Merge remote-tracking branches 'asoc/topic/max9878', 'asoc/topic/max98927', 'asoc...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30 #include <linux/debugfs.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/kvm_ppc.h>
34 #include <asm/kvm_book3s.h>
35 #include <asm/book3s/64/mmu-hash.h>
36 #include <asm/hvcall.h>
37 #include <asm/synch.h>
38 #include <asm/ppc-opcode.h>
39 #include <asm/cputable.h>
40
41 #include "trace_hv.h"
42
43 //#define DEBUG_RESIZE_HPT      1
44
45 #ifdef DEBUG_RESIZE_HPT
46 #define resize_hpt_debug(resize, ...)                           \
47         do {                                                    \
48                 printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
49                 printk(__VA_ARGS__);                            \
50         } while (0)
51 #else
52 #define resize_hpt_debug(resize, ...)                           \
53         do { } while (0)
54 #endif
55
56 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
57                                 long pte_index, unsigned long pteh,
58                                 unsigned long ptel, unsigned long *pte_idx_ret);
59
60 struct kvm_resize_hpt {
61         /* These fields read-only after init */
62         struct kvm *kvm;
63         struct work_struct work;
64         u32 order;
65
66         /* These fields protected by kvm->lock */
67         int error;
68         bool prepare_done;
69
70         /* Private to the work thread, until prepare_done is true,
71          * then protected by kvm->resize_hpt_sem */
72         struct kvm_hpt_info hpt;
73 };
74
75 static void kvmppc_rmap_reset(struct kvm *kvm);
76
77 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
78 {
79         unsigned long hpt = 0;
80         int cma = 0;
81         struct page *page = NULL;
82         struct revmap_entry *rev;
83         unsigned long npte;
84
85         if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
86                 return -EINVAL;
87
88         page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
89         if (page) {
90                 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
91                 memset((void *)hpt, 0, (1ul << order));
92                 cma = 1;
93         }
94
95         if (!hpt)
96                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT
97                                        |__GFP_NOWARN, order - PAGE_SHIFT);
98
99         if (!hpt)
100                 return -ENOMEM;
101
102         /* HPTEs are 2**4 bytes long */
103         npte = 1ul << (order - 4);
104
105         /* Allocate reverse map array */
106         rev = vmalloc(sizeof(struct revmap_entry) * npte);
107         if (!rev) {
108                 pr_err("kvmppc_allocate_hpt: Couldn't alloc reverse map array\n");
109                 if (cma)
110                         kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
111                 else
112                         free_pages(hpt, order - PAGE_SHIFT);
113                 return -ENOMEM;
114         }
115
116         info->order = order;
117         info->virt = hpt;
118         info->cma = cma;
119         info->rev = rev;
120
121         return 0;
122 }
123
124 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
125 {
126         atomic64_set(&kvm->arch.mmio_update, 0);
127         kvm->arch.hpt = *info;
128         kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
129
130         pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
131                  info->virt, (long)info->order, kvm->arch.lpid);
132 }
133
134 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
135 {
136         long err = -EBUSY;
137         struct kvm_hpt_info info;
138
139         if (kvm_is_radix(kvm))
140                 return -EINVAL;
141
142         mutex_lock(&kvm->lock);
143         if (kvm->arch.hpte_setup_done) {
144                 kvm->arch.hpte_setup_done = 0;
145                 /* order hpte_setup_done vs. vcpus_running */
146                 smp_mb();
147                 if (atomic_read(&kvm->arch.vcpus_running)) {
148                         kvm->arch.hpte_setup_done = 1;
149                         goto out;
150                 }
151         }
152         if (kvm->arch.hpt.order == order) {
153                 /* We already have a suitable HPT */
154
155                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
156                 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
157                 /*
158                  * Reset all the reverse-mapping chains for all memslots
159                  */
160                 kvmppc_rmap_reset(kvm);
161                 /* Ensure that each vcpu will flush its TLB on next entry. */
162                 cpumask_setall(&kvm->arch.need_tlb_flush);
163                 err = 0;
164                 goto out;
165         }
166
167         if (kvm->arch.hpt.virt)
168                 kvmppc_free_hpt(&kvm->arch.hpt);
169
170         err = kvmppc_allocate_hpt(&info, order);
171         if (err < 0)
172                 goto out;
173         kvmppc_set_hpt(kvm, &info);
174
175 out:
176         mutex_unlock(&kvm->lock);
177         return err;
178 }
179
180 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 {
182         vfree(info->rev);
183         if (info->cma)
184                 kvm_free_hpt_cma(virt_to_page(info->virt),
185                                  1 << (info->order - PAGE_SHIFT));
186         else if (info->virt)
187                 free_pages(info->virt, info->order - PAGE_SHIFT);
188         info->virt = 0;
189         info->order = 0;
190 }
191
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194 {
195         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196 }
197
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200 {
201         return (pgsize == 0x10000) ? 0x1000 : 0;
202 }
203
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205                      unsigned long porder)
206 {
207         unsigned long i;
208         unsigned long npages;
209         unsigned long hp_v, hp_r;
210         unsigned long addr, hash;
211         unsigned long psize;
212         unsigned long hp0, hp1;
213         unsigned long idx_ret;
214         long ret;
215         struct kvm *kvm = vcpu->kvm;
216
217         psize = 1ul << porder;
218         npages = memslot->npages >> (porder - PAGE_SHIFT);
219
220         /* VRMA can't be > 1TB */
221         if (npages > 1ul << (40 - porder))
222                 npages = 1ul << (40 - porder);
223         /* Can't use more than 1 HPTE per HPTEG */
224         if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225                 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226
227         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229         hp1 = hpte1_pgsize_encoding(psize) |
230                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231
232         for (i = 0; i < npages; ++i) {
233                 addr = i << porder;
234                 /* can't use hpt_hash since va > 64 bits */
235                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236                         & kvmppc_hpt_mask(&kvm->arch.hpt);
237                 /*
238                  * We assume that the hash table is empty and no
239                  * vcpus are using it at this stage.  Since we create
240                  * at most one HPTE per HPTEG, we just assume entry 7
241                  * is available and use it.
242                  */
243                 hash = (hash << 3) + 7;
244                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245                 hp_r = hp1 | addr;
246                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247                                                  &idx_ret);
248                 if (ret != H_SUCCESS) {
249                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250                                addr, ret);
251                         break;
252                 }
253         }
254 }
255
256 int kvmppc_mmu_hv_init(void)
257 {
258         unsigned long host_lpid, rsvd_lpid;
259
260         if (!cpu_has_feature(CPU_FTR_HVMODE))
261                 return -EINVAL;
262
263         /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
264         host_lpid = mfspr(SPRN_LPID);
265         rsvd_lpid = LPID_RSVD;
266
267         kvmppc_init_lpid(rsvd_lpid + 1);
268
269         kvmppc_claim_lpid(host_lpid);
270         /* rsvd_lpid is reserved for use in partition switching */
271         kvmppc_claim_lpid(rsvd_lpid);
272
273         return 0;
274 }
275
276 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
277 {
278         unsigned long msr = vcpu->arch.intr_msr;
279
280         /* If transactional, change to suspend mode on IRQ delivery */
281         if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
282                 msr |= MSR_TS_S;
283         else
284                 msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
285         kvmppc_set_msr(vcpu, msr);
286 }
287
288 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
289                                 long pte_index, unsigned long pteh,
290                                 unsigned long ptel, unsigned long *pte_idx_ret)
291 {
292         long ret;
293
294         /* Protect linux PTE lookup from page table destruction */
295         rcu_read_lock_sched();  /* this disables preemption too */
296         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
297                                 current->mm->pgd, false, pte_idx_ret);
298         rcu_read_unlock_sched();
299         if (ret == H_TOO_HARD) {
300                 /* this can't happen */
301                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
302                 ret = H_RESOURCE;       /* or something */
303         }
304         return ret;
305
306 }
307
308 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
309                                                          gva_t eaddr)
310 {
311         u64 mask;
312         int i;
313
314         for (i = 0; i < vcpu->arch.slb_nr; i++) {
315                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
316                         continue;
317
318                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
319                         mask = ESID_MASK_1T;
320                 else
321                         mask = ESID_MASK;
322
323                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
324                         return &vcpu->arch.slb[i];
325         }
326         return NULL;
327 }
328
329 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
330                         unsigned long ea)
331 {
332         unsigned long ra_mask;
333
334         ra_mask = hpte_page_size(v, r) - 1;
335         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
336 }
337
338 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
339                         struct kvmppc_pte *gpte, bool data, bool iswrite)
340 {
341         struct kvm *kvm = vcpu->kvm;
342         struct kvmppc_slb *slbe;
343         unsigned long slb_v;
344         unsigned long pp, key;
345         unsigned long v, orig_v, gr;
346         __be64 *hptep;
347         int index;
348         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
349
350         /* Get SLB entry */
351         if (virtmode) {
352                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
353                 if (!slbe)
354                         return -EINVAL;
355                 slb_v = slbe->origv;
356         } else {
357                 /* real mode access */
358                 slb_v = vcpu->kvm->arch.vrma_slb_v;
359         }
360
361         preempt_disable();
362         /* Find the HPTE in the hash table */
363         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
364                                          HPTE_V_VALID | HPTE_V_ABSENT);
365         if (index < 0) {
366                 preempt_enable();
367                 return -ENOENT;
368         }
369         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
370         v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
371         if (cpu_has_feature(CPU_FTR_ARCH_300))
372                 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
373         gr = kvm->arch.hpt.rev[index].guest_rpte;
374
375         unlock_hpte(hptep, orig_v);
376         preempt_enable();
377
378         gpte->eaddr = eaddr;
379         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
380
381         /* Get PP bits and key for permission check */
382         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
383         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
384         key &= slb_v;
385
386         /* Calculate permissions */
387         gpte->may_read = hpte_read_permission(pp, key);
388         gpte->may_write = hpte_write_permission(pp, key);
389         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
390
391         /* Storage key permission check for POWER7 */
392         if (data && virtmode) {
393                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
394                 if (amrfield & 1)
395                         gpte->may_read = 0;
396                 if (amrfield & 2)
397                         gpte->may_write = 0;
398         }
399
400         /* Get the guest physical address */
401         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
402         return 0;
403 }
404
405 /*
406  * Quick test for whether an instruction is a load or a store.
407  * If the instruction is a load or a store, then this will indicate
408  * which it is, at least on server processors.  (Embedded processors
409  * have some external PID instructions that don't follow the rule
410  * embodied here.)  If the instruction isn't a load or store, then
411  * this doesn't return anything useful.
412  */
413 static int instruction_is_store(unsigned int instr)
414 {
415         unsigned int mask;
416
417         mask = 0x10000000;
418         if ((instr & 0xfc000000) == 0x7c000000)
419                 mask = 0x100;           /* major opcode 31 */
420         return (instr & mask) != 0;
421 }
422
423 int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
424                            unsigned long gpa, gva_t ea, int is_store)
425 {
426         u32 last_inst;
427
428         /*
429          * If we fail, we just return to the guest and try executing it again.
430          */
431         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
432                 EMULATE_DONE)
433                 return RESUME_GUEST;
434
435         /*
436          * WARNING: We do not know for sure whether the instruction we just
437          * read from memory is the same that caused the fault in the first
438          * place.  If the instruction we read is neither an load or a store,
439          * then it can't access memory, so we don't need to worry about
440          * enforcing access permissions.  So, assuming it is a load or
441          * store, we just check that its direction (load or store) is
442          * consistent with the original fault, since that's what we
443          * checked the access permissions against.  If there is a mismatch
444          * we just return and retry the instruction.
445          */
446
447         if (instruction_is_store(last_inst) != !!is_store)
448                 return RESUME_GUEST;
449
450         /*
451          * Emulated accesses are emulated by looking at the hash for
452          * translation once, then performing the access later. The
453          * translation could be invalidated in the meantime in which
454          * point performing the subsequent memory access on the old
455          * physical address could possibly be a security hole for the
456          * guest (but not the host).
457          *
458          * This is less of an issue for MMIO stores since they aren't
459          * globally visible. It could be an issue for MMIO loads to
460          * a certain extent but we'll ignore it for now.
461          */
462
463         vcpu->arch.paddr_accessed = gpa;
464         vcpu->arch.vaddr_accessed = ea;
465         return kvmppc_emulate_mmio(run, vcpu);
466 }
467
468 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
469                                 unsigned long ea, unsigned long dsisr)
470 {
471         struct kvm *kvm = vcpu->kvm;
472         unsigned long hpte[3], r;
473         unsigned long hnow_v, hnow_r;
474         __be64 *hptep;
475         unsigned long mmu_seq, psize, pte_size;
476         unsigned long gpa_base, gfn_base;
477         unsigned long gpa, gfn, hva, pfn;
478         struct kvm_memory_slot *memslot;
479         unsigned long *rmap;
480         struct revmap_entry *rev;
481         struct page *page, *pages[1];
482         long index, ret, npages;
483         bool is_ci;
484         unsigned int writing, write_ok;
485         struct vm_area_struct *vma;
486         unsigned long rcbits;
487         long mmio_update;
488
489         if (kvm_is_radix(kvm))
490                 return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);
491
492         /*
493          * Real-mode code has already searched the HPT and found the
494          * entry we're interested in.  Lock the entry and check that
495          * it hasn't changed.  If it has, just return and re-execute the
496          * instruction.
497          */
498         if (ea != vcpu->arch.pgfault_addr)
499                 return RESUME_GUEST;
500
501         if (vcpu->arch.pgfault_cache) {
502                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
503                 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
504                         r = vcpu->arch.pgfault_cache->rpte;
505                         psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
506                         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
507                         gfn_base = gpa_base >> PAGE_SHIFT;
508                         gpa = gpa_base | (ea & (psize - 1));
509                         return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
510                                                 dsisr & DSISR_ISSTORE);
511                 }
512         }
513         index = vcpu->arch.pgfault_index;
514         hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
515         rev = &kvm->arch.hpt.rev[index];
516         preempt_disable();
517         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
518                 cpu_relax();
519         hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
520         hpte[1] = be64_to_cpu(hptep[1]);
521         hpte[2] = r = rev->guest_rpte;
522         unlock_hpte(hptep, hpte[0]);
523         preempt_enable();
524
525         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
526                 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
527                 hpte[1] = hpte_new_to_old_r(hpte[1]);
528         }
529         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
530             hpte[1] != vcpu->arch.pgfault_hpte[1])
531                 return RESUME_GUEST;
532
533         /* Translate the logical address and get the page */
534         psize = hpte_page_size(hpte[0], r);
535         gpa_base = r & HPTE_R_RPN & ~(psize - 1);
536         gfn_base = gpa_base >> PAGE_SHIFT;
537         gpa = gpa_base | (ea & (psize - 1));
538         gfn = gpa >> PAGE_SHIFT;
539         memslot = gfn_to_memslot(kvm, gfn);
540
541         trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
542
543         /* No memslot means it's an emulated MMIO region */
544         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
545                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
546                                               dsisr & DSISR_ISSTORE);
547
548         /*
549          * This should never happen, because of the slot_is_aligned()
550          * check in kvmppc_do_h_enter().
551          */
552         if (gfn_base < memslot->base_gfn)
553                 return -EFAULT;
554
555         /* used to check for invalidations in progress */
556         mmu_seq = kvm->mmu_notifier_seq;
557         smp_rmb();
558
559         ret = -EFAULT;
560         is_ci = false;
561         pfn = 0;
562         page = NULL;
563         pte_size = PAGE_SIZE;
564         writing = (dsisr & DSISR_ISSTORE) != 0;
565         /* If writing != 0, then the HPTE must allow writing, if we get here */
566         write_ok = writing;
567         hva = gfn_to_hva_memslot(memslot, gfn);
568         npages = get_user_pages_fast(hva, 1, writing, pages);
569         if (npages < 1) {
570                 /* Check if it's an I/O mapping */
571                 down_read(&current->mm->mmap_sem);
572                 vma = find_vma(current->mm, hva);
573                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
574                     (vma->vm_flags & VM_PFNMAP)) {
575                         pfn = vma->vm_pgoff +
576                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
577                         pte_size = psize;
578                         is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
579                         write_ok = vma->vm_flags & VM_WRITE;
580                 }
581                 up_read(&current->mm->mmap_sem);
582                 if (!pfn)
583                         goto out_put;
584         } else {
585                 page = pages[0];
586                 pfn = page_to_pfn(page);
587                 if (PageHuge(page)) {
588                         page = compound_head(page);
589                         pte_size <<= compound_order(page);
590                 }
591                 /* if the guest wants write access, see if that is OK */
592                 if (!writing && hpte_is_writable(r)) {
593                         pte_t *ptep, pte;
594                         unsigned long flags;
595                         /*
596                          * We need to protect against page table destruction
597                          * hugepage split and collapse.
598                          */
599                         local_irq_save(flags);
600                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
601                                                          hva, NULL, NULL);
602                         if (ptep) {
603                                 pte = kvmppc_read_update_linux_pte(ptep, 1);
604                                 if (__pte_write(pte))
605                                         write_ok = 1;
606                         }
607                         local_irq_restore(flags);
608                 }
609         }
610
611         if (psize > pte_size)
612                 goto out_put;
613
614         /* Check WIMG vs. the actual page we're accessing */
615         if (!hpte_cache_flags_ok(r, is_ci)) {
616                 if (is_ci)
617                         goto out_put;
618                 /*
619                  * Allow guest to map emulated device memory as
620                  * uncacheable, but actually make it cacheable.
621                  */
622                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
623         }
624
625         /*
626          * Set the HPTE to point to pfn.
627          * Since the pfn is at PAGE_SIZE granularity, make sure we
628          * don't mask out lower-order bits if psize < PAGE_SIZE.
629          */
630         if (psize < PAGE_SIZE)
631                 psize = PAGE_SIZE;
632         r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
633                                         ((pfn << PAGE_SHIFT) & ~(psize - 1));
634         if (hpte_is_writable(r) && !write_ok)
635                 r = hpte_make_readonly(r);
636         ret = RESUME_GUEST;
637         preempt_disable();
638         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
639                 cpu_relax();
640         hnow_v = be64_to_cpu(hptep[0]);
641         hnow_r = be64_to_cpu(hptep[1]);
642         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
643                 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
644                 hnow_r = hpte_new_to_old_r(hnow_r);
645         }
646         if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
647             rev->guest_rpte != hpte[2])
648                 /* HPTE has been changed under us; let the guest retry */
649                 goto out_unlock;
650         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
651
652         /* Always put the HPTE in the rmap chain for the page base address */
653         rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
654         lock_rmap(rmap);
655
656         /* Check if we might have been invalidated; let the guest retry if so */
657         ret = RESUME_GUEST;
658         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
659                 unlock_rmap(rmap);
660                 goto out_unlock;
661         }
662
663         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
664         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
665         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
666
667         if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
668                 /* HPTE was previously valid, so we need to invalidate it */
669                 unlock_rmap(rmap);
670                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
671                 kvmppc_invalidate_hpte(kvm, hptep, index);
672                 /* don't lose previous R and C bits */
673                 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
674         } else {
675                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
676         }
677
678         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
679                 r = hpte_old_to_new_r(hpte[0], r);
680                 hpte[0] = hpte_old_to_new_v(hpte[0]);
681         }
682         hptep[1] = cpu_to_be64(r);
683         eieio();
684         __unlock_hpte(hptep, hpte[0]);
685         asm volatile("ptesync" : : : "memory");
686         preempt_enable();
687         if (page && hpte_is_writable(r))
688                 SetPageDirty(page);
689
690  out_put:
691         trace_kvm_page_fault_exit(vcpu, hpte, ret);
692
693         if (page) {
694                 /*
695                  * We drop pages[0] here, not page because page might
696                  * have been set to the head page of a compound, but
697                  * we have to drop the reference on the correct tail
698                  * page to match the get inside gup()
699                  */
700                 put_page(pages[0]);
701         }
702         return ret;
703
704  out_unlock:
705         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
706         preempt_enable();
707         goto out_put;
708 }
709
710 static void kvmppc_rmap_reset(struct kvm *kvm)
711 {
712         struct kvm_memslots *slots;
713         struct kvm_memory_slot *memslot;
714         int srcu_idx;
715
716         srcu_idx = srcu_read_lock(&kvm->srcu);
717         slots = kvm_memslots(kvm);
718         kvm_for_each_memslot(memslot, slots) {
719                 /*
720                  * This assumes it is acceptable to lose reference and
721                  * change bits across a reset.
722                  */
723                 memset(memslot->arch.rmap, 0,
724                        memslot->npages * sizeof(*memslot->arch.rmap));
725         }
726         srcu_read_unlock(&kvm->srcu, srcu_idx);
727 }
728
729 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
730                               unsigned long gfn);
731
732 static int kvm_handle_hva_range(struct kvm *kvm,
733                                 unsigned long start,
734                                 unsigned long end,
735                                 hva_handler_fn handler)
736 {
737         int ret;
738         int retval = 0;
739         struct kvm_memslots *slots;
740         struct kvm_memory_slot *memslot;
741
742         slots = kvm_memslots(kvm);
743         kvm_for_each_memslot(memslot, slots) {
744                 unsigned long hva_start, hva_end;
745                 gfn_t gfn, gfn_end;
746
747                 hva_start = max(start, memslot->userspace_addr);
748                 hva_end = min(end, memslot->userspace_addr +
749                                         (memslot->npages << PAGE_SHIFT));
750                 if (hva_start >= hva_end)
751                         continue;
752                 /*
753                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
754                  * {gfn, gfn+1, ..., gfn_end-1}.
755                  */
756                 gfn = hva_to_gfn_memslot(hva_start, memslot);
757                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
758
759                 for (; gfn < gfn_end; ++gfn) {
760                         ret = handler(kvm, memslot, gfn);
761                         retval |= ret;
762                 }
763         }
764
765         return retval;
766 }
767
768 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
769                           hva_handler_fn handler)
770 {
771         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
772 }
773
774 /* Must be called with both HPTE and rmap locked */
775 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
776                               unsigned long *rmapp, unsigned long gfn)
777 {
778         __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
779         struct revmap_entry *rev = kvm->arch.hpt.rev;
780         unsigned long j, h;
781         unsigned long ptel, psize, rcbits;
782
783         j = rev[i].forw;
784         if (j == i) {
785                 /* chain is now empty */
786                 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
787         } else {
788                 /* remove i from chain */
789                 h = rev[i].back;
790                 rev[h].forw = j;
791                 rev[j].back = h;
792                 rev[i].forw = rev[i].back = i;
793                 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
794         }
795
796         /* Now check and modify the HPTE */
797         ptel = rev[i].guest_rpte;
798         psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
799         if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
800             hpte_rpn(ptel, psize) == gfn) {
801                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
802                 kvmppc_invalidate_hpte(kvm, hptep, i);
803                 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
804                 /* Harvest R and C */
805                 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
806                 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
807                 if (rcbits & HPTE_R_C)
808                         kvmppc_update_rmap_change(rmapp, psize);
809                 if (rcbits & ~rev[i].guest_rpte) {
810                         rev[i].guest_rpte = ptel | rcbits;
811                         note_hpte_modification(kvm, &rev[i]);
812                 }
813         }
814 }
815
816 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
817                            unsigned long gfn)
818 {
819         unsigned long i;
820         __be64 *hptep;
821         unsigned long *rmapp;
822
823         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
824         for (;;) {
825                 lock_rmap(rmapp);
826                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
827                         unlock_rmap(rmapp);
828                         break;
829                 }
830
831                 /*
832                  * To avoid an ABBA deadlock with the HPTE lock bit,
833                  * we can't spin on the HPTE lock while holding the
834                  * rmap chain lock.
835                  */
836                 i = *rmapp & KVMPPC_RMAP_INDEX;
837                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
838                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
839                         /* unlock rmap before spinning on the HPTE lock */
840                         unlock_rmap(rmapp);
841                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842                                 cpu_relax();
843                         continue;
844                 }
845
846                 kvmppc_unmap_hpte(kvm, i, rmapp, gfn);
847                 unlock_rmap(rmapp);
848                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
849         }
850         return 0;
851 }
852
853 int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
854 {
855         hva_handler_fn handler;
856
857         handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
858         kvm_handle_hva(kvm, hva, handler);
859         return 0;
860 }
861
862 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
863 {
864         hva_handler_fn handler;
865
866         handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
867         kvm_handle_hva_range(kvm, start, end, handler);
868         return 0;
869 }
870
871 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
872                                   struct kvm_memory_slot *memslot)
873 {
874         unsigned long gfn;
875         unsigned long n;
876         unsigned long *rmapp;
877
878         gfn = memslot->base_gfn;
879         rmapp = memslot->arch.rmap;
880         for (n = memslot->npages; n; --n, ++gfn) {
881                 if (kvm_is_radix(kvm)) {
882                         kvm_unmap_radix(kvm, memslot, gfn);
883                         continue;
884                 }
885                 /*
886                  * Testing the present bit without locking is OK because
887                  * the memslot has been marked invalid already, and hence
888                  * no new HPTEs referencing this page can be created,
889                  * thus the present bit can't go from 0 to 1.
890                  */
891                 if (*rmapp & KVMPPC_RMAP_PRESENT)
892                         kvm_unmap_rmapp(kvm, memslot, gfn);
893                 ++rmapp;
894         }
895 }
896
897 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
898                          unsigned long gfn)
899 {
900         struct revmap_entry *rev = kvm->arch.hpt.rev;
901         unsigned long head, i, j;
902         __be64 *hptep;
903         int ret = 0;
904         unsigned long *rmapp;
905
906         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
907  retry:
908         lock_rmap(rmapp);
909         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
910                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
911                 ret = 1;
912         }
913         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
914                 unlock_rmap(rmapp);
915                 return ret;
916         }
917
918         i = head = *rmapp & KVMPPC_RMAP_INDEX;
919         do {
920                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
921                 j = rev[i].forw;
922
923                 /* If this HPTE isn't referenced, ignore it */
924                 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
925                         continue;
926
927                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
928                         /* unlock rmap before spinning on the HPTE lock */
929                         unlock_rmap(rmapp);
930                         while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
931                                 cpu_relax();
932                         goto retry;
933                 }
934
935                 /* Now check and modify the HPTE */
936                 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
937                     (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
938                         kvmppc_clear_ref_hpte(kvm, hptep, i);
939                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
940                                 rev[i].guest_rpte |= HPTE_R_R;
941                                 note_hpte_modification(kvm, &rev[i]);
942                         }
943                         ret = 1;
944                 }
945                 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
946         } while ((i = j) != head);
947
948         unlock_rmap(rmapp);
949         return ret;
950 }
951
952 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
953 {
954         hva_handler_fn handler;
955
956         handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
957         return kvm_handle_hva_range(kvm, start, end, handler);
958 }
959
960 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
961                               unsigned long gfn)
962 {
963         struct revmap_entry *rev = kvm->arch.hpt.rev;
964         unsigned long head, i, j;
965         unsigned long *hp;
966         int ret = 1;
967         unsigned long *rmapp;
968
969         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
970         if (*rmapp & KVMPPC_RMAP_REFERENCED)
971                 return 1;
972
973         lock_rmap(rmapp);
974         if (*rmapp & KVMPPC_RMAP_REFERENCED)
975                 goto out;
976
977         if (*rmapp & KVMPPC_RMAP_PRESENT) {
978                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
979                 do {
980                         hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
981                         j = rev[i].forw;
982                         if (be64_to_cpu(hp[1]) & HPTE_R_R)
983                                 goto out;
984                 } while ((i = j) != head);
985         }
986         ret = 0;
987
988  out:
989         unlock_rmap(rmapp);
990         return ret;
991 }
992
993 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
994 {
995         hva_handler_fn handler;
996
997         handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
998         return kvm_handle_hva(kvm, hva, handler);
999 }
1000
1001 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1002 {
1003         hva_handler_fn handler;
1004
1005         handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1006         kvm_handle_hva(kvm, hva, handler);
1007 }
1008
1009 static int vcpus_running(struct kvm *kvm)
1010 {
1011         return atomic_read(&kvm->arch.vcpus_running) != 0;
1012 }
1013
1014 /*
1015  * Returns the number of system pages that are dirty.
1016  * This can be more than 1 if we find a huge-page HPTE.
1017  */
1018 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1019 {
1020         struct revmap_entry *rev = kvm->arch.hpt.rev;
1021         unsigned long head, i, j;
1022         unsigned long n;
1023         unsigned long v, r;
1024         __be64 *hptep;
1025         int npages_dirty = 0;
1026
1027  retry:
1028         lock_rmap(rmapp);
1029         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1030                 long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
1031                         >> KVMPPC_RMAP_CHG_SHIFT;
1032                 *rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
1033                 npages_dirty = 1;
1034                 if (change_order > PAGE_SHIFT)
1035                         npages_dirty = 1ul << (change_order - PAGE_SHIFT);
1036         }
1037         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1038                 unlock_rmap(rmapp);
1039                 return npages_dirty;
1040         }
1041
1042         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1043         do {
1044                 unsigned long hptep1;
1045                 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1046                 j = rev[i].forw;
1047
1048                 /*
1049                  * Checking the C (changed) bit here is racy since there
1050                  * is no guarantee about when the hardware writes it back.
1051                  * If the HPTE is not writable then it is stable since the
1052                  * page can't be written to, and we would have done a tlbie
1053                  * (which forces the hardware to complete any writeback)
1054                  * when making the HPTE read-only.
1055                  * If vcpus are running then this call is racy anyway
1056                  * since the page could get dirtied subsequently, so we
1057                  * expect there to be a further call which would pick up
1058                  * any delayed C bit writeback.
1059                  * Otherwise we need to do the tlbie even if C==0 in
1060                  * order to pick up any delayed writeback of C.
1061                  */
1062                 hptep1 = be64_to_cpu(hptep[1]);
1063                 if (!(hptep1 & HPTE_R_C) &&
1064                     (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1065                         continue;
1066
1067                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1068                         /* unlock rmap before spinning on the HPTE lock */
1069                         unlock_rmap(rmapp);
1070                         while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1071                                 cpu_relax();
1072                         goto retry;
1073                 }
1074
1075                 /* Now check and modify the HPTE */
1076                 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1077                         __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1078                         continue;
1079                 }
1080
1081                 /* need to make it temporarily absent so C is stable */
1082                 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1083                 kvmppc_invalidate_hpte(kvm, hptep, i);
1084                 v = be64_to_cpu(hptep[0]);
1085                 r = be64_to_cpu(hptep[1]);
1086                 if (r & HPTE_R_C) {
1087                         hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1088                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1089                                 rev[i].guest_rpte |= HPTE_R_C;
1090                                 note_hpte_modification(kvm, &rev[i]);
1091                         }
1092                         n = hpte_page_size(v, r);
1093                         n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1094                         if (n > npages_dirty)
1095                                 npages_dirty = n;
1096                         eieio();
1097                 }
1098                 v &= ~HPTE_V_ABSENT;
1099                 v |= HPTE_V_VALID;
1100                 __unlock_hpte(hptep, v);
1101         } while ((i = j) != head);
1102
1103         unlock_rmap(rmapp);
1104         return npages_dirty;
1105 }
1106
1107 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1108                               struct kvm_memory_slot *memslot,
1109                               unsigned long *map)
1110 {
1111         unsigned long gfn;
1112
1113         if (!vpa->dirty || !vpa->pinned_addr)
1114                 return;
1115         gfn = vpa->gpa >> PAGE_SHIFT;
1116         if (gfn < memslot->base_gfn ||
1117             gfn >= memslot->base_gfn + memslot->npages)
1118                 return;
1119
1120         vpa->dirty = false;
1121         if (map)
1122                 __set_bit_le(gfn - memslot->base_gfn, map);
1123 }
1124
1125 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1126                         struct kvm_memory_slot *memslot, unsigned long *map)
1127 {
1128         unsigned long i, j;
1129         unsigned long *rmapp;
1130
1131         preempt_disable();
1132         rmapp = memslot->arch.rmap;
1133         for (i = 0; i < memslot->npages; ++i) {
1134                 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1135                 /*
1136                  * Note that if npages > 0 then i must be a multiple of npages,
1137                  * since we always put huge-page HPTEs in the rmap chain
1138                  * corresponding to their page base address.
1139                  */
1140                 if (npages && map)
1141                         for (j = i; npages; ++j, --npages)
1142                                 __set_bit_le(j, map);
1143                 ++rmapp;
1144         }
1145         preempt_enable();
1146         return 0;
1147 }
1148
1149 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1150                             unsigned long *nb_ret)
1151 {
1152         struct kvm_memory_slot *memslot;
1153         unsigned long gfn = gpa >> PAGE_SHIFT;
1154         struct page *page, *pages[1];
1155         int npages;
1156         unsigned long hva, offset;
1157         int srcu_idx;
1158
1159         srcu_idx = srcu_read_lock(&kvm->srcu);
1160         memslot = gfn_to_memslot(kvm, gfn);
1161         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1162                 goto err;
1163         hva = gfn_to_hva_memslot(memslot, gfn);
1164         npages = get_user_pages_fast(hva, 1, 1, pages);
1165         if (npages < 1)
1166                 goto err;
1167         page = pages[0];
1168         srcu_read_unlock(&kvm->srcu, srcu_idx);
1169
1170         offset = gpa & (PAGE_SIZE - 1);
1171         if (nb_ret)
1172                 *nb_ret = PAGE_SIZE - offset;
1173         return page_address(page) + offset;
1174
1175  err:
1176         srcu_read_unlock(&kvm->srcu, srcu_idx);
1177         return NULL;
1178 }
1179
1180 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1181                              bool dirty)
1182 {
1183         struct page *page = virt_to_page(va);
1184         struct kvm_memory_slot *memslot;
1185         unsigned long gfn;
1186         unsigned long *rmap;
1187         int srcu_idx;
1188
1189         put_page(page);
1190
1191         if (!dirty)
1192                 return;
1193
1194         /* We need to mark this page dirty in the rmap chain */
1195         gfn = gpa >> PAGE_SHIFT;
1196         srcu_idx = srcu_read_lock(&kvm->srcu);
1197         memslot = gfn_to_memslot(kvm, gfn);
1198         if (memslot) {
1199                 if (!kvm_is_radix(kvm)) {
1200                         rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1201                         lock_rmap(rmap);
1202                         *rmap |= KVMPPC_RMAP_CHANGED;
1203                         unlock_rmap(rmap);
1204                 } else if (memslot->dirty_bitmap) {
1205                         mark_page_dirty(kvm, gfn);
1206                 }
1207         }
1208         srcu_read_unlock(&kvm->srcu, srcu_idx);
1209 }
1210
1211 /*
1212  * HPT resizing
1213  */
1214 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1215 {
1216         int rc;
1217
1218         rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1219         if (rc < 0)
1220                 return rc;
1221
1222         resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1223                          resize->hpt.virt);
1224
1225         return 0;
1226 }
1227
1228 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1229                                             unsigned long idx)
1230 {
1231         struct kvm *kvm = resize->kvm;
1232         struct kvm_hpt_info *old = &kvm->arch.hpt;
1233         struct kvm_hpt_info *new = &resize->hpt;
1234         unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1235         unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1236         __be64 *hptep, *new_hptep;
1237         unsigned long vpte, rpte, guest_rpte;
1238         int ret;
1239         struct revmap_entry *rev;
1240         unsigned long apsize, psize, avpn, pteg, hash;
1241         unsigned long new_idx, new_pteg, replace_vpte;
1242
1243         hptep = (__be64 *)(old->virt + (idx << 4));
1244
1245         /* Guest is stopped, so new HPTEs can't be added or faulted
1246          * in, only unmapped or altered by host actions.  So, it's
1247          * safe to check this before we take the HPTE lock */
1248         vpte = be64_to_cpu(hptep[0]);
1249         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1250                 return 0; /* nothing to do */
1251
1252         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1253                 cpu_relax();
1254
1255         vpte = be64_to_cpu(hptep[0]);
1256
1257         ret = 0;
1258         if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1259                 /* Nothing to do */
1260                 goto out;
1261
1262         /* Unmap */
1263         rev = &old->rev[idx];
1264         guest_rpte = rev->guest_rpte;
1265
1266         ret = -EIO;
1267         apsize = hpte_page_size(vpte, guest_rpte);
1268         if (!apsize)
1269                 goto out;
1270
1271         if (vpte & HPTE_V_VALID) {
1272                 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1273                 int srcu_idx = srcu_read_lock(&kvm->srcu);
1274                 struct kvm_memory_slot *memslot =
1275                         __gfn_to_memslot(kvm_memslots(kvm), gfn);
1276
1277                 if (memslot) {
1278                         unsigned long *rmapp;
1279                         rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1280
1281                         lock_rmap(rmapp);
1282                         kvmppc_unmap_hpte(kvm, idx, rmapp, gfn);
1283                         unlock_rmap(rmapp);
1284                 }
1285
1286                 srcu_read_unlock(&kvm->srcu, srcu_idx);
1287         }
1288
1289         /* Reload PTE after unmap */
1290         vpte = be64_to_cpu(hptep[0]);
1291
1292         BUG_ON(vpte & HPTE_V_VALID);
1293         BUG_ON(!(vpte & HPTE_V_ABSENT));
1294
1295         ret = 0;
1296         if (!(vpte & HPTE_V_BOLTED))
1297                 goto out;
1298
1299         rpte = be64_to_cpu(hptep[1]);
1300         psize = hpte_base_page_size(vpte, rpte);
1301         avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23);
1302         pteg = idx / HPTES_PER_GROUP;
1303         if (vpte & HPTE_V_SECONDARY)
1304                 pteg = ~pteg;
1305
1306         if (!(vpte & HPTE_V_1TB_SEG)) {
1307                 unsigned long offset, vsid;
1308
1309                 /* We only have 28 - 23 bits of offset in avpn */
1310                 offset = (avpn & 0x1f) << 23;
1311                 vsid = avpn >> 5;
1312                 /* We can find more bits from the pteg value */
1313                 if (psize < (1ULL << 23))
1314                         offset |= ((vsid ^ pteg) & old_hash_mask) * psize;
1315
1316                 hash = vsid ^ (offset / psize);
1317         } else {
1318                 unsigned long offset, vsid;
1319
1320                 /* We only have 40 - 23 bits of seg_off in avpn */
1321                 offset = (avpn & 0x1ffff) << 23;
1322                 vsid = avpn >> 17;
1323                 if (psize < (1ULL << 23))
1324                         offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize;
1325
1326                 hash = vsid ^ (vsid << 25) ^ (offset / psize);
1327         }
1328
1329         new_pteg = hash & new_hash_mask;
1330         if (vpte & HPTE_V_SECONDARY) {
1331                 BUG_ON(~pteg != (hash & old_hash_mask));
1332                 new_pteg = ~new_pteg;
1333         } else {
1334                 BUG_ON(pteg != (hash & old_hash_mask));
1335         }
1336
1337         new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1338         new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1339
1340         replace_vpte = be64_to_cpu(new_hptep[0]);
1341
1342         if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1343                 BUG_ON(new->order >= old->order);
1344
1345                 if (replace_vpte & HPTE_V_BOLTED) {
1346                         if (vpte & HPTE_V_BOLTED)
1347                                 /* Bolted collision, nothing we can do */
1348                                 ret = -ENOSPC;
1349                         /* Discard the new HPTE */
1350                         goto out;
1351                 }
1352
1353                 /* Discard the previous HPTE */
1354         }
1355
1356         new_hptep[1] = cpu_to_be64(rpte);
1357         new->rev[new_idx].guest_rpte = guest_rpte;
1358         /* No need for a barrier, since new HPT isn't active */
1359         new_hptep[0] = cpu_to_be64(vpte);
1360         unlock_hpte(new_hptep, vpte);
1361
1362 out:
1363         unlock_hpte(hptep, vpte);
1364         return ret;
1365 }
1366
1367 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1368 {
1369         struct kvm *kvm = resize->kvm;
1370         unsigned  long i;
1371         int rc;
1372
1373         /*
1374          * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs
1375          * that POWER9 uses, and could well hit a BUG_ON on POWER9.
1376          */
1377         if (cpu_has_feature(CPU_FTR_ARCH_300))
1378                 return -EIO;
1379         for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1380                 rc = resize_hpt_rehash_hpte(resize, i);
1381                 if (rc != 0)
1382                         return rc;
1383         }
1384
1385         return 0;
1386 }
1387
1388 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1389 {
1390         struct kvm *kvm = resize->kvm;
1391         struct kvm_hpt_info hpt_tmp;
1392
1393         /* Exchange the pending tables in the resize structure with
1394          * the active tables */
1395
1396         resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1397
1398         spin_lock(&kvm->mmu_lock);
1399         asm volatile("ptesync" : : : "memory");
1400
1401         hpt_tmp = kvm->arch.hpt;
1402         kvmppc_set_hpt(kvm, &resize->hpt);
1403         resize->hpt = hpt_tmp;
1404
1405         spin_unlock(&kvm->mmu_lock);
1406
1407         synchronize_srcu_expedited(&kvm->srcu);
1408
1409         resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1410 }
1411
1412 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1413 {
1414         BUG_ON(kvm->arch.resize_hpt != resize);
1415
1416         if (!resize)
1417                 return;
1418
1419         if (resize->hpt.virt)
1420                 kvmppc_free_hpt(&resize->hpt);
1421
1422         kvm->arch.resize_hpt = NULL;
1423         kfree(resize);
1424 }
1425
1426 static void resize_hpt_prepare_work(struct work_struct *work)
1427 {
1428         struct kvm_resize_hpt *resize = container_of(work,
1429                                                      struct kvm_resize_hpt,
1430                                                      work);
1431         struct kvm *kvm = resize->kvm;
1432         int err;
1433
1434         resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1435                          resize->order);
1436
1437         err = resize_hpt_allocate(resize);
1438
1439         mutex_lock(&kvm->lock);
1440
1441         resize->error = err;
1442         resize->prepare_done = true;
1443
1444         mutex_unlock(&kvm->lock);
1445 }
1446
1447 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1448                                      struct kvm_ppc_resize_hpt *rhpt)
1449 {
1450         unsigned long flags = rhpt->flags;
1451         unsigned long shift = rhpt->shift;
1452         struct kvm_resize_hpt *resize;
1453         int ret;
1454
1455         if (flags != 0)
1456                 return -EINVAL;
1457
1458         if (shift && ((shift < 18) || (shift > 46)))
1459                 return -EINVAL;
1460
1461         mutex_lock(&kvm->lock);
1462
1463         resize = kvm->arch.resize_hpt;
1464
1465         if (resize) {
1466                 if (resize->order == shift) {
1467                         /* Suitable resize in progress */
1468                         if (resize->prepare_done) {
1469                                 ret = resize->error;
1470                                 if (ret != 0)
1471                                         resize_hpt_release(kvm, resize);
1472                         } else {
1473                                 ret = 100; /* estimated time in ms */
1474                         }
1475
1476                         goto out;
1477                 }
1478
1479                 /* not suitable, cancel it */
1480                 resize_hpt_release(kvm, resize);
1481         }
1482
1483         ret = 0;
1484         if (!shift)
1485                 goto out; /* nothing to do */
1486
1487         /* start new resize */
1488
1489         resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1490         if (!resize) {
1491                 ret = -ENOMEM;
1492                 goto out;
1493         }
1494         resize->order = shift;
1495         resize->kvm = kvm;
1496         INIT_WORK(&resize->work, resize_hpt_prepare_work);
1497         kvm->arch.resize_hpt = resize;
1498
1499         schedule_work(&resize->work);
1500
1501         ret = 100; /* estimated time in ms */
1502
1503 out:
1504         mutex_unlock(&kvm->lock);
1505         return ret;
1506 }
1507
1508 static void resize_hpt_boot_vcpu(void *opaque)
1509 {
1510         /* Nothing to do, just force a KVM exit */
1511 }
1512
1513 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1514                                     struct kvm_ppc_resize_hpt *rhpt)
1515 {
1516         unsigned long flags = rhpt->flags;
1517         unsigned long shift = rhpt->shift;
1518         struct kvm_resize_hpt *resize;
1519         long ret;
1520
1521         if (flags != 0)
1522                 return -EINVAL;
1523
1524         if (shift && ((shift < 18) || (shift > 46)))
1525                 return -EINVAL;
1526
1527         mutex_lock(&kvm->lock);
1528
1529         resize = kvm->arch.resize_hpt;
1530
1531         /* This shouldn't be possible */
1532         ret = -EIO;
1533         if (WARN_ON(!kvm->arch.hpte_setup_done))
1534                 goto out_no_hpt;
1535
1536         /* Stop VCPUs from running while we mess with the HPT */
1537         kvm->arch.hpte_setup_done = 0;
1538         smp_mb();
1539
1540         /* Boot all CPUs out of the guest so they re-read
1541          * hpte_setup_done */
1542         on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1543
1544         ret = -ENXIO;
1545         if (!resize || (resize->order != shift))
1546                 goto out;
1547
1548         ret = -EBUSY;
1549         if (!resize->prepare_done)
1550                 goto out;
1551
1552         ret = resize->error;
1553         if (ret != 0)
1554                 goto out;
1555
1556         ret = resize_hpt_rehash(resize);
1557         if (ret != 0)
1558                 goto out;
1559
1560         resize_hpt_pivot(resize);
1561
1562 out:
1563         /* Let VCPUs run again */
1564         kvm->arch.hpte_setup_done = 1;
1565         smp_mb();
1566 out_no_hpt:
1567         resize_hpt_release(kvm, resize);
1568         mutex_unlock(&kvm->lock);
1569         return ret;
1570 }
1571
1572 /*
1573  * Functions for reading and writing the hash table via reads and
1574  * writes on a file descriptor.
1575  *
1576  * Reads return the guest view of the hash table, which has to be
1577  * pieced together from the real hash table and the guest_rpte
1578  * values in the revmap array.
1579  *
1580  * On writes, each HPTE written is considered in turn, and if it
1581  * is valid, it is written to the HPT as if an H_ENTER with the
1582  * exact flag set was done.  When the invalid count is non-zero
1583  * in the header written to the stream, the kernel will make
1584  * sure that that many HPTEs are invalid, and invalidate them
1585  * if not.
1586  */
1587
1588 struct kvm_htab_ctx {
1589         unsigned long   index;
1590         unsigned long   flags;
1591         struct kvm      *kvm;
1592         int             first_pass;
1593 };
1594
1595 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1596
1597 /*
1598  * Returns 1 if this HPT entry has been modified or has pending
1599  * R/C bit changes.
1600  */
1601 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1602 {
1603         unsigned long rcbits_unset;
1604
1605         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1606                 return 1;
1607
1608         /* Also need to consider changes in reference and changed bits */
1609         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1610         if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1611             (be64_to_cpu(hptp[1]) & rcbits_unset))
1612                 return 1;
1613
1614         return 0;
1615 }
1616
1617 static long record_hpte(unsigned long flags, __be64 *hptp,
1618                         unsigned long *hpte, struct revmap_entry *revp,
1619                         int want_valid, int first_pass)
1620 {
1621         unsigned long v, r, hr;
1622         unsigned long rcbits_unset;
1623         int ok = 1;
1624         int valid, dirty;
1625
1626         /* Unmodified entries are uninteresting except on the first pass */
1627         dirty = hpte_dirty(revp, hptp);
1628         if (!first_pass && !dirty)
1629                 return 0;
1630
1631         valid = 0;
1632         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1633                 valid = 1;
1634                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1635                     !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1636                         valid = 0;
1637         }
1638         if (valid != want_valid)
1639                 return 0;
1640
1641         v = r = 0;
1642         if (valid || dirty) {
1643                 /* lock the HPTE so it's stable and read it */
1644                 preempt_disable();
1645                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1646                         cpu_relax();
1647                 v = be64_to_cpu(hptp[0]);
1648                 hr = be64_to_cpu(hptp[1]);
1649                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1650                         v = hpte_new_to_old_v(v, hr);
1651                         hr = hpte_new_to_old_r(hr);
1652                 }
1653
1654                 /* re-evaluate valid and dirty from synchronized HPTE value */
1655                 valid = !!(v & HPTE_V_VALID);
1656                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1657
1658                 /* Harvest R and C into guest view if necessary */
1659                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1660                 if (valid && (rcbits_unset & hr)) {
1661                         revp->guest_rpte |= (hr &
1662                                 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1663                         dirty = 1;
1664                 }
1665
1666                 if (v & HPTE_V_ABSENT) {
1667                         v &= ~HPTE_V_ABSENT;
1668                         v |= HPTE_V_VALID;
1669                         valid = 1;
1670                 }
1671                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1672                         valid = 0;
1673
1674                 r = revp->guest_rpte;
1675                 /* only clear modified if this is the right sort of entry */
1676                 if (valid == want_valid && dirty) {
1677                         r &= ~HPTE_GR_MODIFIED;
1678                         revp->guest_rpte = r;
1679                 }
1680                 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1681                 preempt_enable();
1682                 if (!(valid == want_valid && (first_pass || dirty)))
1683                         ok = 0;
1684         }
1685         hpte[0] = cpu_to_be64(v);
1686         hpte[1] = cpu_to_be64(r);
1687         return ok;
1688 }
1689
1690 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1691                              size_t count, loff_t *ppos)
1692 {
1693         struct kvm_htab_ctx *ctx = file->private_data;
1694         struct kvm *kvm = ctx->kvm;
1695         struct kvm_get_htab_header hdr;
1696         __be64 *hptp;
1697         struct revmap_entry *revp;
1698         unsigned long i, nb, nw;
1699         unsigned long __user *lbuf;
1700         struct kvm_get_htab_header __user *hptr;
1701         unsigned long flags;
1702         int first_pass;
1703         unsigned long hpte[2];
1704
1705         if (!access_ok(VERIFY_WRITE, buf, count))
1706                 return -EFAULT;
1707
1708         first_pass = ctx->first_pass;
1709         flags = ctx->flags;
1710
1711         i = ctx->index;
1712         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1713         revp = kvm->arch.hpt.rev + i;
1714         lbuf = (unsigned long __user *)buf;
1715
1716         nb = 0;
1717         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1718                 /* Initialize header */
1719                 hptr = (struct kvm_get_htab_header __user *)buf;
1720                 hdr.n_valid = 0;
1721                 hdr.n_invalid = 0;
1722                 nw = nb;
1723                 nb += sizeof(hdr);
1724                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1725
1726                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1727                 if (!first_pass) {
1728                         while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1729                                !hpte_dirty(revp, hptp)) {
1730                                 ++i;
1731                                 hptp += 2;
1732                                 ++revp;
1733                         }
1734                 }
1735                 hdr.index = i;
1736
1737                 /* Grab a series of valid entries */
1738                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1739                        hdr.n_valid < 0xffff &&
1740                        nb + HPTE_SIZE < count &&
1741                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1742                         /* valid entry, write it out */
1743                         ++hdr.n_valid;
1744                         if (__put_user(hpte[0], lbuf) ||
1745                             __put_user(hpte[1], lbuf + 1))
1746                                 return -EFAULT;
1747                         nb += HPTE_SIZE;
1748                         lbuf += 2;
1749                         ++i;
1750                         hptp += 2;
1751                         ++revp;
1752                 }
1753                 /* Now skip invalid entries while we can */
1754                 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1755                        hdr.n_invalid < 0xffff &&
1756                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1757                         /* found an invalid entry */
1758                         ++hdr.n_invalid;
1759                         ++i;
1760                         hptp += 2;
1761                         ++revp;
1762                 }
1763
1764                 if (hdr.n_valid || hdr.n_invalid) {
1765                         /* write back the header */
1766                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1767                                 return -EFAULT;
1768                         nw = nb;
1769                         buf = (char __user *)lbuf;
1770                 } else {
1771                         nb = nw;
1772                 }
1773
1774                 /* Check if we've wrapped around the hash table */
1775                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1776                         i = 0;
1777                         ctx->first_pass = 0;
1778                         break;
1779                 }
1780         }
1781
1782         ctx->index = i;
1783
1784         return nb;
1785 }
1786
1787 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1788                               size_t count, loff_t *ppos)
1789 {
1790         struct kvm_htab_ctx *ctx = file->private_data;
1791         struct kvm *kvm = ctx->kvm;
1792         struct kvm_get_htab_header hdr;
1793         unsigned long i, j;
1794         unsigned long v, r;
1795         unsigned long __user *lbuf;
1796         __be64 *hptp;
1797         unsigned long tmp[2];
1798         ssize_t nb;
1799         long int err, ret;
1800         int hpte_setup;
1801
1802         if (!access_ok(VERIFY_READ, buf, count))
1803                 return -EFAULT;
1804
1805         /* lock out vcpus from running while we're doing this */
1806         mutex_lock(&kvm->lock);
1807         hpte_setup = kvm->arch.hpte_setup_done;
1808         if (hpte_setup) {
1809                 kvm->arch.hpte_setup_done = 0;  /* temporarily */
1810                 /* order hpte_setup_done vs. vcpus_running */
1811                 smp_mb();
1812                 if (atomic_read(&kvm->arch.vcpus_running)) {
1813                         kvm->arch.hpte_setup_done = 1;
1814                         mutex_unlock(&kvm->lock);
1815                         return -EBUSY;
1816                 }
1817         }
1818
1819         err = 0;
1820         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1821                 err = -EFAULT;
1822                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1823                         break;
1824
1825                 err = 0;
1826                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1827                         break;
1828
1829                 nb += sizeof(hdr);
1830                 buf += sizeof(hdr);
1831
1832                 err = -EINVAL;
1833                 i = hdr.index;
1834                 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1835                     i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1836                         break;
1837
1838                 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1839                 lbuf = (unsigned long __user *)buf;
1840                 for (j = 0; j < hdr.n_valid; ++j) {
1841                         __be64 hpte_v;
1842                         __be64 hpte_r;
1843
1844                         err = -EFAULT;
1845                         if (__get_user(hpte_v, lbuf) ||
1846                             __get_user(hpte_r, lbuf + 1))
1847                                 goto out;
1848                         v = be64_to_cpu(hpte_v);
1849                         r = be64_to_cpu(hpte_r);
1850                         err = -EINVAL;
1851                         if (!(v & HPTE_V_VALID))
1852                                 goto out;
1853                         lbuf += 2;
1854                         nb += HPTE_SIZE;
1855
1856                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1857                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1858                         err = -EIO;
1859                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1860                                                          tmp);
1861                         if (ret != H_SUCCESS) {
1862                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1863                                        "r=%lx\n", ret, i, v, r);
1864                                 goto out;
1865                         }
1866                         if (!hpte_setup && is_vrma_hpte(v)) {
1867                                 unsigned long psize = hpte_base_page_size(v, r);
1868                                 unsigned long senc = slb_pgsize_encoding(psize);
1869                                 unsigned long lpcr;
1870
1871                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1872                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1873                                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1874                                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1875                                 hpte_setup = 1;
1876                         }
1877                         ++i;
1878                         hptp += 2;
1879                 }
1880
1881                 for (j = 0; j < hdr.n_invalid; ++j) {
1882                         if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1883                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1884                         ++i;
1885                         hptp += 2;
1886                 }
1887                 err = 0;
1888         }
1889
1890  out:
1891         /* Order HPTE updates vs. hpte_setup_done */
1892         smp_wmb();
1893         kvm->arch.hpte_setup_done = hpte_setup;
1894         mutex_unlock(&kvm->lock);
1895
1896         if (err)
1897                 return err;
1898         return nb;
1899 }
1900
1901 static int kvm_htab_release(struct inode *inode, struct file *filp)
1902 {
1903         struct kvm_htab_ctx *ctx = filp->private_data;
1904
1905         filp->private_data = NULL;
1906         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1907                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1908         kvm_put_kvm(ctx->kvm);
1909         kfree(ctx);
1910         return 0;
1911 }
1912
1913 static const struct file_operations kvm_htab_fops = {
1914         .read           = kvm_htab_read,
1915         .write          = kvm_htab_write,
1916         .llseek         = default_llseek,
1917         .release        = kvm_htab_release,
1918 };
1919
1920 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1921 {
1922         int ret;
1923         struct kvm_htab_ctx *ctx;
1924         int rwflag;
1925
1926         /* reject flags we don't recognize */
1927         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1928                 return -EINVAL;
1929         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1930         if (!ctx)
1931                 return -ENOMEM;
1932         kvm_get_kvm(kvm);
1933         ctx->kvm = kvm;
1934         ctx->index = ghf->start_index;
1935         ctx->flags = ghf->flags;
1936         ctx->first_pass = 1;
1937
1938         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1939         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1940         if (ret < 0) {
1941                 kvm_put_kvm(kvm);
1942                 return ret;
1943         }
1944
1945         if (rwflag == O_RDONLY) {
1946                 mutex_lock(&kvm->slots_lock);
1947                 atomic_inc(&kvm->arch.hpte_mod_interest);
1948                 /* make sure kvmppc_do_h_enter etc. see the increment */
1949                 synchronize_srcu_expedited(&kvm->srcu);
1950                 mutex_unlock(&kvm->slots_lock);
1951         }
1952
1953         return ret;
1954 }
1955
1956 struct debugfs_htab_state {
1957         struct kvm      *kvm;
1958         struct mutex    mutex;
1959         unsigned long   hpt_index;
1960         int             chars_left;
1961         int             buf_index;
1962         char            buf[64];
1963 };
1964
1965 static int debugfs_htab_open(struct inode *inode, struct file *file)
1966 {
1967         struct kvm *kvm = inode->i_private;
1968         struct debugfs_htab_state *p;
1969
1970         p = kzalloc(sizeof(*p), GFP_KERNEL);
1971         if (!p)
1972                 return -ENOMEM;
1973
1974         kvm_get_kvm(kvm);
1975         p->kvm = kvm;
1976         mutex_init(&p->mutex);
1977         file->private_data = p;
1978
1979         return nonseekable_open(inode, file);
1980 }
1981
1982 static int debugfs_htab_release(struct inode *inode, struct file *file)
1983 {
1984         struct debugfs_htab_state *p = file->private_data;
1985
1986         kvm_put_kvm(p->kvm);
1987         kfree(p);
1988         return 0;
1989 }
1990
1991 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1992                                  size_t len, loff_t *ppos)
1993 {
1994         struct debugfs_htab_state *p = file->private_data;
1995         ssize_t ret, r;
1996         unsigned long i, n;
1997         unsigned long v, hr, gr;
1998         struct kvm *kvm;
1999         __be64 *hptp;
2000
2001         ret = mutex_lock_interruptible(&p->mutex);
2002         if (ret)
2003                 return ret;
2004
2005         if (p->chars_left) {
2006                 n = p->chars_left;
2007                 if (n > len)
2008                         n = len;
2009                 r = copy_to_user(buf, p->buf + p->buf_index, n);
2010                 n -= r;
2011                 p->chars_left -= n;
2012                 p->buf_index += n;
2013                 buf += n;
2014                 len -= n;
2015                 ret = n;
2016                 if (r) {
2017                         if (!n)
2018                                 ret = -EFAULT;
2019                         goto out;
2020                 }
2021         }
2022
2023         kvm = p->kvm;
2024         i = p->hpt_index;
2025         hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2026         for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2027              ++i, hptp += 2) {
2028                 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2029                         continue;
2030
2031                 /* lock the HPTE so it's stable and read it */
2032                 preempt_disable();
2033                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2034                         cpu_relax();
2035                 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2036                 hr = be64_to_cpu(hptp[1]);
2037                 gr = kvm->arch.hpt.rev[i].guest_rpte;
2038                 unlock_hpte(hptp, v);
2039                 preempt_enable();
2040
2041                 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2042                         continue;
2043
2044                 n = scnprintf(p->buf, sizeof(p->buf),
2045                               "%6lx %.16lx %.16lx %.16lx\n",
2046                               i, v, hr, gr);
2047                 p->chars_left = n;
2048                 if (n > len)
2049                         n = len;
2050                 r = copy_to_user(buf, p->buf, n);
2051                 n -= r;
2052                 p->chars_left -= n;
2053                 p->buf_index = n;
2054                 buf += n;
2055                 len -= n;
2056                 ret += n;
2057                 if (r) {
2058                         if (!ret)
2059                                 ret = -EFAULT;
2060                         goto out;
2061                 }
2062         }
2063         p->hpt_index = i;
2064
2065  out:
2066         mutex_unlock(&p->mutex);
2067         return ret;
2068 }
2069
2070 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2071                            size_t len, loff_t *ppos)
2072 {
2073         return -EACCES;
2074 }
2075
2076 static const struct file_operations debugfs_htab_fops = {
2077         .owner   = THIS_MODULE,
2078         .open    = debugfs_htab_open,
2079         .release = debugfs_htab_release,
2080         .read    = debugfs_htab_read,
2081         .write   = debugfs_htab_write,
2082         .llseek  = generic_file_llseek,
2083 };
2084
2085 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2086 {
2087         kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
2088                                                     kvm->arch.debugfs_dir, kvm,
2089                                                     &debugfs_htab_fops);
2090 }
2091
2092 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2093 {
2094         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2095
2096         vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2097
2098         if (kvm_is_radix(vcpu->kvm))
2099                 mmu->xlate = kvmppc_mmu_radix_xlate;
2100         else
2101                 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2102         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
2103
2104         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2105 }