kvmppc_update_vpas(vcpu);
3091
3092         /*
3093          * Synchronize with other threads in this virtual core
3094          */
3095         vc = vcpu->arch.vcore;
3096         spin_lock(&vc->lock);
3097         vcpu->arch.ceded = 0;
3098         vcpu->arch.run_task = current;
3099         vcpu->arch.kvm_run = kvm_run;
3100         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3101         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3102         vcpu->arch.busy_preempt = TB_NIL;
3103         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3104         ++vc->n_runnable;
3105
3106         /*
3107          * This happens the first time this is called for a vcpu.
3108          * If the vcore is already running, we may be able to start
3109          * this thread straight away and have it join in.
3110          */
3111         if (!signal_pending(current)) {
3112                 if (vc->vcore_state == VCORE_PIGGYBACK) {
3113                         if (spin_trylock(&vc->lock)) {
3114                                 if (vc->vcore_state == VCORE_RUNNING &&
3115                                     !VCORE_IS_EXITING(vc)) {
3116                                         kvmppc_create_dtl_entry(vcpu, vc);
3117                                         kvmppc_start_thread(vcpu, vc);
3118                                         trace_kvm_guest_enter(vcpu);
3119                                 }
3120                                 spin_unlock(&vc->lock);
3121                         }
3122                 } else if (vc->vcore_state == VCORE_RUNNING &&
3123                            !VCORE_IS_EXITING(vc)) {
3124                         kvmppc_create_dtl_entry(vcpu, vc);
3125                         kvmppc_start_thread(vcpu, vc);
3126                         trace_kvm_guest_enter(vcpu);
3127                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3128                         swake_up(&vc->wq);
3129                 }
3130
3131         }
3132
3133         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3134                !signal_pending(current)) {
3135                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3136                         kvmppc_vcore_end_preempt(vc);
3137
3138                 if (vc->vcore_state != VCORE_INACTIVE) {
3139                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3140                         continue;
3141                 }
3142                 for_each_runnable_thread(i, v, vc) {
3143                         kvmppc_core_prepare_to_enter(v);
3144                         if (signal_pending(v->arch.run_task)) {
3145                                 kvmppc_remove_runnable(vc, v);
3146                                 v->stat.signal_exits++;
3147                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3148                                 v->arch.ret = -EINTR;
3149                                 wake_up(&v->arch.cpu_run);
3150                         }
3151                 }
3152                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3153                         break;
3154                 n_ceded = 0;
3155                 for_each_runnable_thread(i, v, vc) {
3156                         if (!kvmppc_vcpu_woken(v))
3157                                 n_ceded += v->arch.ceded;
3158                         else
3159                                 v->arch.ceded = 0;
3160                 }
3161                 vc->runner = vcpu;
3162                 if (n_ceded == vc->n_runnable) {
3163                         kvmppc_vcore_blocked(vc);
3164                 } else if (need_resched()) {
3165                         kvmppc_vcore_preempt(vc);
3166                         /* Let something else run */
3167                         cond_resched_lock(&vc->lock);
3168                         if (vc->vcore_state == VCORE_PREEMPT)
3169                                 kvmppc_vcore_end_preempt(vc);
3170                 } else {
3171                         kvmppc_run_core(vc);
3172                 }
3173                 vc->runner = NULL;
3174         }
3175
3176         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3177                (vc->vcore_state == VCORE_RUNNING ||
3178                 vc->vcore_state == VCORE_EXITING ||
3179                 vc->vcore_state == VCORE_PIGGYBACK))
3180                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3181
3182         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3183                 kvmppc_vcore_end_preempt(vc);
3184
3185         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3186                 kvmppc_remove_runnable(vc, vcpu);
3187                 vcpu->stat.signal_exits++;
3188                 kvm_run->exit_reason = KVM_EXIT_INTR;
3189                 vcpu->arch.ret = -EINTR;
3190         }
3191
3192         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3193                 /* Wake up some vcpu to run the core */
3194                 i = -1;
3195                 v = next_runnable_thread(vc, &i);
3196                 wake_up(&v->arch.cpu_run);
3197         }
3198
3199         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3200         spin_unlock(&vc->lock);
3201         return vcpu->arch.ret;
3202 }
3203
3204 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3205 {
3206         int r;
3207         int srcu_idx;
3208         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3209         unsigned long user_tar = 0;
3210         unsigned int user_vrsave;
3211
3212         if (!vcpu->arch.sane) {
3213                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3214                 return -EINVAL;
3215         }
3216
3217         /*
3218          * Don't allow entry with a suspended transaction, because
3219          * the guest entry/exit code will lose it.
3220          * If the guest has TM enabled, save away their TM-related SPRs
3221          * (they will get restored by the TM unavailable interrupt).
3222          */
3223 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3224         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3225             (current->thread.regs->msr & MSR_TM)) {
3226                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3227                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3228                         run->fail_entry.hardware_entry_failure_reason = 0;
3229                         return -EINVAL;
3230                 }
3231                 /* Enable TM so we can read the TM SPRs */
3232                 mtmsr(mfmsr() | MSR_TM);
3233                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3234                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3235                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3236                 current->thread.regs->msr &= ~MSR_TM;
3237         }
3238 #endif
3239
3240         kvmppc_core_prepare_to_enter(vcpu);
3241
3242         /* No need to go into the guest when all we'll do is come back out */
3243         if (signal_pending(current)) {
3244                 run->exit_reason = KVM_EXIT_INTR;
3245                 return -EINTR;
3246         }
3247
3248         atomic_inc(&vcpu->kvm->arch.vcpus_running);
3249         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3250         smp_mb();
3251
3252         /* On the first time here, set up HTAB and VRMA */
3253         if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
3254                 r = kvmppc_hv_setup_htab_rma(vcpu);
3255                 if (r)
3256                         goto out;
3257         }
3258
3259         flush_all_to_thread(current);
3260
3261         /* Save userspace EBB and other register values */
3262         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3263                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3264                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3265                 ebb_regs[2] = mfspr(SPRN_BESCR);
3266                 user_tar = mfspr(SPRN_TAR);
3267         }
3268         user_vrsave = mfspr(SPRN_VRSAVE);
3269
3270         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3271         vcpu->arch.pgdir = current->mm->pgd;
3272         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3273
3274         do {
3275                 r = kvmppc_run_vcpu(run, vcpu);
3276
3277                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3278                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3279                         trace_kvm_hcall_enter(vcpu);
3280                         r = kvmppc_pseries_do_hcall(vcpu);
3281                         trace_kvm_hcall_exit(vcpu, r);
3282                         kvmppc_core_prepare_to_enter(vcpu);
3283                 } else if (r == RESUME_PAGE_FAULT) {
3284                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3285                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3286                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3287                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3288                 } else if (r == RESUME_PASSTHROUGH) {
3289                         if (WARN_ON(xive_enabled()))
3290                                 r = H_SUCCESS;
3291                         else
3292                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3293                 }
3294         } while (is_kvmppc_resume_guest(r));
3295
3296         /* Restore userspace EBB and other register values */
3297         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3298                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3299                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3300                 mtspr(SPRN_BESCR, ebb_regs[2]);
3301                 mtspr(SPRN_TAR, user_tar);
3302                 mtspr(SPRN_FSCR, current->thread.fscr);
3303         }
3304         mtspr(SPRN_VRSAVE, user_vrsave);
3305
3306  out:
3307         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3308         atomic_dec(&vcpu->kvm->arch.vcpus_running);
3309         return r;
3310 }
3311
3312 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3313                                      int linux_psize)
3314 {
3315         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3316
3317         if (!def->shift)
3318                 return;
3319         (*sps)->page_shift = def->shift;
3320         (*sps)->slb_enc = def->sllp;
3321         (*sps)->enc[0].page_shift = def->shift;
3322         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3323         /*
3324          * Add 16MB MPSS support if host supports it
3325          */
3326         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3327                 (*sps)->enc[1].page_shift = 24;
3328                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3329         }
3330         (*sps)++;
3331 }
3332
3333 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3334                                          struct kvm_ppc_smmu_info *info)
3335 {
3336         struct kvm_ppc_one_seg_page_size *sps;
3337
3338         /*
3339          * Since we don't yet support HPT guests on a radix host,
3340          * return an error if the host uses radix.
3341          */
3342         if (radix_enabled())
3343                 return -EINVAL;
3344
3345         /*
3346          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3347          * POWER7 doesn't support keys for instruction accesses,
3348          * POWER8 and POWER9 do.
3349          */
3350         info->data_keys = 32;
3351         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3352
3353         info->flags = KVM_PPC_PAGE_SIZES_REAL;
3354         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3355                 info->flags |= KVM_PPC_1T_SEGMENTS;
3356         info->slb_size = mmu_slb_size;
3357
3358         /* We only support these sizes for now, and no muti-size segments */
3359         sps = &info->sps[0];
3360         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3361         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3362         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3363
3364         return 0;
3365 }
3366
3367 /*
3368  * Get (and clear) the dirty memory log for a memory slot.
3369  */
3370 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3371                                          struct kvm_dirty_log *log)
3372 {
3373         struct kvm_memslots *slots;
3374         struct kvm_memory_slot *memslot;
3375         int i, r;
3376         unsigned long n;
3377         unsigned long *buf;
3378         struct kvm_vcpu *vcpu;
3379
3380         mutex_lock(&kvm->slots_lock);
3381
3382         r = -EINVAL;
3383         if (log->slot >= KVM_USER_MEM_SLOTS)
3384                 goto out;
3385
3386         slots = kvm_memslots(kvm);
3387         memslot = id_to_memslot(slots, log->slot);
3388         r = -ENOENT;
3389         if (!memslot->dirty_bitmap)
3390                 goto out;
3391
3392         /*
3393          * Use second half of bitmap area because radix accumulates
3394          * bits in the first half.
3395          */
3396         n = kvm_dirty_bitmap_bytes(memslot);
3397         buf = memslot->dirty_bitmap + n / sizeof(long);
3398         memset(buf, 0, n);
3399
3400         if (kvm_is_radix(kvm))
3401                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3402         else
3403                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3404         if (r)
3405                 goto out;
3406
3407         /* Harvest dirty bits from VPA and DTL updates */
3408         /* Note: we never modify the SLB shadow buffer areas */
3409         kvm_for_each_vcpu(i, vcpu, kvm) {
3410                 spin_lock(&vcpu->arch.vpa_update_lock);
3411                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3412                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3413                 spin_unlock(&vcpu->arch.vpa_update_lock);
3414         }
3415
3416         r = -EFAULT;
3417         if (copy_to_user(log->dirty_bitmap, buf, n))
3418                 goto out;
3419
3420         r = 0;
3421 out:
3422         mutex_unlock(&kvm->slots_lock);
3423         return r;
3424 }
3425
3426 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3427                                         struct kvm_memory_slot *dont)
3428 {
3429         if (!dont || free->arch.rmap != dont->arch.rmap) {
3430                 vfree(free->arch.rmap);
3431                 free->arch.rmap = NULL;
3432         }
3433 }
3434
3435 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3436                                          unsigned long npages)
3437 {
3438         /*
3439          * For now, if radix_enabled() then we only support radix guests,
3440          * and in that case we don't need the rmap array.
3441          */
3442         if (radix_enabled()) {
3443                 slot->arch.rmap = NULL;
3444                 return 0;
3445         }
3446
3447         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3448         if (!slot->arch.rmap)
3449                 return -ENOMEM;
3450
3451         return 0;
3452 }
3453
3454 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3455                                         struct kvm_memory_slot *memslot,
3456                                         const struct kvm_userspace_memory_region *mem)
3457 {
3458         return 0;
3459 }
3460
3461 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3462                                 const struct kvm_userspace_memory_region *mem,
3463                                 const struct kvm_memory_slot *old,
3464                                 const struct kvm_memory_slot *new)
3465 {
3466         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3467         struct kvm_memslots *slots;
3468         struct kvm_memory_slot *memslot;
3469
3470         /*
3471          * If we are making a new memslot, it might make
3472          * some address that was previously cached as emulated
3473          * MMIO be no longer emulated MMIO, so invalidate
3474          * all the caches of emulated MMIO translations.
3475          */
3476         if (npages)
3477                 atomic64_inc(&kvm->arch.mmio_update);
3478
3479         if (npages && old->npages && !kvm_is_radix(kvm)) {
3480                 /*
3481                  * If modifying a memslot, reset all the rmap dirty bits.
3482                  * If this is a new memslot, we don't need to do anything
3483                  * since the rmap array starts out as all zeroes,
3484                  * i.e. no pages are dirty.
3485                  */
3486                 slots = kvm_memslots(kvm);
3487                 memslot = id_to_memslot(slots, mem->slot);
3488                 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3489         }
3490 }
3491
3492 /*
3493  * Update LPCR values in kvm->arch and in vcores.
3494  * Caller must hold kvm->lock.
3495  */
3496 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3497 {
3498         long int i;
3499         u32 cores_done = 0;
3500
3501         if ((kvm->arch.lpcr & mask) == lpcr)
3502                 return;
3503
3504         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3505
3506         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3507                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3508                 if (!vc)
3509                         continue;
3510                 spin_lock(&vc->lock);
3511                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3512                 spin_unlock(&vc->lock);
3513                 if (++cores_done >= kvm->arch.online_vcores)
3514                         break;
3515         }
3516 }
3517
3518 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3519 {
3520         return;
3521 }
3522
3523 static void kvmppc_setup_partition_table(struct kvm *kvm)
3524 {
3525         unsigned long dw0, dw1;
3526
3527         if (!kvm_is_radix(kvm)) {
3528                 /* PS field - page size for VRMA */
3529                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3530                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3531                 /* HTABSIZE and HTABORG fields */
3532                 dw0 |= kvm->arch.sdr1;
3533
3534                 /* Second dword as set by userspace */
3535                 dw1 = kvm->arch.process_table;
3536         } else {
3537                 dw0 = PATB_HR | radix__get_tree_size() |
3538                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3539                 dw1 = PATB_GR | kvm->arch.process_table;
3540         }
3541
3542         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3543 }
3544
3545 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3546 {
3547         int err = 0;
3548         struct kvm *kvm = vcpu->kvm;
3549         unsigned long hva;
3550         struct kvm_memory_slot *memslot;
3551         struct vm_area_struct *vma;
3552         unsigned long lpcr = 0, senc;
3553         unsigned long psize, porder;
3554         int srcu_idx;
3555
3556         mutex_lock(&kvm->lock);
3557         if (kvm->arch.hpte_setup_done)
3558                 goto out;       /* another vcpu beat us to it */
3559
3560         /* Allocate hashed page table (if not done already) and reset it */
3561         if (!kvm->arch.hpt.virt) {
3562                 int order = KVM_DEFAULT_HPT_ORDER;
3563                 struct kvm_hpt_info info;
3564
3565                 err = kvmppc_allocate_hpt(&info, order);
3566                 /* If we get here, it means userspace didn't specify a
3567                  * size explicitly.  So, try successively smaller
3568                  * sizes if the default failed. */
3569                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3570                         err  = kvmppc_allocate_hpt(&info, order);
3571
3572                 if (err < 0) {
3573                         pr_err("KVM: Couldn't alloc HPT\n");
3574                         goto out;
3575                 }
3576
3577                 kvmppc_set_hpt(kvm, &info);
3578         }
3579
3580         /* Look up the memslot for guest physical address 0 */
3581         srcu_idx = srcu_read_lock(&kvm->srcu);
3582         memslot = gfn_to_memslot(kvm, 0);
3583
3584         /* We must have some memory at 0 by now */
3585         err = -EINVAL;
3586         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3587                 goto out_srcu;
3588
3589         /* Look up the VMA for the start of this memory slot */
3590         hva = memslot->userspace_addr;
3591         down_read(&current->mm->mmap_sem);
3592         vma = find_vma(current->mm, hva);
3593         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3594                 goto up_out;
3595
3596         psize = vma_kernel_pagesize(vma);
3597         porder = __ilog2(psize);
3598
3599         up_read(&current->mm->mmap_sem);
3600
3601         /* We can handle 4k, 64k or 16M pages in the VRMA */
3602         err = -EINVAL;
3603         if (!(psize == 0x1000 || psize == 0x10000 ||
3604               psize == 0x1000000))
3605                 goto out_srcu;
3606
3607         senc = slb_pgsize_encoding(psize);
3608         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3609                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3610         /* Create HPTEs in the hash page table for the VRMA */
3611         kvmppc_map_vrma(vcpu, memslot, porder);
3612
3613         /* Update VRMASD field in the LPCR */
3614         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3615                 /* the -4 is to account for senc values starting at 0x10 */
3616                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3617                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3618         } else {
3619                 kvmppc_setup_partition_table(kvm);
3620         }
3621
3622         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3623         smp_wmb();
3624         kvm->arch.hpte_setup_done = 1;
3625         err = 0;
3626  out_srcu:
3627         srcu_read_unlock(&kvm->srcu, srcu_idx);
3628  out:
3629         mutex_unlock(&kvm->lock);
3630         return err;
3631
3632  up_out:
3633         up_read(&current->mm->mmap_sem);
3634         goto out_srcu;
3635 }
3636
3637 #ifdef CONFIG_KVM_XICS
3638 /*
3639  * Allocate a per-core structure for managing state about which cores are
3640  * running in the host versus the guest and for exchanging data between
3641  * real mode KVM and CPU running in the host.
3642  * This is only done for the first VM.
3643  * The allocated structure stays even if all VMs have stopped.
3644  * It is only freed when the kvm-hv module is unloaded.
3645  * It's OK for this routine to fail, we just don't support host
3646  * core operations like redirecting H_IPI wakeups.
3647  */
3648 void kvmppc_alloc_host_rm_ops(void)
3649 {
3650         struct kvmppc_host_rm_ops *ops;
3651         unsigned long l_ops;
3652         int cpu, core;
3653         int size;
3654
3655         /* Not the first time here ? */
3656         if (kvmppc_host_rm_ops_hv != NULL)
3657                 return;
3658
3659         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3660         if (!ops)
3661                 return;
3662
3663         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3664         ops->rm_core = kzalloc(size, GFP_KERNEL);
3665
3666         if (!ops->rm_core) {
3667                 kfree(ops);
3668                 return;
3669         }
3670
3671         cpus_read_lock();
3672
3673         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3674                 if (!cpu_online(cpu))
3675                         continue;
3676
3677                 core = cpu >> threads_shift;
3678                 ops->rm_core[core].rm_state.in_host = 1;
3679         }
3680
3681         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3682
3683         /*
3684          * Make the contents of the kvmppc_host_rm_ops structure visible
3685          * to other CPUs before we assign it to the global variable.
3686          * Do an atomic assignment (no locks used here), but if someone
3687          * beats us to it, just free our copy and return.
3688          */
3689         smp_wmb();
3690         l_ops = (unsigned long) ops;
3691
3692         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3693                 cpus_read_unlock();
3694                 kfree(ops->rm_core);
3695                 kfree(ops);
3696                 return;
3697         }
3698
3699         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3700                                              "ppc/kvm_book3s:prepare",
3701                                              kvmppc_set_host_core,
3702                                              kvmppc_clear_host_core);
3703         cpus_read_unlock();
3704 }
3705
3706 void kvmppc_free_host_rm_ops(void)
3707 {
3708         if (kvmppc_host_rm_ops_hv) {
3709                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3710                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3711                 kfree(kvmppc_host_rm_ops_hv);
3712                 kvmppc_host_rm_ops_hv = NULL;
3713         }
3714 }
3715 #endif
3716
3717 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3718 {
3719         unsigned long lpcr, lpid;
3720         char buf[32];
3721         int ret;
3722
3723         /* Allocate the guest's logical partition ID */
3724
3725         lpid = kvmppc_alloc_lpid();
3726         if ((long)lpid < 0)
3727                 return -ENOMEM;
3728         kvm->arch.lpid = lpid;
3729
3730         kvmppc_alloc_host_rm_ops();
3731
3732         /*
3733          * Since we don't flush the TLB when tearing down a VM,
3734          * and this lpid might have previously been used,
3735          * make sure we flush on each core before running the new VM.
3736          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3737          * does this flush for us.
3738          */
3739         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3740                 cpumask_setall(&kvm->arch.need_tlb_flush);
3741
3742         /* Start out with the default set of hcalls enabled */
3743         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3744                sizeof(kvm->arch.enabled_hcalls));
3745
3746         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3747                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3748
3749         /* Init LPCR for virtual RMA mode */
3750         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3751         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3752         lpcr &= LPCR_PECE | LPCR_LPES;
3753         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3754                 LPCR_VPM0 | LPCR_VPM1;
3755         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3756                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3757         /* On POWER8 turn on online bit to enable PURR/SPURR */
3758         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3759                 lpcr |= LPCR_ONL;
3760         /*
3761          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3762          * Set HVICE bit to enable hypervisor virtualization interrupts.
3763          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3764          * be unnecessary but better safe than sorry in case we re-enable
3765          * EE in HV mode with this LPCR still set)
3766          */
3767         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3768                 lpcr &= ~LPCR_VPM0;
3769                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3770
3771                 /*
3772                  * If xive is enabled, we route 0x500 interrupts directly
3773                  * to the guest.
3774                  */
3775                 if (xive_enabled())
3776                         lpcr |= LPCR_LPES;
3777         }
3778
3779         /*
3780          * For now, if the host uses radix, the guest must be radix.
3781          */
3782         if (radix_enabled()) {
3783                 kvm->arch.radix = 1;
3784                 lpcr &= ~LPCR_VPM1;
3785                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3786                 ret = kvmppc_init_vm_radix(kvm);
3787                 if (ret) {
3788                         kvmppc_free_lpid(kvm->arch.lpid);
3789                         return ret;
3790                 }
3791                 kvmppc_setup_partition_table(kvm);
3792         }
3793
3794         kvm->arch.lpcr = lpcr;
3795
3796         /* Initialization for future HPT resizes */
3797         kvm->arch.resize_hpt = NULL;
3798
3799         /*
3800          * Work out how many sets the TLB has, for the use of
3801          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3802          */
3803         if (kvm_is_radix(kvm))
3804                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3805         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3806                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3807         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3808                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3809         else
3810                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3811
3812         /*
3813          * Track that we now have a HV mode VM active. This blocks secondary
3814          * CPU threads from coming online.
3815          * On POWER9, we only need to do this for HPT guests on a radix
3816          * host, which is not yet supported.
3817          */
3818         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3819                 kvm_hv_vm_activated();
3820
3821         /*
3822          * Initialize smt_mode depending on processor.
3823          * POWER8 and earlier have to use "strict" threading, where
3824          * all vCPUs in a vcore have to run on the same (sub)core,
3825          * whereas on POWER9 the threads can each run a different
3826          * guest.
3827          */
3828         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3829                 kvm->arch.smt_mode = threads_per_subcore;
3830         else
3831                 kvm->arch.smt_mode = 1;
3832         kvm->arch.emul_smt_mode = 1;
3833
3834         /*
3835          * Create a debugfs directory for the VM
3836          */
3837         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3838         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3839         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3840                 kvmppc_mmu_debugfs_init(kvm);
3841
3842         return 0;
3843 }
3844
3845 static void kvmppc_free_vcores(struct kvm *kvm)
3846 {
3847         long int i;
3848
3849         for (i = 0; i < KVM_MAX_VCORES; ++i)
3850                 kfree(kvm->arch.vcores[i]);
3851         kvm->arch.online_vcores = 0;
3852 }
3853
3854 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3855 {
3856         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3857
3858         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3859                 kvm_hv_vm_deactivated();
3860
3861         kvmppc_free_vcores(kvm);
3862
3863         kvmppc_free_lpid(kvm->arch.lpid);
3864
3865         if (kvm_is_radix(kvm))
3866                 kvmppc_free_radix(kvm);
3867         else
3868                 kvmppc_free_hpt(&kvm->arch.hpt);
3869
3870         kvmppc_free_pimap(kvm);
3871 }
3872
3873 /* We don't need to emulate any privileged instructions or dcbz */
3874 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3875                                      unsigned int inst, int *advance)
3876 {
3877         return EMULATE_FAIL;
3878 }
3879
3880 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3881                                         ulong spr_val)
3882 {
3883         return EMULATE_FAIL;
3884 }
3885
3886 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3887                                         ulong *spr_val)
3888 {
3889         return EMULATE_FAIL;
3890 }
3891
3892 static int kvmppc_core_check_processor_compat_hv(void)
3893 {
3894         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3895             !cpu_has_feature(CPU_FTR_ARCH_206))
3896                 return -EIO;
3897
3898         return 0;
3899 }
3900
3901 #ifdef CONFIG_KVM_XICS
3902
3903 void kvmppc_free_pimap(struct kvm *kvm)
3904 {
3905         kfree(kvm->arch.pimap);
3906 }
3907
3908 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3909 {
3910         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3911 }
3912
3913 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3914 {
3915         struct irq_desc *desc;
3916         struct kvmppc_irq_map *irq_map;
3917         struct kvmppc_passthru_irqmap *pimap;
3918         struct irq_chip *chip;
3919         int i, rc = 0;
3920
3921         if (!kvm_irq_bypass)
3922                 return 1;
3923
3924         desc = irq_to_desc(host_irq);
3925         if (!desc)
3926                 return -EIO;
3927
3928         mutex_lock(&kvm->lock);
3929
3930         pimap = kvm->arch.pimap;
3931         if (pimap == NULL) {
3932                 /* First call, allocate structure to hold IRQ map */
3933                 pimap = kvmppc_alloc_pimap();
3934                 if (pimap == NULL) {
3935                         mutex_unlock(&kvm->lock);
3936                         return -ENOMEM;
3937                 }
3938                 kvm->arch.pimap = pimap;
3939         }
3940
3941         /*
3942          * For now, we only support interrupts for which the EOI operation
3943          * is an OPAL call followed by a write to XIRR, since that's
3944          * what our real-mode EOI code does, or a XIVE interrupt
3945          */
3946         chip = irq_data_get_irq_chip(&desc->irq_data);
3947         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3948                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3949                         host_irq, guest_gsi);
3950                 mutex_unlock(&kvm->lock);
3951                 return -ENOENT;
3952         }
3953
3954         /*
3955          * See if we already have an entry for this guest IRQ number.
3956          * If it's mapped to a hardware IRQ number, that's an error,
3957          * otherwise re-use this entry.
3958          */
3959         for (i = 0; i < pimap->n_mapped; i++) {
3960                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3961                         if (pimap->mapped[i].r_hwirq) {
3962                                 mutex_unlock(&kvm->lock);
3963                                 return -EINVAL;
3964                         }
3965                         break;
3966                 }
3967         }
3968
3969         if (i == KVMPPC_PIRQ_MAPPED) {
3970                 mutex_unlock(&kvm->lock);
3971                 return -EAGAIN;         /* table is full */
3972         }
3973
3974         irq_map = &pimap->mapped[i];
3975
3976         irq_map->v_hwirq = guest_gsi;
3977         irq_map->desc = desc;
3978
3979         /*
3980          * Order the above two stores before the next to serialize with
3981          * the KVM real mode handler.
3982          */
3983         smp_wmb();
3984         irq_map->r_hwirq = desc->irq_data.hwirq;
3985
3986         if (i == pimap->n_mapped)
3987                 pimap->n_mapped++;
3988
3989         if (xive_enabled())
3990                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3991         else
3992                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3993         if (rc)
3994                 irq_map->r_hwirq = 0;
3995
3996         mutex_unlock(&kvm->lock);
3997
3998         return 0;
3999 }
4000
4001 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4002 {
4003         struct irq_desc *desc;
4004         struct kvmppc_passthru_irqmap *pimap;
4005         int i, rc = 0;
4006
4007         if (!kvm_irq_bypass)
4008                 return 0;
4009
4010         desc = irq_to_desc(host_irq);
4011         if (!desc)
4012                 return -EIO;
4013
4014         mutex_lock(&kvm->lock);
4015         if (!kvm->arch.pimap)
4016                 goto unlock;
4017
4018         pimap = kvm->arch.pimap;
4019
4020         for (i = 0; i < pimap->n_mapped; i++) {
4021                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4022                         break;
4023         }
4024
4025         if (i == pimap->n_mapped) {
4026                 mutex_unlock(&kvm->lock);
4027                 return -ENODEV;
4028         }
4029
4030         if (xive_enabled())
4031                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4032         else
4033                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4034
4035         /* invalidate the entry (what do do on error from the above ?) */
4036         pimap->mapped[i].r_hwirq = 0;
4037
4038         /*
4039          * We don't free this structure even when the count goes to
4040          * zero. The structure is freed when we destroy the VM.
4041          */
4042  unlock:
4043         mutex_unlock(&kvm->lock);
4044         return rc;
4045 }
4046
4047 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4048                                              struct irq_bypass_producer *prod)
4049 {
4050         int ret = 0;
4051         struct kvm_kernel_irqfd *irqfd =
4052                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4053
4054         irqfd->producer = prod;
4055
4056         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4057         if (ret)
4058                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4059                         prod->irq, irqfd->gsi, ret);
4060
4061         return ret;
4062 }
4063
4064 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4065                                               struct irq_bypass_producer *prod)
4066 {
4067         int ret;
4068         struct kvm_kernel_irqfd *irqfd =
4069                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4070
4071         irqfd->producer = NULL;
4072
4073         /*
4074          * When producer of consumer is unregistered, we change back to
4075          * default external interrupt handling mode - KVM real mode
4076          * will switch back to host.
4077          */
4078         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4079         if (ret)
4080                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4081                         prod->irq, irqfd->gsi, ret);
4082 }
4083 #endif
4084
4085 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4086                                  unsigned int ioctl, unsigned long arg)
4087 {
4088         struct kvm *kvm __maybe_unused = filp->private_data;
4089         void __user *argp = (void __user *)arg;
4090         long r;
4091
4092         switch (ioctl) {
4093
4094         case KVM_PPC_ALLOCATE_HTAB: {
4095                 u32 htab_order;
4096
4097                 r = -EFAULT;
4098                 if (get_user(htab_order, (u32 __user *)argp))
4099                         break;
4100                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4101                 if (r)
4102                         break;
4103                 r = 0;
4104                 break;
4105         }
4106
4107         case KVM_PPC_GET_HTAB_FD: {
4108                 struct kvm_get_htab_fd ghf;
4109
4110                 r = -EFAULT;
4111                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4112                         break;
4113                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4114                 break;
4115         }
4116
4117         case KVM_PPC_RESIZE_HPT_PREPARE: {
4118                 struct kvm_ppc_resize_hpt rhpt;
4119
4120                 r = -EFAULT;
4121                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4122                         break;
4123
4124                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4125                 break;
4126         }
4127
4128         case KVM_PPC_RESIZE_HPT_COMMIT: {
4129                 struct kvm_ppc_resize_hpt rhpt;
4130
4131                 r = -EFAULT;
4132                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4133                         break;
4134
4135                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4136                 break;
4137         }
4138
4139         default:
4140                 r = -ENOTTY;
4141         }
4142
4143         return r;
4144 }
4145
4146 /*
4147  * List of hcall numbers to enable by default.
4148  * For compatibility with old userspace, we enable by default
4149  * all hcalls that were implemented before the hcall-enabling
4150  * facility was added.  Note this list should not include H_RTAS.
4151  */
4152 static unsigned int default_hcall_list[] = {
4153         H_REMOVE,
4154         H_ENTER,
4155         H_READ,
4156         H_PROTECT,
4157         H_BULK_REMOVE,
4158         H_GET_TCE,
4159         H_PUT_TCE,
4160         H_SET_DABR,
4161         H_SET_XDABR,
4162         H_CEDE,
4163         H_PROD,
4164         H_CONFER,
4165         H_REGISTER_VPA,
4166 #ifdef CONFIG_KVM_XICS
4167         H_EOI,
4168         H_CPPR,
4169         H_IPI,
4170         H_IPOLL,
4171         H_XIRR,
4172         H_XIRR_X,
4173 #endif
4174         0
4175 };
4176
4177 static void init_default_hcalls(void)
4178 {
4179         int i;
4180         unsigned int hcall;
4181
4182         for (i = 0; default_hcall_list[i]; ++i) {
4183                 hcall = default_hcall_list[i];
4184                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4185                 __set_bit(hcall / 4, default_enabled_hcalls);
4186         }
4187 }
4188
4189 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4190 {
4191         unsigned long lpcr;
4192         int radix;
4193
4194         /* If not on a POWER9, reject it */
4195         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4196                 return -ENODEV;
4197
4198         /* If any unknown flags set, reject it */
4199         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4200                 return -EINVAL;
4201
4202         /* We can't change a guest to/from radix yet */
4203         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4204         if (radix != kvm_is_radix(kvm))
4205                 return -EINVAL;
4206
4207         /* GR (guest radix) bit in process_table field must match */
4208         if (!!(cfg->process_table & PATB_GR) != radix)
4209                 return -EINVAL;
4210
4211         /* Process table size field must be reasonable, i.e. <= 24 */
4212         if ((cfg->process_table & PRTS_MASK) > 24)
4213                 return -EINVAL;
4214
4215         kvm->arch.process_table = cfg->process_table;
4216         kvmppc_setup_partition_table(kvm);
4217
4218         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4219         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4220
4221         return 0;
4222 }
4223
4224 static struct kvmppc_ops kvm_ops_hv = {
4225         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4226         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4227         .get_one_reg = kvmppc_get_one_reg_hv,
4228         .set_one_reg = kvmppc_set_one_reg_hv,
4229         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4230         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4231         .set_msr     = kvmppc_set_msr_hv,
4232         .vcpu_run    = kvmppc_vcpu_run_hv,
4233         .vcpu_create = kvmppc_core_vcpu_create_hv,
4234         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4235         .check_requests = kvmppc_core_check_requests_hv,
4236         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4237         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4238         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4239         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4240         .unmap_hva = kvm_unmap_hva_hv,
4241         .unmap_hva_range = kvm_unmap_hva_range_hv,
4242         .age_hva  = kvm_age_hva_hv,
4243         .test_age_hva = kvm_test_age_hva_hv,
4244         .set_spte_hva = kvm_set_spte_hva_hv,
4245         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4246         .free_memslot = kvmppc_core_free_memslot_hv,
4247         .create_memslot = kvmppc_core_create_memslot_hv,
4248         .init_vm =  kvmppc_core_init_vm_hv,
4249         .destroy_vm = kvmppc_core_destroy_vm_hv,
4250         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4251         .emulate_op = kvmppc_core_emulate_op_hv,
4252         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4253         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4254         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4255         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4256         .hcall_implemented = kvmppc_hcall_impl_hv,
4257 #ifdef CONFIG_KVM_XICS
4258         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4259         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4260 #endif
4261         .configure_mmu = kvmhv_configure_mmu,
4262         .get_rmmu_info = kvmhv_get_rmmu_info,
4263         .set_smt_mode = kvmhv_set_smt_mode,
4264 };
4265
4266 static int kvm_init_subcore_bitmap(void)
4267 {
4268         int i, j;
4269         int nr_cores = cpu_nr_cores();
4270         struct sibling_subcore_state *sibling_subcore_state;
4271
4272         for (i = 0; i < nr_cores; i++) {
4273                 int first_cpu = i * threads_per_core;
4274                 int node = cpu_to_node(first_cpu);
4275
4276                 /* Ignore if it is already allocated. */
4277                 if (paca[first_cpu].sibling_subcore_state)
4278                         continue;
4279
4280                 sibling_subcore_state =
4281                         kmalloc_node(sizeof(struct sibling_subcore_state),
4282                                                         GFP_KERNEL, node);
4283                 if (!sibling_subcore_state)
4284                         return -ENOMEM;
4285
4286                 memset(sibling_subcore_state, 0,
4287                                 sizeof(struct sibling_subcore_state));
4288
4289                 for (j = 0; j < threads_per_core; j++) {
4290                         int cpu = first_cpu + j;
4291
4292                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4293                 }
4294         }
4295         return 0;
4296 }
4297
4298 static int kvmppc_radix_possible(void)
4299 {
4300         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4301 }
4302
4303 static int kvmppc_book3s_init_hv(void)
4304 {
4305         int r;
4306         /*
4307          * FIXME!! Do we need to check on all cpus ?
4308          */
4309         r = kvmppc_core_check_processor_compat_hv();
4310         if (r < 0)
4311                 return -ENODEV;
4312
4313         r = kvm_init_subcore_bitmap();
4314         if (r)
4315                 return r;
4316
4317         /*
4318          * We need a way of accessing the XICS interrupt controller,
4319          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4320          * indirectly, via OPAL.
4321          */
4322 #ifdef CONFIG_SMP
4323         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4324                 struct device_node *np;
4325
4326                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4327                 if (!np) {
4328                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4329                         return -ENODEV;
4330                 }
4331         }
4332 #endif
4333
4334         kvm_ops_hv.owner = THIS_MODULE;
4335         kvmppc_hv_ops = &kvm_ops_hv;
4336
4337         init_default_hcalls();
4338
4339         init_vcore_lists();
4340
4341         r = kvmppc_mmu_hv_init();
4342         if (r)
4343                 return r;
4344
4345         if (kvmppc_radix_possible())
4346                 r = kvmppc_radix_init();
4347         return r;
4348 }
4349
4350 static void kvmppc_book3s_exit_hv(void)
4351 {
4352         kvmppc_free_host_rm_ops();
4353         if (kvmppc_radix_possible())
4354                 kvmppc_radix_exit();
4355         kvmppc_hv_ops = NULL;
4356 }
4357
4358 module_init(kvmppc_book3s_init_hv);
4359 module_exit(kvmppc_book3s_exit_hv);
4360 MODULE_LICENSE("GPL");
4361 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4362 MODULE_ALIAS("devname:kvm");
4363