Merge branch 'topic/livepatch' of git://git.kernel.org/pub/scm/linux/kernel/git/power...
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/livepatch.h>
59
60 #include <linux/kprobes.h>
61 #include <linux/kdebug.h>
62
63 /* Transactional Memory debug */
64 #ifdef TM_DEBUG_SW
65 #define TM_DEBUG(x...) printk(KERN_INFO x)
66 #else
67 #define TM_DEBUG(x...) do { } while(0)
68 #endif
69
70 extern unsigned long _get_SP(void);
71
72 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
73 static void check_if_tm_restore_required(struct task_struct *tsk)
74 {
75         /*
76          * If we are saving the current thread's registers, and the
77          * thread is in a transactional state, set the TIF_RESTORE_TM
78          * bit so that we know to restore the registers before
79          * returning to userspace.
80          */
81         if (tsk == current && tsk->thread.regs &&
82             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
83             !test_thread_flag(TIF_RESTORE_TM)) {
84                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
85                 set_thread_flag(TIF_RESTORE_TM);
86         }
87 }
88 #else
89 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
90 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
91
92 bool strict_msr_control;
93 EXPORT_SYMBOL(strict_msr_control);
94
95 static int __init enable_strict_msr_control(char *str)
96 {
97         strict_msr_control = true;
98         pr_info("Enabling strict facility control\n");
99
100         return 0;
101 }
102 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
103
104 void msr_check_and_set(unsigned long bits)
105 {
106         unsigned long oldmsr = mfmsr();
107         unsigned long newmsr;
108
109         newmsr = oldmsr | bits;
110
111 #ifdef CONFIG_VSX
112         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
113                 newmsr |= MSR_VSX;
114 #endif
115
116         if (oldmsr != newmsr)
117                 mtmsr_isync(newmsr);
118 }
119
120 void __msr_check_and_clear(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr & ~bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr &= ~MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134 }
135 EXPORT_SYMBOL(__msr_check_and_clear);
136
137 #ifdef CONFIG_PPC_FPU
138 void giveup_fpu(struct task_struct *tsk)
139 {
140         check_if_tm_restore_required(tsk);
141
142         msr_check_and_set(MSR_FP);
143         __giveup_fpu(tsk);
144         msr_check_and_clear(MSR_FP);
145 }
146 EXPORT_SYMBOL(giveup_fpu);
147
148 /*
149  * Make sure the floating-point register state in the
150  * the thread_struct is up to date for task tsk.
151  */
152 void flush_fp_to_thread(struct task_struct *tsk)
153 {
154         if (tsk->thread.regs) {
155                 /*
156                  * We need to disable preemption here because if we didn't,
157                  * another process could get scheduled after the regs->msr
158                  * test but before we have finished saving the FP registers
159                  * to the thread_struct.  That process could take over the
160                  * FPU, and then when we get scheduled again we would store
161                  * bogus values for the remaining FP registers.
162                  */
163                 preempt_disable();
164                 if (tsk->thread.regs->msr & MSR_FP) {
165                         /*
166                          * This should only ever be called for current or
167                          * for a stopped child process.  Since we save away
168                          * the FP register state on context switch,
169                          * there is something wrong if a stopped child appears
170                          * to still have its FP state in the CPU registers.
171                          */
172                         BUG_ON(tsk != current);
173                         giveup_fpu(tsk);
174                 }
175                 preempt_enable();
176         }
177 }
178 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
179
180 void enable_kernel_fp(void)
181 {
182         WARN_ON(preemptible());
183
184         msr_check_and_set(MSR_FP);
185
186         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
187                 check_if_tm_restore_required(current);
188                 __giveup_fpu(current);
189         }
190 }
191 EXPORT_SYMBOL(enable_kernel_fp);
192 #endif /* CONFIG_PPC_FPU */
193
194 #ifdef CONFIG_ALTIVEC
195 void giveup_altivec(struct task_struct *tsk)
196 {
197         check_if_tm_restore_required(tsk);
198
199         msr_check_and_set(MSR_VEC);
200         __giveup_altivec(tsk);
201         msr_check_and_clear(MSR_VEC);
202 }
203 EXPORT_SYMBOL(giveup_altivec);
204
205 void enable_kernel_altivec(void)
206 {
207         WARN_ON(preemptible());
208
209         msr_check_and_set(MSR_VEC);
210
211         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
212                 check_if_tm_restore_required(current);
213                 __giveup_altivec(current);
214         }
215 }
216 EXPORT_SYMBOL(enable_kernel_altivec);
217
218 /*
219  * Make sure the VMX/Altivec register state in the
220  * the thread_struct is up to date for task tsk.
221  */
222 void flush_altivec_to_thread(struct task_struct *tsk)
223 {
224         if (tsk->thread.regs) {
225                 preempt_disable();
226                 if (tsk->thread.regs->msr & MSR_VEC) {
227                         BUG_ON(tsk != current);
228                         giveup_altivec(tsk);
229                 }
230                 preempt_enable();
231         }
232 }
233 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
234 #endif /* CONFIG_ALTIVEC */
235
236 #ifdef CONFIG_VSX
237 void giveup_vsx(struct task_struct *tsk)
238 {
239         check_if_tm_restore_required(tsk);
240
241         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
242         if (tsk->thread.regs->msr & MSR_FP)
243                 __giveup_fpu(tsk);
244         if (tsk->thread.regs->msr & MSR_VEC)
245                 __giveup_altivec(tsk);
246         __giveup_vsx(tsk);
247         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
248 }
249 EXPORT_SYMBOL(giveup_vsx);
250
251 void enable_kernel_vsx(void)
252 {
253         WARN_ON(preemptible());
254
255         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
256
257         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
258                 check_if_tm_restore_required(current);
259                 if (current->thread.regs->msr & MSR_FP)
260                         __giveup_fpu(current);
261                 if (current->thread.regs->msr & MSR_VEC)
262                         __giveup_altivec(current);
263                 __giveup_vsx(current);
264         }
265 }
266 EXPORT_SYMBOL(enable_kernel_vsx);
267
268 void flush_vsx_to_thread(struct task_struct *tsk)
269 {
270         if (tsk->thread.regs) {
271                 preempt_disable();
272                 if (tsk->thread.regs->msr & MSR_VSX) {
273                         BUG_ON(tsk != current);
274                         giveup_vsx(tsk);
275                 }
276                 preempt_enable();
277         }
278 }
279 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
280 #endif /* CONFIG_VSX */
281
282 #ifdef CONFIG_SPE
283 void giveup_spe(struct task_struct *tsk)
284 {
285         check_if_tm_restore_required(tsk);
286
287         msr_check_and_set(MSR_SPE);
288         __giveup_spe(tsk);
289         msr_check_and_clear(MSR_SPE);
290 }
291 EXPORT_SYMBOL(giveup_spe);
292
293 void enable_kernel_spe(void)
294 {
295         WARN_ON(preemptible());
296
297         msr_check_and_set(MSR_SPE);
298
299         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
300                 check_if_tm_restore_required(current);
301                 __giveup_spe(current);
302         }
303 }
304 EXPORT_SYMBOL(enable_kernel_spe);
305
306 void flush_spe_to_thread(struct task_struct *tsk)
307 {
308         if (tsk->thread.regs) {
309                 preempt_disable();
310                 if (tsk->thread.regs->msr & MSR_SPE) {
311                         BUG_ON(tsk != current);
312                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
313                         giveup_spe(tsk);
314                 }
315                 preempt_enable();
316         }
317 }
318 #endif /* CONFIG_SPE */
319
320 static unsigned long msr_all_available;
321
322 static int __init init_msr_all_available(void)
323 {
324 #ifdef CONFIG_PPC_FPU
325         msr_all_available |= MSR_FP;
326 #endif
327 #ifdef CONFIG_ALTIVEC
328         if (cpu_has_feature(CPU_FTR_ALTIVEC))
329                 msr_all_available |= MSR_VEC;
330 #endif
331 #ifdef CONFIG_VSX
332         if (cpu_has_feature(CPU_FTR_VSX))
333                 msr_all_available |= MSR_VSX;
334 #endif
335 #ifdef CONFIG_SPE
336         if (cpu_has_feature(CPU_FTR_SPE))
337                 msr_all_available |= MSR_SPE;
338 #endif
339
340         return 0;
341 }
342 early_initcall(init_msr_all_available);
343
344 void giveup_all(struct task_struct *tsk)
345 {
346         unsigned long usermsr;
347
348         if (!tsk->thread.regs)
349                 return;
350
351         usermsr = tsk->thread.regs->msr;
352
353         if ((usermsr & msr_all_available) == 0)
354                 return;
355
356         msr_check_and_set(msr_all_available);
357
358 #ifdef CONFIG_PPC_FPU
359         if (usermsr & MSR_FP)
360                 __giveup_fpu(tsk);
361 #endif
362 #ifdef CONFIG_ALTIVEC
363         if (usermsr & MSR_VEC)
364                 __giveup_altivec(tsk);
365 #endif
366 #ifdef CONFIG_VSX
367         if (usermsr & MSR_VSX)
368                 __giveup_vsx(tsk);
369 #endif
370 #ifdef CONFIG_SPE
371         if (usermsr & MSR_SPE)
372                 __giveup_spe(tsk);
373 #endif
374
375         msr_check_and_clear(msr_all_available);
376 }
377 EXPORT_SYMBOL(giveup_all);
378
379 void flush_all_to_thread(struct task_struct *tsk)
380 {
381         if (tsk->thread.regs) {
382                 preempt_disable();
383                 BUG_ON(tsk != current);
384                 giveup_all(tsk);
385
386 #ifdef CONFIG_SPE
387                 if (tsk->thread.regs->msr & MSR_SPE)
388                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
389 #endif
390
391                 preempt_enable();
392         }
393 }
394 EXPORT_SYMBOL(flush_all_to_thread);
395
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 void do_send_trap(struct pt_regs *regs, unsigned long address,
398                   unsigned long error_code, int signal_code, int breakpt)
399 {
400         siginfo_t info;
401
402         current->thread.trap_nr = signal_code;
403         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
404                         11, SIGSEGV) == NOTIFY_STOP)
405                 return;
406
407         /* Deliver the signal to userspace */
408         info.si_signo = SIGTRAP;
409         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
410         info.si_code = signal_code;
411         info.si_addr = (void __user *)address;
412         force_sig_info(SIGTRAP, &info, current);
413 }
414 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
415 void do_break (struct pt_regs *regs, unsigned long address,
416                     unsigned long error_code)
417 {
418         siginfo_t info;
419
420         current->thread.trap_nr = TRAP_HWBKPT;
421         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
422                         11, SIGSEGV) == NOTIFY_STOP)
423                 return;
424
425         if (debugger_break_match(regs))
426                 return;
427
428         /* Clear the breakpoint */
429         hw_breakpoint_disable();
430
431         /* Deliver the signal to userspace */
432         info.si_signo = SIGTRAP;
433         info.si_errno = 0;
434         info.si_code = TRAP_HWBKPT;
435         info.si_addr = (void __user *)address;
436         force_sig_info(SIGTRAP, &info, current);
437 }
438 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
439
440 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
441
442 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
443 /*
444  * Set the debug registers back to their default "safe" values.
445  */
446 static void set_debug_reg_defaults(struct thread_struct *thread)
447 {
448         thread->debug.iac1 = thread->debug.iac2 = 0;
449 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
450         thread->debug.iac3 = thread->debug.iac4 = 0;
451 #endif
452         thread->debug.dac1 = thread->debug.dac2 = 0;
453 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
454         thread->debug.dvc1 = thread->debug.dvc2 = 0;
455 #endif
456         thread->debug.dbcr0 = 0;
457 #ifdef CONFIG_BOOKE
458         /*
459          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
460          */
461         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
462                         DBCR1_IAC3US | DBCR1_IAC4US;
463         /*
464          * Force Data Address Compare User/Supervisor bits to be User-only
465          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
466          */
467         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
468 #else
469         thread->debug.dbcr1 = 0;
470 #endif
471 }
472
473 static void prime_debug_regs(struct debug_reg *debug)
474 {
475         /*
476          * We could have inherited MSR_DE from userspace, since
477          * it doesn't get cleared on exception entry.  Make sure
478          * MSR_DE is clear before we enable any debug events.
479          */
480         mtmsr(mfmsr() & ~MSR_DE);
481
482         mtspr(SPRN_IAC1, debug->iac1);
483         mtspr(SPRN_IAC2, debug->iac2);
484 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
485         mtspr(SPRN_IAC3, debug->iac3);
486         mtspr(SPRN_IAC4, debug->iac4);
487 #endif
488         mtspr(SPRN_DAC1, debug->dac1);
489         mtspr(SPRN_DAC2, debug->dac2);
490 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
491         mtspr(SPRN_DVC1, debug->dvc1);
492         mtspr(SPRN_DVC2, debug->dvc2);
493 #endif
494         mtspr(SPRN_DBCR0, debug->dbcr0);
495         mtspr(SPRN_DBCR1, debug->dbcr1);
496 #ifdef CONFIG_BOOKE
497         mtspr(SPRN_DBCR2, debug->dbcr2);
498 #endif
499 }
500 /*
501  * Unless neither the old or new thread are making use of the
502  * debug registers, set the debug registers from the values
503  * stored in the new thread.
504  */
505 void switch_booke_debug_regs(struct debug_reg *new_debug)
506 {
507         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
508                 || (new_debug->dbcr0 & DBCR0_IDM))
509                         prime_debug_regs(new_debug);
510 }
511 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
512 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
513 #ifndef CONFIG_HAVE_HW_BREAKPOINT
514 static void set_debug_reg_defaults(struct thread_struct *thread)
515 {
516         thread->hw_brk.address = 0;
517         thread->hw_brk.type = 0;
518         set_breakpoint(&thread->hw_brk);
519 }
520 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
521 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
522
523 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
524 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
525 {
526         mtspr(SPRN_DAC1, dabr);
527 #ifdef CONFIG_PPC_47x
528         isync();
529 #endif
530         return 0;
531 }
532 #elif defined(CONFIG_PPC_BOOK3S)
533 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
534 {
535         mtspr(SPRN_DABR, dabr);
536         if (cpu_has_feature(CPU_FTR_DABRX))
537                 mtspr(SPRN_DABRX, dabrx);
538         return 0;
539 }
540 #else
541 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
542 {
543         return -EINVAL;
544 }
545 #endif
546
547 static inline int set_dabr(struct arch_hw_breakpoint *brk)
548 {
549         unsigned long dabr, dabrx;
550
551         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
552         dabrx = ((brk->type >> 3) & 0x7);
553
554         if (ppc_md.set_dabr)
555                 return ppc_md.set_dabr(dabr, dabrx);
556
557         return __set_dabr(dabr, dabrx);
558 }
559
560 static inline int set_dawr(struct arch_hw_breakpoint *brk)
561 {
562         unsigned long dawr, dawrx, mrd;
563
564         dawr = brk->address;
565
566         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
567                                    << (63 - 58); //* read/write bits */
568         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
569                                    << (63 - 59); //* translate */
570         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
571                                    >> 3; //* PRIM bits */
572         /* dawr length is stored in field MDR bits 48:53.  Matches range in
573            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
574            0b111111=64DW.
575            brk->len is in bytes.
576            This aligns up to double word size, shifts and does the bias.
577         */
578         mrd = ((brk->len + 7) >> 3) - 1;
579         dawrx |= (mrd & 0x3f) << (63 - 53);
580
581         if (ppc_md.set_dawr)
582                 return ppc_md.set_dawr(dawr, dawrx);
583         mtspr(SPRN_DAWR, dawr);
584         mtspr(SPRN_DAWRX, dawrx);
585         return 0;
586 }
587
588 void __set_breakpoint(struct arch_hw_breakpoint *brk)
589 {
590         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
591
592         if (cpu_has_feature(CPU_FTR_DAWR))
593                 set_dawr(brk);
594         else
595                 set_dabr(brk);
596 }
597
598 void set_breakpoint(struct arch_hw_breakpoint *brk)
599 {
600         preempt_disable();
601         __set_breakpoint(brk);
602         preempt_enable();
603 }
604
605 #ifdef CONFIG_PPC64
606 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
607 #endif
608
609 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
610                               struct arch_hw_breakpoint *b)
611 {
612         if (a->address != b->address)
613                 return false;
614         if (a->type != b->type)
615                 return false;
616         if (a->len != b->len)
617                 return false;
618         return true;
619 }
620
621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
622 static void tm_reclaim_thread(struct thread_struct *thr,
623                               struct thread_info *ti, uint8_t cause)
624 {
625         unsigned long msr_diff = 0;
626
627         /*
628          * If FP/VSX registers have been already saved to the
629          * thread_struct, move them to the transact_fp array.
630          * We clear the TIF_RESTORE_TM bit since after the reclaim
631          * the thread will no longer be transactional.
632          */
633         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
634                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
635                 if (msr_diff & MSR_FP)
636                         memcpy(&thr->transact_fp, &thr->fp_state,
637                                sizeof(struct thread_fp_state));
638                 if (msr_diff & MSR_VEC)
639                         memcpy(&thr->transact_vr, &thr->vr_state,
640                                sizeof(struct thread_vr_state));
641                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
642                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
643         }
644
645         /*
646          * Use the current MSR TM suspended bit to track if we have
647          * checkpointed state outstanding.
648          * On signal delivery, we'd normally reclaim the checkpointed
649          * state to obtain stack pointer (see:get_tm_stackpointer()).
650          * This will then directly return to userspace without going
651          * through __switch_to(). However, if the stack frame is bad,
652          * we need to exit this thread which calls __switch_to() which
653          * will again attempt to reclaim the already saved tm state.
654          * Hence we need to check that we've not already reclaimed
655          * this state.
656          * We do this using the current MSR, rather tracking it in
657          * some specific thread_struct bit, as it has the additional
658          * benifit of checking for a potential TM bad thing exception.
659          */
660         if (!MSR_TM_SUSPENDED(mfmsr()))
661                 return;
662
663         tm_reclaim(thr, thr->regs->msr, cause);
664
665         /* Having done the reclaim, we now have the checkpointed
666          * FP/VSX values in the registers.  These might be valid
667          * even if we have previously called enable_kernel_fp() or
668          * flush_fp_to_thread(), so update thr->regs->msr to
669          * indicate their current validity.
670          */
671         thr->regs->msr |= msr_diff;
672 }
673
674 void tm_reclaim_current(uint8_t cause)
675 {
676         tm_enable();
677         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
678 }
679
680 static inline void tm_reclaim_task(struct task_struct *tsk)
681 {
682         /* We have to work out if we're switching from/to a task that's in the
683          * middle of a transaction.
684          *
685          * In switching we need to maintain a 2nd register state as
686          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
687          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
688          * (current) FPRs into oldtask->thread.transact_fpr[].
689          *
690          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
691          */
692         struct thread_struct *thr = &tsk->thread;
693
694         if (!thr->regs)
695                 return;
696
697         if (!MSR_TM_ACTIVE(thr->regs->msr))
698                 goto out_and_saveregs;
699
700         /* Stash the original thread MSR, as giveup_fpu et al will
701          * modify it.  We hold onto it to see whether the task used
702          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
703          * ckpt_regs.msr is already set.
704          */
705         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
706                 thr->ckpt_regs.msr = thr->regs->msr;
707
708         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
709                  "ccr=%lx, msr=%lx, trap=%lx)\n",
710                  tsk->pid, thr->regs->nip,
711                  thr->regs->ccr, thr->regs->msr,
712                  thr->regs->trap);
713
714         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
715
716         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
717                  tsk->pid);
718
719 out_and_saveregs:
720         /* Always save the regs here, even if a transaction's not active.
721          * This context-switches a thread's TM info SPRs.  We do it here to
722          * be consistent with the restore path (in recheckpoint) which
723          * cannot happen later in _switch().
724          */
725         tm_save_sprs(thr);
726 }
727
728 extern void __tm_recheckpoint(struct thread_struct *thread,
729                               unsigned long orig_msr);
730
731 void tm_recheckpoint(struct thread_struct *thread,
732                      unsigned long orig_msr)
733 {
734         unsigned long flags;
735
736         /* We really can't be interrupted here as the TEXASR registers can't
737          * change and later in the trecheckpoint code, we have a userspace R1.
738          * So let's hard disable over this region.
739          */
740         local_irq_save(flags);
741         hard_irq_disable();
742
743         /* The TM SPRs are restored here, so that TEXASR.FS can be set
744          * before the trecheckpoint and no explosion occurs.
745          */
746         tm_restore_sprs(thread);
747
748         __tm_recheckpoint(thread, orig_msr);
749
750         local_irq_restore(flags);
751 }
752
753 static inline void tm_recheckpoint_new_task(struct task_struct *new)
754 {
755         unsigned long msr;
756
757         if (!cpu_has_feature(CPU_FTR_TM))
758                 return;
759
760         /* Recheckpoint the registers of the thread we're about to switch to.
761          *
762          * If the task was using FP, we non-lazily reload both the original and
763          * the speculative FP register states.  This is because the kernel
764          * doesn't see if/when a TM rollback occurs, so if we take an FP
765          * unavoidable later, we are unable to determine which set of FP regs
766          * need to be restored.
767          */
768         if (!new->thread.regs)
769                 return;
770
771         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
772                 tm_restore_sprs(&new->thread);
773                 return;
774         }
775         msr = new->thread.ckpt_regs.msr;
776         /* Recheckpoint to restore original checkpointed register state. */
777         TM_DEBUG("*** tm_recheckpoint of pid %d "
778                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
779                  new->pid, new->thread.regs->msr, msr);
780
781         /* This loads the checkpointed FP/VEC state, if used */
782         tm_recheckpoint(&new->thread, msr);
783
784         /* This loads the speculative FP/VEC state, if used */
785         if (msr & MSR_FP) {
786                 do_load_up_transact_fpu(&new->thread);
787                 new->thread.regs->msr |=
788                         (MSR_FP | new->thread.fpexc_mode);
789         }
790 #ifdef CONFIG_ALTIVEC
791         if (msr & MSR_VEC) {
792                 do_load_up_transact_altivec(&new->thread);
793                 new->thread.regs->msr |= MSR_VEC;
794         }
795 #endif
796         /* We may as well turn on VSX too since all the state is restored now */
797         if (msr & MSR_VSX)
798                 new->thread.regs->msr |= MSR_VSX;
799
800         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
801                  "(kernel msr 0x%lx)\n",
802                  new->pid, mfmsr());
803 }
804
805 static inline void __switch_to_tm(struct task_struct *prev)
806 {
807         if (cpu_has_feature(CPU_FTR_TM)) {
808                 tm_enable();
809                 tm_reclaim_task(prev);
810         }
811 }
812
813 /*
814  * This is called if we are on the way out to userspace and the
815  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
816  * FP and/or vector state and does so if necessary.
817  * If userspace is inside a transaction (whether active or
818  * suspended) and FP/VMX/VSX instructions have ever been enabled
819  * inside that transaction, then we have to keep them enabled
820  * and keep the FP/VMX/VSX state loaded while ever the transaction
821  * continues.  The reason is that if we didn't, and subsequently
822  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
823  * we don't know whether it's the same transaction, and thus we
824  * don't know which of the checkpointed state and the transactional
825  * state to use.
826  */
827 void restore_tm_state(struct pt_regs *regs)
828 {
829         unsigned long msr_diff;
830
831         clear_thread_flag(TIF_RESTORE_TM);
832         if (!MSR_TM_ACTIVE(regs->msr))
833                 return;
834
835         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
836         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
837         if (msr_diff & MSR_FP) {
838                 msr_check_and_set(MSR_FP);
839                 load_fp_state(&current->thread.fp_state);
840                 msr_check_and_clear(MSR_FP);
841                 regs->msr |= current->thread.fpexc_mode;
842         }
843         if (msr_diff & MSR_VEC) {
844                 msr_check_and_set(MSR_VEC);
845                 load_vr_state(&current->thread.vr_state);
846                 msr_check_and_clear(MSR_VEC);
847         }
848         regs->msr |= msr_diff;
849 }
850
851 #else
852 #define tm_recheckpoint_new_task(new)
853 #define __switch_to_tm(prev)
854 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
855
856 static inline void save_sprs(struct thread_struct *t)
857 {
858 #ifdef CONFIG_ALTIVEC
859         if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
860                 t->vrsave = mfspr(SPRN_VRSAVE);
861 #endif
862 #ifdef CONFIG_PPC_BOOK3S_64
863         if (cpu_has_feature(CPU_FTR_DSCR))
864                 t->dscr = mfspr(SPRN_DSCR);
865
866         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
867                 t->bescr = mfspr(SPRN_BESCR);
868                 t->ebbhr = mfspr(SPRN_EBBHR);
869                 t->ebbrr = mfspr(SPRN_EBBRR);
870
871                 t->fscr = mfspr(SPRN_FSCR);
872
873                 /*
874                  * Note that the TAR is not available for use in the kernel.
875                  * (To provide this, the TAR should be backed up/restored on
876                  * exception entry/exit instead, and be in pt_regs.  FIXME,
877                  * this should be in pt_regs anyway (for debug).)
878                  */
879                 t->tar = mfspr(SPRN_TAR);
880         }
881 #endif
882 }
883
884 static inline void restore_sprs(struct thread_struct *old_thread,
885                                 struct thread_struct *new_thread)
886 {
887 #ifdef CONFIG_ALTIVEC
888         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
889             old_thread->vrsave != new_thread->vrsave)
890                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
891 #endif
892 #ifdef CONFIG_PPC_BOOK3S_64
893         if (cpu_has_feature(CPU_FTR_DSCR)) {
894                 u64 dscr = get_paca()->dscr_default;
895                 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
896
897                 if (new_thread->dscr_inherit) {
898                         dscr = new_thread->dscr;
899                         fscr |= FSCR_DSCR;
900                 }
901
902                 if (old_thread->dscr != dscr)
903                         mtspr(SPRN_DSCR, dscr);
904
905                 if (old_thread->fscr != fscr)
906                         mtspr(SPRN_FSCR, fscr);
907         }
908
909         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
910                 if (old_thread->bescr != new_thread->bescr)
911                         mtspr(SPRN_BESCR, new_thread->bescr);
912                 if (old_thread->ebbhr != new_thread->ebbhr)
913                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
914                 if (old_thread->ebbrr != new_thread->ebbrr)
915                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
916
917                 if (old_thread->tar != new_thread->tar)
918                         mtspr(SPRN_TAR, new_thread->tar);
919         }
920 #endif
921 }
922
923 struct task_struct *__switch_to(struct task_struct *prev,
924         struct task_struct *new)
925 {
926         struct thread_struct *new_thread, *old_thread;
927         struct task_struct *last;
928 #ifdef CONFIG_PPC_BOOK3S_64
929         struct ppc64_tlb_batch *batch;
930 #endif
931
932         new_thread = &new->thread;
933         old_thread = &current->thread;
934
935         WARN_ON(!irqs_disabled());
936
937 #ifdef CONFIG_PPC64
938         /*
939          * Collect processor utilization data per process
940          */
941         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
942                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
943                 long unsigned start_tb, current_tb;
944                 start_tb = old_thread->start_tb;
945                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
946                 old_thread->accum_tb += (current_tb - start_tb);
947                 new_thread->start_tb = current_tb;
948         }
949 #endif /* CONFIG_PPC64 */
950
951 #ifdef CONFIG_PPC_BOOK3S_64
952         batch = this_cpu_ptr(&ppc64_tlb_batch);
953         if (batch->active) {
954                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
955                 if (batch->index)
956                         __flush_tlb_pending(batch);
957                 batch->active = 0;
958         }
959 #endif /* CONFIG_PPC_BOOK3S_64 */
960
961 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
962         switch_booke_debug_regs(&new->thread.debug);
963 #else
964 /*
965  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
966  * schedule DABR
967  */
968 #ifndef CONFIG_HAVE_HW_BREAKPOINT
969         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
970                 __set_breakpoint(&new->thread.hw_brk);
971 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
972 #endif
973
974         /*
975          * We need to save SPRs before treclaim/trecheckpoint as these will
976          * change a number of them.
977          */
978         save_sprs(&prev->thread);
979
980         __switch_to_tm(prev);
981
982         /* Save FPU, Altivec, VSX and SPE state */
983         giveup_all(prev);
984
985         /*
986          * We can't take a PMU exception inside _switch() since there is a
987          * window where the kernel stack SLB and the kernel stack are out
988          * of sync. Hard disable here.
989          */
990         hard_irq_disable();
991
992         tm_recheckpoint_new_task(new);
993
994         /*
995          * Call restore_sprs() before calling _switch(). If we move it after
996          * _switch() then we miss out on calling it for new tasks. The reason
997          * for this is we manually create a stack frame for new tasks that
998          * directly returns through ret_from_fork() or
999          * ret_from_kernel_thread(). See copy_thread() for details.
1000          */
1001         restore_sprs(old_thread, new_thread);
1002
1003         last = _switch(old_thread, new_thread);
1004
1005 #ifdef CONFIG_PPC_BOOK3S_64
1006         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1007                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1008                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1009                 batch->active = 1;
1010         }
1011 #endif /* CONFIG_PPC_BOOK3S_64 */
1012
1013         return last;
1014 }
1015
1016 static int instructions_to_print = 16;
1017
1018 static void show_instructions(struct pt_regs *regs)
1019 {
1020         int i;
1021         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1022                         sizeof(int));
1023
1024         printk("Instruction dump:");
1025
1026         for (i = 0; i < instructions_to_print; i++) {
1027                 int instr;
1028
1029                 if (!(i % 8))
1030                         printk("\n");
1031
1032 #if !defined(CONFIG_BOOKE)
1033                 /* If executing with the IMMU off, adjust pc rather
1034                  * than print XXXXXXXX.
1035                  */
1036                 if (!(regs->msr & MSR_IR))
1037                         pc = (unsigned long)phys_to_virt(pc);
1038 #endif
1039
1040                 if (!__kernel_text_address(pc) ||
1041                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1042                         printk(KERN_CONT "XXXXXXXX ");
1043                 } else {
1044                         if (regs->nip == pc)
1045                                 printk(KERN_CONT "<%08x> ", instr);
1046                         else
1047                                 printk(KERN_CONT "%08x ", instr);
1048                 }
1049
1050                 pc += sizeof(int);
1051         }
1052
1053         printk("\n");
1054 }
1055
1056 struct regbit {
1057         unsigned long bit;
1058         const char *name;
1059 };
1060
1061 static struct regbit msr_bits[] = {
1062 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1063         {MSR_SF,        "SF"},
1064         {MSR_HV,        "HV"},
1065 #endif
1066         {MSR_VEC,       "VEC"},
1067         {MSR_VSX,       "VSX"},
1068 #ifdef CONFIG_BOOKE
1069         {MSR_CE,        "CE"},
1070 #endif
1071         {MSR_EE,        "EE"},
1072         {MSR_PR,        "PR"},
1073         {MSR_FP,        "FP"},
1074         {MSR_ME,        "ME"},
1075 #ifdef CONFIG_BOOKE
1076         {MSR_DE,        "DE"},
1077 #else
1078         {MSR_SE,        "SE"},
1079         {MSR_BE,        "BE"},
1080 #endif
1081         {MSR_IR,        "IR"},
1082         {MSR_DR,        "DR"},
1083         {MSR_PMM,       "PMM"},
1084 #ifndef CONFIG_BOOKE
1085         {MSR_RI,        "RI"},
1086         {MSR_LE,        "LE"},
1087 #endif
1088         {0,             NULL}
1089 };
1090
1091 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1092 {
1093         const char *s = "";
1094
1095         for (; bits->bit; ++bits)
1096                 if (val & bits->bit) {
1097                         printk("%s%s", s, bits->name);
1098                         s = sep;
1099                 }
1100 }
1101
1102 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1103 static struct regbit msr_tm_bits[] = {
1104         {MSR_TS_T,      "T"},
1105         {MSR_TS_S,      "S"},
1106         {MSR_TM,        "E"},
1107         {0,             NULL}
1108 };
1109
1110 static void print_tm_bits(unsigned long val)
1111 {
1112 /*
1113  * This only prints something if at least one of the TM bit is set.
1114  * Inside the TM[], the output means:
1115  *   E: Enabled         (bit 32)
1116  *   S: Suspended       (bit 33)
1117  *   T: Transactional   (bit 34)
1118  */
1119         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1120                 printk(",TM[");
1121                 print_bits(val, msr_tm_bits, "");
1122                 printk("]");
1123         }
1124 }
1125 #else
1126 static void print_tm_bits(unsigned long val) {}
1127 #endif
1128
1129 static void print_msr_bits(unsigned long val)
1130 {
1131         printk("<");
1132         print_bits(val, msr_bits, ",");
1133         print_tm_bits(val);
1134         printk(">");
1135 }
1136
1137 #ifdef CONFIG_PPC64
1138 #define REG             "%016lx"
1139 #define REGS_PER_LINE   4
1140 #define LAST_VOLATILE   13
1141 #else
1142 #define REG             "%08lx"
1143 #define REGS_PER_LINE   8
1144 #define LAST_VOLATILE   12
1145 #endif
1146
1147 void show_regs(struct pt_regs * regs)
1148 {
1149         int i, trap;
1150
1151         show_regs_print_info(KERN_DEFAULT);
1152
1153         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1154                regs->nip, regs->link, regs->ctr);
1155         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1156                regs, regs->trap, print_tainted(), init_utsname()->release);
1157         printk("MSR: "REG" ", regs->msr);
1158         print_msr_bits(regs->msr);
1159         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1160         trap = TRAP(regs);
1161         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1162                 printk("CFAR: "REG" ", regs->orig_gpr3);
1163         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1164 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1165                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1166 #else
1167                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1168 #endif
1169 #ifdef CONFIG_PPC64
1170         printk("SOFTE: %ld ", regs->softe);
1171 #endif
1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173         if (MSR_TM_ACTIVE(regs->msr))
1174                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1175 #endif
1176
1177         for (i = 0;  i < 32;  i++) {
1178                 if ((i % REGS_PER_LINE) == 0)
1179                         printk("\nGPR%02d: ", i);
1180                 printk(REG " ", regs->gpr[i]);
1181                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1182                         break;
1183         }
1184         printk("\n");
1185 #ifdef CONFIG_KALLSYMS
1186         /*
1187          * Lookup NIP late so we have the best change of getting the
1188          * above info out without failing
1189          */
1190         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1191         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1192 #endif
1193         show_stack(current, (unsigned long *) regs->gpr[1]);
1194         if (!user_mode(regs))
1195                 show_instructions(regs);
1196 }
1197
1198 void exit_thread(void)
1199 {
1200 }
1201
1202 void flush_thread(void)
1203 {
1204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1205         flush_ptrace_hw_breakpoint(current);
1206 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1207         set_debug_reg_defaults(&current->thread);
1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1209 }
1210
1211 void
1212 release_thread(struct task_struct *t)
1213 {
1214 }
1215
1216 /*
1217  * this gets called so that we can store coprocessor state into memory and
1218  * copy the current task into the new thread.
1219  */
1220 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1221 {
1222         flush_all_to_thread(src);
1223         /*
1224          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1225          * flush but it removes the checkpointed state from the current CPU and
1226          * transitions the CPU out of TM mode.  Hence we need to call
1227          * tm_recheckpoint_new_task() (on the same task) to restore the
1228          * checkpointed state back and the TM mode.
1229          */
1230         __switch_to_tm(src);
1231         tm_recheckpoint_new_task(src);
1232
1233         *dst = *src;
1234
1235         clear_task_ebb(dst);
1236
1237         return 0;
1238 }
1239
1240 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1241 {
1242 #ifdef CONFIG_PPC_STD_MMU_64
1243         unsigned long sp_vsid;
1244         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1245
1246         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1247                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1248                         << SLB_VSID_SHIFT_1T;
1249         else
1250                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1251                         << SLB_VSID_SHIFT;
1252         sp_vsid |= SLB_VSID_KERNEL | llp;
1253         p->thread.ksp_vsid = sp_vsid;
1254 #endif
1255 }
1256
1257 /*
1258  * Copy a thread..
1259  */
1260
1261 /*
1262  * Copy architecture-specific thread state
1263  */
1264 int copy_thread(unsigned long clone_flags, unsigned long usp,
1265                 unsigned long kthread_arg, struct task_struct *p)
1266 {
1267         struct pt_regs *childregs, *kregs;
1268         extern void ret_from_fork(void);
1269         extern void ret_from_kernel_thread(void);
1270         void (*f)(void);
1271         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1272         struct thread_info *ti = task_thread_info(p);
1273
1274         klp_init_thread_info(ti);
1275
1276         /* Copy registers */
1277         sp -= sizeof(struct pt_regs);
1278         childregs = (struct pt_regs *) sp;
1279         if (unlikely(p->flags & PF_KTHREAD)) {
1280                 /* kernel thread */
1281                 memset(childregs, 0, sizeof(struct pt_regs));
1282                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1283                 /* function */
1284                 if (usp)
1285                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1286 #ifdef CONFIG_PPC64
1287                 clear_tsk_thread_flag(p, TIF_32BIT);
1288                 childregs->softe = 1;
1289 #endif
1290                 childregs->gpr[15] = kthread_arg;
1291                 p->thread.regs = NULL;  /* no user register state */
1292                 ti->flags |= _TIF_RESTOREALL;
1293                 f = ret_from_kernel_thread;
1294         } else {
1295                 /* user thread */
1296                 struct pt_regs *regs = current_pt_regs();
1297                 CHECK_FULL_REGS(regs);
1298                 *childregs = *regs;
1299                 if (usp)
1300                         childregs->gpr[1] = usp;
1301                 p->thread.regs = childregs;
1302                 childregs->gpr[3] = 0;  /* Result from fork() */
1303                 if (clone_flags & CLONE_SETTLS) {
1304 #ifdef CONFIG_PPC64
1305                         if (!is_32bit_task())
1306                                 childregs->gpr[13] = childregs->gpr[6];
1307                         else
1308 #endif
1309                                 childregs->gpr[2] = childregs->gpr[6];
1310                 }
1311
1312                 f = ret_from_fork;
1313         }
1314         sp -= STACK_FRAME_OVERHEAD;
1315
1316         /*
1317          * The way this works is that at some point in the future
1318          * some task will call _switch to switch to the new task.
1319          * That will pop off the stack frame created below and start
1320          * the new task running at ret_from_fork.  The new task will
1321          * do some house keeping and then return from the fork or clone
1322          * system call, using the stack frame created above.
1323          */
1324         ((unsigned long *)sp)[0] = 0;
1325         sp -= sizeof(struct pt_regs);
1326         kregs = (struct pt_regs *) sp;
1327         sp -= STACK_FRAME_OVERHEAD;
1328         p->thread.ksp = sp;
1329 #ifdef CONFIG_PPC32
1330         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1331                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1332 #endif
1333 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1334         p->thread.ptrace_bps[0] = NULL;
1335 #endif
1336
1337         p->thread.fp_save_area = NULL;
1338 #ifdef CONFIG_ALTIVEC
1339         p->thread.vr_save_area = NULL;
1340 #endif
1341
1342         setup_ksp_vsid(p, sp);
1343
1344 #ifdef CONFIG_PPC64 
1345         if (cpu_has_feature(CPU_FTR_DSCR)) {
1346                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1347                 p->thread.dscr = mfspr(SPRN_DSCR);
1348         }
1349         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1350                 p->thread.ppr = INIT_PPR;
1351 #endif
1352         kregs->nip = ppc_function_entry(f);
1353         return 0;
1354 }
1355
1356 /*
1357  * Set up a thread for executing a new program
1358  */
1359 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1360 {
1361 #ifdef CONFIG_PPC64
1362         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1363 #endif
1364
1365         /*
1366          * If we exec out of a kernel thread then thread.regs will not be
1367          * set.  Do it now.
1368          */
1369         if (!current->thread.regs) {
1370                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1371                 current->thread.regs = regs - 1;
1372         }
1373
1374         memset(regs->gpr, 0, sizeof(regs->gpr));
1375         regs->ctr = 0;
1376         regs->link = 0;
1377         regs->xer = 0;
1378         regs->ccr = 0;
1379         regs->gpr[1] = sp;
1380
1381         /*
1382          * We have just cleared all the nonvolatile GPRs, so make
1383          * FULL_REGS(regs) return true.  This is necessary to allow
1384          * ptrace to examine the thread immediately after exec.
1385          */
1386         regs->trap &= ~1UL;
1387
1388 #ifdef CONFIG_PPC32
1389         regs->mq = 0;
1390         regs->nip = start;
1391         regs->msr = MSR_USER;
1392 #else
1393         if (!is_32bit_task()) {
1394                 unsigned long entry;
1395
1396                 if (is_elf2_task()) {
1397                         /* Look ma, no function descriptors! */
1398                         entry = start;
1399
1400                         /*
1401                          * Ulrich says:
1402                          *   The latest iteration of the ABI requires that when
1403                          *   calling a function (at its global entry point),
1404                          *   the caller must ensure r12 holds the entry point
1405                          *   address (so that the function can quickly
1406                          *   establish addressability).
1407                          */
1408                         regs->gpr[12] = start;
1409                         /* Make sure that's restored on entry to userspace. */
1410                         set_thread_flag(TIF_RESTOREALL);
1411                 } else {
1412                         unsigned long toc;
1413
1414                         /* start is a relocated pointer to the function
1415                          * descriptor for the elf _start routine.  The first
1416                          * entry in the function descriptor is the entry
1417                          * address of _start and the second entry is the TOC
1418                          * value we need to use.
1419                          */
1420                         __get_user(entry, (unsigned long __user *)start);
1421                         __get_user(toc, (unsigned long __user *)start+1);
1422
1423                         /* Check whether the e_entry function descriptor entries
1424                          * need to be relocated before we can use them.
1425                          */
1426                         if (load_addr != 0) {
1427                                 entry += load_addr;
1428                                 toc   += load_addr;
1429                         }
1430                         regs->gpr[2] = toc;
1431                 }
1432                 regs->nip = entry;
1433                 regs->msr = MSR_USER64;
1434         } else {
1435                 regs->nip = start;
1436                 regs->gpr[2] = 0;
1437                 regs->msr = MSR_USER32;
1438         }
1439 #endif
1440 #ifdef CONFIG_VSX
1441         current->thread.used_vsr = 0;
1442 #endif
1443         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1444         current->thread.fp_save_area = NULL;
1445 #ifdef CONFIG_ALTIVEC
1446         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1447         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1448         current->thread.vr_save_area = NULL;
1449         current->thread.vrsave = 0;
1450         current->thread.used_vr = 0;
1451 #endif /* CONFIG_ALTIVEC */
1452 #ifdef CONFIG_SPE
1453         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1454         current->thread.acc = 0;
1455         current->thread.spefscr = 0;
1456         current->thread.used_spe = 0;
1457 #endif /* CONFIG_SPE */
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459         if (cpu_has_feature(CPU_FTR_TM))
1460                 regs->msr |= MSR_TM;
1461         current->thread.tm_tfhar = 0;
1462         current->thread.tm_texasr = 0;
1463         current->thread.tm_tfiar = 0;
1464 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1465 }
1466 EXPORT_SYMBOL(start_thread);
1467
1468 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1469                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1470
1471 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1472 {
1473         struct pt_regs *regs = tsk->thread.regs;
1474
1475         /* This is a bit hairy.  If we are an SPE enabled  processor
1476          * (have embedded fp) we store the IEEE exception enable flags in
1477          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1478          * mode (asyn, precise, disabled) for 'Classic' FP. */
1479         if (val & PR_FP_EXC_SW_ENABLE) {
1480 #ifdef CONFIG_SPE
1481                 if (cpu_has_feature(CPU_FTR_SPE)) {
1482                         /*
1483                          * When the sticky exception bits are set
1484                          * directly by userspace, it must call prctl
1485                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1486                          * in the existing prctl settings) or
1487                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1488                          * the bits being set).  <fenv.h> functions
1489                          * saving and restoring the whole
1490                          * floating-point environment need to do so
1491                          * anyway to restore the prctl settings from
1492                          * the saved environment.
1493                          */
1494                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1495                         tsk->thread.fpexc_mode = val &
1496                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1497                         return 0;
1498                 } else {
1499                         return -EINVAL;
1500                 }
1501 #else
1502                 return -EINVAL;
1503 #endif
1504         }
1505
1506         /* on a CONFIG_SPE this does not hurt us.  The bits that
1507          * __pack_fe01 use do not overlap with bits used for
1508          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1509          * on CONFIG_SPE implementations are reserved so writing to
1510          * them does not change anything */
1511         if (val > PR_FP_EXC_PRECISE)
1512                 return -EINVAL;
1513         tsk->thread.fpexc_mode = __pack_fe01(val);
1514         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1515                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1516                         | tsk->thread.fpexc_mode;
1517         return 0;
1518 }
1519
1520 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1521 {
1522         unsigned int val;
1523
1524         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1525 #ifdef CONFIG_SPE
1526                 if (cpu_has_feature(CPU_FTR_SPE)) {
1527                         /*
1528                          * When the sticky exception bits are set
1529                          * directly by userspace, it must call prctl
1530                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1531                          * in the existing prctl settings) or
1532                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1533                          * the bits being set).  <fenv.h> functions
1534                          * saving and restoring the whole
1535                          * floating-point environment need to do so
1536                          * anyway to restore the prctl settings from
1537                          * the saved environment.
1538                          */
1539                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1540                         val = tsk->thread.fpexc_mode;
1541                 } else
1542                         return -EINVAL;
1543 #else
1544                 return -EINVAL;
1545 #endif
1546         else
1547                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1548         return put_user(val, (unsigned int __user *) adr);
1549 }
1550
1551 int set_endian(struct task_struct *tsk, unsigned int val)
1552 {
1553         struct pt_regs *regs = tsk->thread.regs;
1554
1555         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1556             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1557                 return -EINVAL;
1558
1559         if (regs == NULL)
1560                 return -EINVAL;
1561
1562         if (val == PR_ENDIAN_BIG)
1563                 regs->msr &= ~MSR_LE;
1564         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1565                 regs->msr |= MSR_LE;
1566         else
1567                 return -EINVAL;
1568
1569         return 0;
1570 }
1571
1572 int get_endian(struct task_struct *tsk, unsigned long adr)
1573 {
1574         struct pt_regs *regs = tsk->thread.regs;
1575         unsigned int val;
1576
1577         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1578             !cpu_has_feature(CPU_FTR_REAL_LE))
1579                 return -EINVAL;
1580
1581         if (regs == NULL)
1582                 return -EINVAL;
1583
1584         if (regs->msr & MSR_LE) {
1585                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1586                         val = PR_ENDIAN_LITTLE;
1587                 else
1588                         val = PR_ENDIAN_PPC_LITTLE;
1589         } else
1590                 val = PR_ENDIAN_BIG;
1591
1592         return put_user(val, (unsigned int __user *)adr);
1593 }
1594
1595 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1596 {
1597         tsk->thread.align_ctl = val;
1598         return 0;
1599 }
1600
1601 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1602 {
1603         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1604 }
1605
1606 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1607                                   unsigned long nbytes)
1608 {
1609         unsigned long stack_page;
1610         unsigned long cpu = task_cpu(p);
1611
1612         /*
1613          * Avoid crashing if the stack has overflowed and corrupted
1614          * task_cpu(p), which is in the thread_info struct.
1615          */
1616         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1617                 stack_page = (unsigned long) hardirq_ctx[cpu];
1618                 if (sp >= stack_page + sizeof(struct thread_struct)
1619                     && sp <= stack_page + THREAD_SIZE - nbytes)
1620                         return 1;
1621
1622                 stack_page = (unsigned long) softirq_ctx[cpu];
1623                 if (sp >= stack_page + sizeof(struct thread_struct)
1624                     && sp <= stack_page + THREAD_SIZE - nbytes)
1625                         return 1;
1626         }
1627         return 0;
1628 }
1629
1630 int validate_sp(unsigned long sp, struct task_struct *p,
1631                        unsigned long nbytes)
1632 {
1633         unsigned long stack_page = (unsigned long)task_stack_page(p);
1634
1635         if (sp >= stack_page + sizeof(struct thread_struct)
1636             && sp <= stack_page + THREAD_SIZE - nbytes)
1637                 return 1;
1638
1639         return valid_irq_stack(sp, p, nbytes);
1640 }
1641
1642 EXPORT_SYMBOL(validate_sp);
1643
1644 unsigned long get_wchan(struct task_struct *p)
1645 {
1646         unsigned long ip, sp;
1647         int count = 0;
1648
1649         if (!p || p == current || p->state == TASK_RUNNING)
1650                 return 0;
1651
1652         sp = p->thread.ksp;
1653         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1654                 return 0;
1655
1656         do {
1657                 sp = *(unsigned long *)sp;
1658                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1659                         return 0;
1660                 if (count > 0) {
1661                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1662                         if (!in_sched_functions(ip))
1663                                 return ip;
1664                 }
1665         } while (count++ < 16);
1666         return 0;
1667 }
1668
1669 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1670
1671 void show_stack(struct task_struct *tsk, unsigned long *stack)
1672 {
1673         unsigned long sp, ip, lr, newsp;
1674         int count = 0;
1675         int firstframe = 1;
1676 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1677         int curr_frame = current->curr_ret_stack;
1678         extern void return_to_handler(void);
1679         unsigned long rth = (unsigned long)return_to_handler;
1680 #endif
1681
1682         sp = (unsigned long) stack;
1683         if (tsk == NULL)
1684                 tsk = current;
1685         if (sp == 0) {
1686                 if (tsk == current)
1687                         sp = current_stack_pointer();
1688                 else
1689                         sp = tsk->thread.ksp;
1690         }
1691
1692         lr = 0;
1693         printk("Call Trace:\n");
1694         do {
1695                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1696                         return;
1697
1698                 stack = (unsigned long *) sp;
1699                 newsp = stack[0];
1700                 ip = stack[STACK_FRAME_LR_SAVE];
1701                 if (!firstframe || ip != lr) {
1702                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1703 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1704                         if ((ip == rth) && curr_frame >= 0) {
1705                                 printk(" (%pS)",
1706                                        (void *)current->ret_stack[curr_frame].ret);
1707                                 curr_frame--;
1708                         }
1709 #endif
1710                         if (firstframe)
1711                                 printk(" (unreliable)");
1712                         printk("\n");
1713                 }
1714                 firstframe = 0;
1715
1716                 /*
1717                  * See if this is an exception frame.
1718                  * We look for the "regshere" marker in the current frame.
1719                  */
1720                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1721                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1722                         struct pt_regs *regs = (struct pt_regs *)
1723                                 (sp + STACK_FRAME_OVERHEAD);
1724                         lr = regs->link;
1725                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1726                                regs->trap, (void *)regs->nip, (void *)lr);
1727                         firstframe = 1;
1728                 }
1729
1730                 sp = newsp;
1731         } while (count++ < kstack_depth_to_print);
1732 }
1733
1734 #ifdef CONFIG_PPC64
1735 /* Called with hard IRQs off */
1736 void notrace __ppc64_runlatch_on(void)
1737 {
1738         struct thread_info *ti = current_thread_info();
1739         unsigned long ctrl;
1740
1741         ctrl = mfspr(SPRN_CTRLF);
1742         ctrl |= CTRL_RUNLATCH;
1743         mtspr(SPRN_CTRLT, ctrl);
1744
1745         ti->local_flags |= _TLF_RUNLATCH;
1746 }
1747
1748 /* Called with hard IRQs off */
1749 void notrace __ppc64_runlatch_off(void)
1750 {
1751         struct thread_info *ti = current_thread_info();
1752         unsigned long ctrl;
1753
1754         ti->local_flags &= ~_TLF_RUNLATCH;
1755
1756         ctrl = mfspr(SPRN_CTRLF);
1757         ctrl &= ~CTRL_RUNLATCH;
1758         mtspr(SPRN_CTRLT, ctrl);
1759 }
1760 #endif /* CONFIG_PPC64 */
1761
1762 unsigned long arch_align_stack(unsigned long sp)
1763 {
1764         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1765                 sp -= get_random_int() & ~PAGE_MASK;
1766         return sp & ~0xf;
1767 }
1768
1769 static inline unsigned long brk_rnd(void)
1770 {
1771         unsigned long rnd = 0;
1772
1773         /* 8MB for 32bit, 1GB for 64bit */
1774         if (is_32bit_task())
1775                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1776         else
1777                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1778
1779         return rnd << PAGE_SHIFT;
1780 }
1781
1782 unsigned long arch_randomize_brk(struct mm_struct *mm)
1783 {
1784         unsigned long base = mm->brk;
1785         unsigned long ret;
1786
1787 #ifdef CONFIG_PPC_STD_MMU_64
1788         /*
1789          * If we are using 1TB segments and we are allowed to randomise
1790          * the heap, we can put it above 1TB so it is backed by a 1TB
1791          * segment. Otherwise the heap will be in the bottom 1TB
1792          * which always uses 256MB segments and this may result in a
1793          * performance penalty.
1794          */
1795         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1796                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1797 #endif
1798
1799         ret = PAGE_ALIGN(base + brk_rnd());
1800
1801         if (ret < mm->brk)
1802                 return mm->brk;
1803
1804         return ret;
1805 }
1806