Merge tag 'powerpc-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70
71 #include <linux/kprobes.h>
72 #include <linux/kdebug.h>
73
74 /* Transactional Memory debug */
75 #ifdef TM_DEBUG_SW
76 #define TM_DEBUG(x...) printk(KERN_INFO x)
77 #else
78 #define TM_DEBUG(x...) do { } while(0)
79 #endif
80
81 extern unsigned long _get_SP(void);
82
83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
84 /*
85  * Are we running in "Suspend disabled" mode? If so we have to block any
86  * sigreturn that would get us into suspended state, and we also warn in some
87  * other paths that we should never reach with suspend disabled.
88  */
89 bool tm_suspend_disabled __ro_after_init = false;
90
91 static void check_if_tm_restore_required(struct task_struct *tsk)
92 {
93         /*
94          * If we are saving the current thread's registers, and the
95          * thread is in a transactional state, set the TIF_RESTORE_TM
96          * bit so that we know to restore the registers before
97          * returning to userspace.
98          */
99         if (tsk == current && tsk->thread.regs &&
100             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101             !test_thread_flag(TIF_RESTORE_TM)) {
102                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
103                 set_thread_flag(TIF_RESTORE_TM);
104         }
105 }
106
107 static bool tm_active_with_fp(struct task_struct *tsk)
108 {
109         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
110                 (tsk->thread.ckpt_regs.msr & MSR_FP);
111 }
112
113 static bool tm_active_with_altivec(struct task_struct *tsk)
114 {
115         return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
116                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
117 }
118 #else
119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123
124 bool strict_msr_control;
125 EXPORT_SYMBOL(strict_msr_control);
126
127 static int __init enable_strict_msr_control(char *str)
128 {
129         strict_msr_control = true;
130         pr_info("Enabling strict facility control\n");
131
132         return 0;
133 }
134 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135
136 unsigned long msr_check_and_set(unsigned long bits)
137 {
138         unsigned long oldmsr = mfmsr();
139         unsigned long newmsr;
140
141         newmsr = oldmsr | bits;
142
143 #ifdef CONFIG_VSX
144         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145                 newmsr |= MSR_VSX;
146 #endif
147
148         if (oldmsr != newmsr)
149                 mtmsr_isync(newmsr);
150
151         return newmsr;
152 }
153 EXPORT_SYMBOL_GPL(msr_check_and_set);
154
155 void __msr_check_and_clear(unsigned long bits)
156 {
157         unsigned long oldmsr = mfmsr();
158         unsigned long newmsr;
159
160         newmsr = oldmsr & ~bits;
161
162 #ifdef CONFIG_VSX
163         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164                 newmsr &= ~MSR_VSX;
165 #endif
166
167         if (oldmsr != newmsr)
168                 mtmsr_isync(newmsr);
169 }
170 EXPORT_SYMBOL(__msr_check_and_clear);
171
172 #ifdef CONFIG_PPC_FPU
173 static void __giveup_fpu(struct task_struct *tsk)
174 {
175         unsigned long msr;
176
177         save_fpu(tsk);
178         msr = tsk->thread.regs->msr;
179         msr &= ~MSR_FP;
180 #ifdef CONFIG_VSX
181         if (cpu_has_feature(CPU_FTR_VSX))
182                 msr &= ~MSR_VSX;
183 #endif
184         tsk->thread.regs->msr = msr;
185 }
186
187 void giveup_fpu(struct task_struct *tsk)
188 {
189         check_if_tm_restore_required(tsk);
190
191         msr_check_and_set(MSR_FP);
192         __giveup_fpu(tsk);
193         msr_check_and_clear(MSR_FP);
194 }
195 EXPORT_SYMBOL(giveup_fpu);
196
197 /*
198  * Make sure the floating-point register state in the
199  * the thread_struct is up to date for task tsk.
200  */
201 void flush_fp_to_thread(struct task_struct *tsk)
202 {
203         if (tsk->thread.regs) {
204                 /*
205                  * We need to disable preemption here because if we didn't,
206                  * another process could get scheduled after the regs->msr
207                  * test but before we have finished saving the FP registers
208                  * to the thread_struct.  That process could take over the
209                  * FPU, and then when we get scheduled again we would store
210                  * bogus values for the remaining FP registers.
211                  */
212                 preempt_disable();
213                 if (tsk->thread.regs->msr & MSR_FP) {
214                         /*
215                          * This should only ever be called for current or
216                          * for a stopped child process.  Since we save away
217                          * the FP register state on context switch,
218                          * there is something wrong if a stopped child appears
219                          * to still have its FP state in the CPU registers.
220                          */
221                         BUG_ON(tsk != current);
222                         giveup_fpu(tsk);
223                 }
224                 preempt_enable();
225         }
226 }
227 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
228
229 void enable_kernel_fp(void)
230 {
231         unsigned long cpumsr;
232
233         WARN_ON(preemptible());
234
235         cpumsr = msr_check_and_set(MSR_FP);
236
237         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238                 check_if_tm_restore_required(current);
239                 /*
240                  * If a thread has already been reclaimed then the
241                  * checkpointed registers are on the CPU but have definitely
242                  * been saved by the reclaim code. Don't need to and *cannot*
243                  * giveup as this would save  to the 'live' structure not the
244                  * checkpointed structure.
245                  */
246                 if (!MSR_TM_ACTIVE(cpumsr) &&
247                      MSR_TM_ACTIVE(current->thread.regs->msr))
248                         return;
249                 __giveup_fpu(current);
250         }
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253
254 static int restore_fp(struct task_struct *tsk)
255 {
256         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257                 load_fp_state(&current->thread.fp_state);
258                 current->thread.load_fp++;
259                 return 1;
260         }
261         return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272         unsigned long msr;
273
274         save_altivec(tsk);
275         msr = tsk->thread.regs->msr;
276         msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278         if (cpu_has_feature(CPU_FTR_VSX))
279                 msr &= ~MSR_VSX;
280 #endif
281         tsk->thread.regs->msr = msr;
282 }
283
284 void giveup_altivec(struct task_struct *tsk)
285 {
286         check_if_tm_restore_required(tsk);
287
288         msr_check_and_set(MSR_VEC);
289         __giveup_altivec(tsk);
290         msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293
294 void enable_kernel_altivec(void)
295 {
296         unsigned long cpumsr;
297
298         WARN_ON(preemptible());
299
300         cpumsr = msr_check_and_set(MSR_VEC);
301
302         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303                 check_if_tm_restore_required(current);
304                 /*
305                  * If a thread has already been reclaimed then the
306                  * checkpointed registers are on the CPU but have definitely
307                  * been saved by the reclaim code. Don't need to and *cannot*
308                  * giveup as this would save  to the 'live' structure not the
309                  * checkpointed structure.
310                  */
311                 if (!MSR_TM_ACTIVE(cpumsr) &&
312                      MSR_TM_ACTIVE(current->thread.regs->msr))
313                         return;
314                 __giveup_altivec(current);
315         }
316 }
317 EXPORT_SYMBOL(enable_kernel_altivec);
318
319 /*
320  * Make sure the VMX/Altivec register state in the
321  * the thread_struct is up to date for task tsk.
322  */
323 void flush_altivec_to_thread(struct task_struct *tsk)
324 {
325         if (tsk->thread.regs) {
326                 preempt_disable();
327                 if (tsk->thread.regs->msr & MSR_VEC) {
328                         BUG_ON(tsk != current);
329                         giveup_altivec(tsk);
330                 }
331                 preempt_enable();
332         }
333 }
334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
335
336 static int restore_altivec(struct task_struct *tsk)
337 {
338         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
339                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
340                 load_vr_state(&tsk->thread.vr_state);
341                 tsk->thread.used_vr = 1;
342                 tsk->thread.load_vec++;
343
344                 return 1;
345         }
346         return 0;
347 }
348 #else
349 #define loadvec(thr) 0
350 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
351 #endif /* CONFIG_ALTIVEC */
352
353 #ifdef CONFIG_VSX
354 static void __giveup_vsx(struct task_struct *tsk)
355 {
356         unsigned long msr = tsk->thread.regs->msr;
357
358         /*
359          * We should never be ssetting MSR_VSX without also setting
360          * MSR_FP and MSR_VEC
361          */
362         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363
364         /* __giveup_fpu will clear MSR_VSX */
365         if (msr & MSR_FP)
366                 __giveup_fpu(tsk);
367         if (msr & MSR_VEC)
368                 __giveup_altivec(tsk);
369 }
370
371 static void giveup_vsx(struct task_struct *tsk)
372 {
373         check_if_tm_restore_required(tsk);
374
375         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
376         __giveup_vsx(tsk);
377         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
378 }
379
380 void enable_kernel_vsx(void)
381 {
382         unsigned long cpumsr;
383
384         WARN_ON(preemptible());
385
386         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
387
388         if (current->thread.regs &&
389             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
390                 check_if_tm_restore_required(current);
391                 /*
392                  * If a thread has already been reclaimed then the
393                  * checkpointed registers are on the CPU but have definitely
394                  * been saved by the reclaim code. Don't need to and *cannot*
395                  * giveup as this would save  to the 'live' structure not the
396                  * checkpointed structure.
397                  */
398                 if (!MSR_TM_ACTIVE(cpumsr) &&
399                      MSR_TM_ACTIVE(current->thread.regs->msr))
400                         return;
401                 __giveup_vsx(current);
402         }
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408         if (tsk->thread.regs) {
409                 preempt_disable();
410                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411                         BUG_ON(tsk != current);
412                         giveup_vsx(tsk);
413                 }
414                 preempt_enable();
415         }
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418
419 static int restore_vsx(struct task_struct *tsk)
420 {
421         if (cpu_has_feature(CPU_FTR_VSX)) {
422                 tsk->thread.used_vsr = 1;
423                 return 1;
424         }
425
426         return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435         check_if_tm_restore_required(tsk);
436
437         msr_check_and_set(MSR_SPE);
438         __giveup_spe(tsk);
439         msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442
443 void enable_kernel_spe(void)
444 {
445         WARN_ON(preemptible());
446
447         msr_check_and_set(MSR_SPE);
448
449         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450                 check_if_tm_restore_required(current);
451                 __giveup_spe(current);
452         }
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458         if (tsk->thread.regs) {
459                 preempt_disable();
460                 if (tsk->thread.regs->msr & MSR_SPE) {
461                         BUG_ON(tsk != current);
462                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463                         giveup_spe(tsk);
464                 }
465                 preempt_enable();
466         }
467 }
468 #endif /* CONFIG_SPE */
469
470 static unsigned long msr_all_available;
471
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475         msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478         if (cpu_has_feature(CPU_FTR_ALTIVEC))
479                 msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482         if (cpu_has_feature(CPU_FTR_VSX))
483                 msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486         if (cpu_has_feature(CPU_FTR_SPE))
487                 msr_all_available |= MSR_SPE;
488 #endif
489
490         return 0;
491 }
492 early_initcall(init_msr_all_available);
493
494 void giveup_all(struct task_struct *tsk)
495 {
496         unsigned long usermsr;
497
498         if (!tsk->thread.regs)
499                 return;
500
501         usermsr = tsk->thread.regs->msr;
502
503         if ((usermsr & msr_all_available) == 0)
504                 return;
505
506         msr_check_and_set(msr_all_available);
507         check_if_tm_restore_required(tsk);
508
509         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
511 #ifdef CONFIG_PPC_FPU
512         if (usermsr & MSR_FP)
513                 __giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516         if (usermsr & MSR_VEC)
517                 __giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520         if (usermsr & MSR_SPE)
521                 __giveup_spe(tsk);
522 #endif
523
524         msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527
528 void restore_math(struct pt_regs *regs)
529 {
530         unsigned long msr;
531
532         if (!MSR_TM_ACTIVE(regs->msr) &&
533                 !current->thread.load_fp && !loadvec(current->thread))
534                 return;
535
536         msr = regs->msr;
537         msr_check_and_set(msr_all_available);
538
539         /*
540          * Only reload if the bit is not set in the user MSR, the bit BEING set
541          * indicates that the registers are hot
542          */
543         if ((!(msr & MSR_FP)) && restore_fp(current))
544                 msr |= MSR_FP | current->thread.fpexc_mode;
545
546         if ((!(msr & MSR_VEC)) && restore_altivec(current))
547                 msr |= MSR_VEC;
548
549         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550                         restore_vsx(current)) {
551                 msr |= MSR_VSX;
552         }
553
554         msr_check_and_clear(msr_all_available);
555
556         regs->msr = msr;
557 }
558
559 static void save_all(struct task_struct *tsk)
560 {
561         unsigned long usermsr;
562
563         if (!tsk->thread.regs)
564                 return;
565
566         usermsr = tsk->thread.regs->msr;
567
568         if ((usermsr & msr_all_available) == 0)
569                 return;
570
571         msr_check_and_set(msr_all_available);
572
573         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575         if (usermsr & MSR_FP)
576                 save_fpu(tsk);
577
578         if (usermsr & MSR_VEC)
579                 save_altivec(tsk);
580
581         if (usermsr & MSR_SPE)
582                 __giveup_spe(tsk);
583
584         msr_check_and_clear(msr_all_available);
585         thread_pkey_regs_save(&tsk->thread);
586 }
587
588 void flush_all_to_thread(struct task_struct *tsk)
589 {
590         if (tsk->thread.regs) {
591                 preempt_disable();
592                 BUG_ON(tsk != current);
593 #ifdef CONFIG_SPE
594                 if (tsk->thread.regs->msr & MSR_SPE)
595                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
596 #endif
597                 save_all(tsk);
598
599                 preempt_enable();
600         }
601 }
602 EXPORT_SYMBOL(flush_all_to_thread);
603
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606                   unsigned long error_code, int breakpt)
607 {
608         current->thread.trap_nr = TRAP_HWBKPT;
609         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610                         11, SIGSEGV) == NOTIFY_STOP)
611                 return;
612
613         /* Deliver the signal to userspace */
614         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615                                     (void __user *)address);
616 }
617 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619                     unsigned long error_code)
620 {
621         current->thread.trap_nr = TRAP_HWBKPT;
622         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623                         11, SIGSEGV) == NOTIFY_STOP)
624                 return;
625
626         if (debugger_break_match(regs))
627                 return;
628
629         /* Clear the breakpoint */
630         hw_breakpoint_disable();
631
632         /* Deliver the signal to userspace */
633         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
634 }
635 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
636
637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
638
639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
640 /*
641  * Set the debug registers back to their default "safe" values.
642  */
643 static void set_debug_reg_defaults(struct thread_struct *thread)
644 {
645         thread->debug.iac1 = thread->debug.iac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
647         thread->debug.iac3 = thread->debug.iac4 = 0;
648 #endif
649         thread->debug.dac1 = thread->debug.dac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651         thread->debug.dvc1 = thread->debug.dvc2 = 0;
652 #endif
653         thread->debug.dbcr0 = 0;
654 #ifdef CONFIG_BOOKE
655         /*
656          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657          */
658         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659                         DBCR1_IAC3US | DBCR1_IAC4US;
660         /*
661          * Force Data Address Compare User/Supervisor bits to be User-only
662          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663          */
664         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665 #else
666         thread->debug.dbcr1 = 0;
667 #endif
668 }
669
670 static void prime_debug_regs(struct debug_reg *debug)
671 {
672         /*
673          * We could have inherited MSR_DE from userspace, since
674          * it doesn't get cleared on exception entry.  Make sure
675          * MSR_DE is clear before we enable any debug events.
676          */
677         mtmsr(mfmsr() & ~MSR_DE);
678
679         mtspr(SPRN_IAC1, debug->iac1);
680         mtspr(SPRN_IAC2, debug->iac2);
681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
682         mtspr(SPRN_IAC3, debug->iac3);
683         mtspr(SPRN_IAC4, debug->iac4);
684 #endif
685         mtspr(SPRN_DAC1, debug->dac1);
686         mtspr(SPRN_DAC2, debug->dac2);
687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688         mtspr(SPRN_DVC1, debug->dvc1);
689         mtspr(SPRN_DVC2, debug->dvc2);
690 #endif
691         mtspr(SPRN_DBCR0, debug->dbcr0);
692         mtspr(SPRN_DBCR1, debug->dbcr1);
693 #ifdef CONFIG_BOOKE
694         mtspr(SPRN_DBCR2, debug->dbcr2);
695 #endif
696 }
697 /*
698  * Unless neither the old or new thread are making use of the
699  * debug registers, set the debug registers from the values
700  * stored in the new thread.
701  */
702 void switch_booke_debug_regs(struct debug_reg *new_debug)
703 {
704         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705                 || (new_debug->dbcr0 & DBCR0_IDM))
706                         prime_debug_regs(new_debug);
707 }
708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711 static void set_breakpoint(struct arch_hw_breakpoint *brk)
712 {
713         preempt_disable();
714         __set_breakpoint(brk);
715         preempt_enable();
716 }
717
718 static void set_debug_reg_defaults(struct thread_struct *thread)
719 {
720         thread->hw_brk.address = 0;
721         thread->hw_brk.type = 0;
722         if (ppc_breakpoint_available())
723                 set_breakpoint(&thread->hw_brk);
724 }
725 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
726 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
727
728 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731         mtspr(SPRN_DAC1, dabr);
732 #ifdef CONFIG_PPC_47x
733         isync();
734 #endif
735         return 0;
736 }
737 #elif defined(CONFIG_PPC_BOOK3S)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740         mtspr(SPRN_DABR, dabr);
741         if (cpu_has_feature(CPU_FTR_DABRX))
742                 mtspr(SPRN_DABRX, dabrx);
743         return 0;
744 }
745 #elif defined(CONFIG_PPC_8xx)
746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747 {
748         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
749         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
750         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
751
752         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
753                 lctrl1 |= 0xa0000;
754         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
755                 lctrl1 |= 0xf0000;
756         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
757                 lctrl2 = 0;
758
759         mtspr(SPRN_LCTRL2, 0);
760         mtspr(SPRN_CMPE, addr);
761         mtspr(SPRN_CMPF, addr + 4);
762         mtspr(SPRN_LCTRL1, lctrl1);
763         mtspr(SPRN_LCTRL2, lctrl2);
764
765         return 0;
766 }
767 #else
768 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
769 {
770         return -EINVAL;
771 }
772 #endif
773
774 static inline int set_dabr(struct arch_hw_breakpoint *brk)
775 {
776         unsigned long dabr, dabrx;
777
778         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
779         dabrx = ((brk->type >> 3) & 0x7);
780
781         if (ppc_md.set_dabr)
782                 return ppc_md.set_dabr(dabr, dabrx);
783
784         return __set_dabr(dabr, dabrx);
785 }
786
787 static inline int set_dawr(struct arch_hw_breakpoint *brk)
788 {
789         unsigned long dawr, dawrx, mrd;
790
791         dawr = brk->address;
792
793         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
794                                    << (63 - 58); //* read/write bits */
795         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
796                                    << (63 - 59); //* translate */
797         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
798                                    >> 3; //* PRIM bits */
799         /* dawr length is stored in field MDR bits 48:53.  Matches range in
800            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
801            0b111111=64DW.
802            brk->len is in bytes.
803            This aligns up to double word size, shifts and does the bias.
804         */
805         mrd = ((brk->len + 7) >> 3) - 1;
806         dawrx |= (mrd & 0x3f) << (63 - 53);
807
808         if (ppc_md.set_dawr)
809                 return ppc_md.set_dawr(dawr, dawrx);
810         mtspr(SPRN_DAWR, dawr);
811         mtspr(SPRN_DAWRX, dawrx);
812         return 0;
813 }
814
815 void __set_breakpoint(struct arch_hw_breakpoint *brk)
816 {
817         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
818
819         if (cpu_has_feature(CPU_FTR_DAWR))
820                 // Power8 or later
821                 set_dawr(brk);
822         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
823                 // Power7 or earlier
824                 set_dabr(brk);
825         else
826                 // Shouldn't happen due to higher level checks
827                 WARN_ON_ONCE(1);
828 }
829
830 /* Check if we have DAWR or DABR hardware */
831 bool ppc_breakpoint_available(void)
832 {
833         if (cpu_has_feature(CPU_FTR_DAWR))
834                 return true; /* POWER8 DAWR */
835         if (cpu_has_feature(CPU_FTR_ARCH_207S))
836                 return false; /* POWER9 with DAWR disabled */
837         /* DABR: Everything but POWER8 and POWER9 */
838         return true;
839 }
840 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
841
842 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
843                               struct arch_hw_breakpoint *b)
844 {
845         if (a->address != b->address)
846                 return false;
847         if (a->type != b->type)
848                 return false;
849         if (a->len != b->len)
850                 return false;
851         return true;
852 }
853
854 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
855
856 static inline bool tm_enabled(struct task_struct *tsk)
857 {
858         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
859 }
860
861 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
862 {
863         /*
864          * Use the current MSR TM suspended bit to track if we have
865          * checkpointed state outstanding.
866          * On signal delivery, we'd normally reclaim the checkpointed
867          * state to obtain stack pointer (see:get_tm_stackpointer()).
868          * This will then directly return to userspace without going
869          * through __switch_to(). However, if the stack frame is bad,
870          * we need to exit this thread which calls __switch_to() which
871          * will again attempt to reclaim the already saved tm state.
872          * Hence we need to check that we've not already reclaimed
873          * this state.
874          * We do this using the current MSR, rather tracking it in
875          * some specific thread_struct bit, as it has the additional
876          * benefit of checking for a potential TM bad thing exception.
877          */
878         if (!MSR_TM_SUSPENDED(mfmsr()))
879                 return;
880
881         giveup_all(container_of(thr, struct task_struct, thread));
882
883         tm_reclaim(thr, cause);
884
885         /*
886          * If we are in a transaction and FP is off then we can't have
887          * used FP inside that transaction. Hence the checkpointed
888          * state is the same as the live state. We need to copy the
889          * live state to the checkpointed state so that when the
890          * transaction is restored, the checkpointed state is correct
891          * and the aborted transaction sees the correct state. We use
892          * ckpt_regs.msr here as that's what tm_reclaim will use to
893          * determine if it's going to write the checkpointed state or
894          * not. So either this will write the checkpointed registers,
895          * or reclaim will. Similarly for VMX.
896          */
897         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
898                 memcpy(&thr->ckfp_state, &thr->fp_state,
899                        sizeof(struct thread_fp_state));
900         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
901                 memcpy(&thr->ckvr_state, &thr->vr_state,
902                        sizeof(struct thread_vr_state));
903 }
904
905 void tm_reclaim_current(uint8_t cause)
906 {
907         tm_enable();
908         tm_reclaim_thread(&current->thread, cause);
909 }
910
911 static inline void tm_reclaim_task(struct task_struct *tsk)
912 {
913         /* We have to work out if we're switching from/to a task that's in the
914          * middle of a transaction.
915          *
916          * In switching we need to maintain a 2nd register state as
917          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
918          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
919          * ckvr_state
920          *
921          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
922          */
923         struct thread_struct *thr = &tsk->thread;
924
925         if (!thr->regs)
926                 return;
927
928         if (!MSR_TM_ACTIVE(thr->regs->msr))
929                 goto out_and_saveregs;
930
931         WARN_ON(tm_suspend_disabled);
932
933         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
934                  "ccr=%lx, msr=%lx, trap=%lx)\n",
935                  tsk->pid, thr->regs->nip,
936                  thr->regs->ccr, thr->regs->msr,
937                  thr->regs->trap);
938
939         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
940
941         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
942                  tsk->pid);
943
944 out_and_saveregs:
945         /* Always save the regs here, even if a transaction's not active.
946          * This context-switches a thread's TM info SPRs.  We do it here to
947          * be consistent with the restore path (in recheckpoint) which
948          * cannot happen later in _switch().
949          */
950         tm_save_sprs(thr);
951 }
952
953 extern void __tm_recheckpoint(struct thread_struct *thread);
954
955 void tm_recheckpoint(struct thread_struct *thread)
956 {
957         unsigned long flags;
958
959         if (!(thread->regs->msr & MSR_TM))
960                 return;
961
962         /* We really can't be interrupted here as the TEXASR registers can't
963          * change and later in the trecheckpoint code, we have a userspace R1.
964          * So let's hard disable over this region.
965          */
966         local_irq_save(flags);
967         hard_irq_disable();
968
969         /* The TM SPRs are restored here, so that TEXASR.FS can be set
970          * before the trecheckpoint and no explosion occurs.
971          */
972         tm_restore_sprs(thread);
973
974         __tm_recheckpoint(thread);
975
976         local_irq_restore(flags);
977 }
978
979 static inline void tm_recheckpoint_new_task(struct task_struct *new)
980 {
981         if (!cpu_has_feature(CPU_FTR_TM))
982                 return;
983
984         /* Recheckpoint the registers of the thread we're about to switch to.
985          *
986          * If the task was using FP, we non-lazily reload both the original and
987          * the speculative FP register states.  This is because the kernel
988          * doesn't see if/when a TM rollback occurs, so if we take an FP
989          * unavailable later, we are unable to determine which set of FP regs
990          * need to be restored.
991          */
992         if (!tm_enabled(new))
993                 return;
994
995         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
996                 tm_restore_sprs(&new->thread);
997                 return;
998         }
999         /* Recheckpoint to restore original checkpointed register state. */
1000         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1001                  new->pid, new->thread.regs->msr);
1002
1003         tm_recheckpoint(&new->thread);
1004
1005         /*
1006          * The checkpointed state has been restored but the live state has
1007          * not, ensure all the math functionality is turned off to trigger
1008          * restore_math() to reload.
1009          */
1010         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1011
1012         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1013                  "(kernel msr 0x%lx)\n",
1014                  new->pid, mfmsr());
1015 }
1016
1017 static inline void __switch_to_tm(struct task_struct *prev,
1018                 struct task_struct *new)
1019 {
1020         if (cpu_has_feature(CPU_FTR_TM)) {
1021                 if (tm_enabled(prev) || tm_enabled(new))
1022                         tm_enable();
1023
1024                 if (tm_enabled(prev)) {
1025                         prev->thread.load_tm++;
1026                         tm_reclaim_task(prev);
1027                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1028                                 prev->thread.regs->msr &= ~MSR_TM;
1029                 }
1030
1031                 tm_recheckpoint_new_task(new);
1032         }
1033 }
1034
1035 /*
1036  * This is called if we are on the way out to userspace and the
1037  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1038  * FP and/or vector state and does so if necessary.
1039  * If userspace is inside a transaction (whether active or
1040  * suspended) and FP/VMX/VSX instructions have ever been enabled
1041  * inside that transaction, then we have to keep them enabled
1042  * and keep the FP/VMX/VSX state loaded while ever the transaction
1043  * continues.  The reason is that if we didn't, and subsequently
1044  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1045  * we don't know whether it's the same transaction, and thus we
1046  * don't know which of the checkpointed state and the transactional
1047  * state to use.
1048  */
1049 void restore_tm_state(struct pt_regs *regs)
1050 {
1051         unsigned long msr_diff;
1052
1053         /*
1054          * This is the only moment we should clear TIF_RESTORE_TM as
1055          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1056          * again, anything else could lead to an incorrect ckpt_msr being
1057          * saved and therefore incorrect signal contexts.
1058          */
1059         clear_thread_flag(TIF_RESTORE_TM);
1060         if (!MSR_TM_ACTIVE(regs->msr))
1061                 return;
1062
1063         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1064         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1065
1066         /* Ensure that restore_math() will restore */
1067         if (msr_diff & MSR_FP)
1068                 current->thread.load_fp = 1;
1069 #ifdef CONFIG_ALTIVEC
1070         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1071                 current->thread.load_vec = 1;
1072 #endif
1073         restore_math(regs);
1074
1075         regs->msr |= msr_diff;
1076 }
1077
1078 #else
1079 #define tm_recheckpoint_new_task(new)
1080 #define __switch_to_tm(prev, new)
1081 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1082
1083 static inline void save_sprs(struct thread_struct *t)
1084 {
1085 #ifdef CONFIG_ALTIVEC
1086         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1087                 t->vrsave = mfspr(SPRN_VRSAVE);
1088 #endif
1089 #ifdef CONFIG_PPC_BOOK3S_64
1090         if (cpu_has_feature(CPU_FTR_DSCR))
1091                 t->dscr = mfspr(SPRN_DSCR);
1092
1093         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1094                 t->bescr = mfspr(SPRN_BESCR);
1095                 t->ebbhr = mfspr(SPRN_EBBHR);
1096                 t->ebbrr = mfspr(SPRN_EBBRR);
1097
1098                 t->fscr = mfspr(SPRN_FSCR);
1099
1100                 /*
1101                  * Note that the TAR is not available for use in the kernel.
1102                  * (To provide this, the TAR should be backed up/restored on
1103                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1104                  * this should be in pt_regs anyway (for debug).)
1105                  */
1106                 t->tar = mfspr(SPRN_TAR);
1107         }
1108 #endif
1109
1110         thread_pkey_regs_save(t);
1111 }
1112
1113 static inline void restore_sprs(struct thread_struct *old_thread,
1114                                 struct thread_struct *new_thread)
1115 {
1116 #ifdef CONFIG_ALTIVEC
1117         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1118             old_thread->vrsave != new_thread->vrsave)
1119                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1120 #endif
1121 #ifdef CONFIG_PPC_BOOK3S_64
1122         if (cpu_has_feature(CPU_FTR_DSCR)) {
1123                 u64 dscr = get_paca()->dscr_default;
1124                 if (new_thread->dscr_inherit)
1125                         dscr = new_thread->dscr;
1126
1127                 if (old_thread->dscr != dscr)
1128                         mtspr(SPRN_DSCR, dscr);
1129         }
1130
1131         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1132                 if (old_thread->bescr != new_thread->bescr)
1133                         mtspr(SPRN_BESCR, new_thread->bescr);
1134                 if (old_thread->ebbhr != new_thread->ebbhr)
1135                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1136                 if (old_thread->ebbrr != new_thread->ebbrr)
1137                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1138
1139                 if (old_thread->fscr != new_thread->fscr)
1140                         mtspr(SPRN_FSCR, new_thread->fscr);
1141
1142                 if (old_thread->tar != new_thread->tar)
1143                         mtspr(SPRN_TAR, new_thread->tar);
1144         }
1145
1146         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1147             old_thread->tidr != new_thread->tidr)
1148                 mtspr(SPRN_TIDR, new_thread->tidr);
1149 #endif
1150
1151         thread_pkey_regs_restore(new_thread, old_thread);
1152 }
1153
1154 #ifdef CONFIG_PPC_BOOK3S_64
1155 #define CP_SIZE 128
1156 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1157 #endif
1158
1159 struct task_struct *__switch_to(struct task_struct *prev,
1160         struct task_struct *new)
1161 {
1162         struct thread_struct *new_thread, *old_thread;
1163         struct task_struct *last;
1164 #ifdef CONFIG_PPC_BOOK3S_64
1165         struct ppc64_tlb_batch *batch;
1166 #endif
1167
1168         new_thread = &new->thread;
1169         old_thread = &current->thread;
1170
1171         WARN_ON(!irqs_disabled());
1172
1173 #ifdef CONFIG_PPC_BOOK3S_64
1174         batch = this_cpu_ptr(&ppc64_tlb_batch);
1175         if (batch->active) {
1176                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177                 if (batch->index)
1178                         __flush_tlb_pending(batch);
1179                 batch->active = 0;
1180         }
1181 #endif /* CONFIG_PPC_BOOK3S_64 */
1182
1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184         switch_booke_debug_regs(&new->thread.debug);
1185 #else
1186 /*
1187  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188  * schedule DABR
1189  */
1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1191         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192                 __set_breakpoint(&new->thread.hw_brk);
1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194 #endif
1195
1196         /*
1197          * We need to save SPRs before treclaim/trecheckpoint as these will
1198          * change a number of them.
1199          */
1200         save_sprs(&prev->thread);
1201
1202         /* Save FPU, Altivec, VSX and SPE state */
1203         giveup_all(prev);
1204
1205         __switch_to_tm(prev, new);
1206
1207         if (!radix_enabled()) {
1208                 /*
1209                  * We can't take a PMU exception inside _switch() since there
1210                  * is a window where the kernel stack SLB and the kernel stack
1211                  * are out of sync. Hard disable here.
1212                  */
1213                 hard_irq_disable();
1214         }
1215
1216         /*
1217          * Call restore_sprs() before calling _switch(). If we move it after
1218          * _switch() then we miss out on calling it for new tasks. The reason
1219          * for this is we manually create a stack frame for new tasks that
1220          * directly returns through ret_from_fork() or
1221          * ret_from_kernel_thread(). See copy_thread() for details.
1222          */
1223         restore_sprs(old_thread, new_thread);
1224
1225         last = _switch(old_thread, new_thread);
1226
1227 #ifdef CONFIG_PPC_BOOK3S_64
1228         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1231                 batch->active = 1;
1232         }
1233
1234         if (current_thread_info()->task->thread.regs) {
1235                 restore_math(current_thread_info()->task->thread.regs);
1236
1237                 /*
1238                  * The copy-paste buffer can only store into foreign real
1239                  * addresses, so unprivileged processes can not see the
1240                  * data or use it in any way unless they have foreign real
1241                  * mappings. If the new process has the foreign real address
1242                  * mappings, we must issue a cp_abort to clear any state and
1243                  * prevent snooping, corruption or a covert channel.
1244                  */
1245                 if (current_thread_info()->task->thread.used_vas)
1246                         asm volatile(PPC_CP_ABORT);
1247         }
1248 #endif /* CONFIG_PPC_BOOK3S_64 */
1249
1250         return last;
1251 }
1252
1253 #define NR_INSN_TO_PRINT        16
1254
1255 static void show_instructions(struct pt_regs *regs)
1256 {
1257         int i;
1258         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1259
1260         printk("Instruction dump:");
1261
1262         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1263                 int instr;
1264
1265                 if (!(i % 8))
1266                         pr_cont("\n");
1267
1268 #if !defined(CONFIG_BOOKE)
1269                 /* If executing with the IMMU off, adjust pc rather
1270                  * than print XXXXXXXX.
1271                  */
1272                 if (!(regs->msr & MSR_IR))
1273                         pc = (unsigned long)phys_to_virt(pc);
1274 #endif
1275
1276                 if (!__kernel_text_address(pc) ||
1277                     probe_kernel_address((const void *)pc, instr)) {
1278                         pr_cont("XXXXXXXX ");
1279                 } else {
1280                         if (regs->nip == pc)
1281                                 pr_cont("<%08x> ", instr);
1282                         else
1283                                 pr_cont("%08x ", instr);
1284                 }
1285
1286                 pc += sizeof(int);
1287         }
1288
1289         pr_cont("\n");
1290 }
1291
1292 void show_user_instructions(struct pt_regs *regs)
1293 {
1294         unsigned long pc;
1295         int n = NR_INSN_TO_PRINT;
1296         struct seq_buf s;
1297         char buf[96]; /* enough for 8 times 9 + 2 chars */
1298
1299         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300
1301         /*
1302          * Make sure the NIP points at userspace, not kernel text/data or
1303          * elsewhere.
1304          */
1305         if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1306                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1307                         current->comm, current->pid);
1308                 return;
1309         }
1310
1311         seq_buf_init(&s, buf, sizeof(buf));
1312
1313         while (n) {
1314                 int i;
1315
1316                 seq_buf_clear(&s);
1317
1318                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1319                         int instr;
1320
1321                         if (probe_kernel_address((const void *)pc, instr)) {
1322                                 seq_buf_printf(&s, "XXXXXXXX ");
1323                                 continue;
1324                         }
1325                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1326                 }
1327
1328                 if (!seq_buf_has_overflowed(&s))
1329                         pr_info("%s[%d]: code: %s\n", current->comm,
1330                                 current->pid, s.buffer);
1331         }
1332 }
1333
1334 struct regbit {
1335         unsigned long bit;
1336         const char *name;
1337 };
1338
1339 static struct regbit msr_bits[] = {
1340 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1341         {MSR_SF,        "SF"},
1342         {MSR_HV,        "HV"},
1343 #endif
1344         {MSR_VEC,       "VEC"},
1345         {MSR_VSX,       "VSX"},
1346 #ifdef CONFIG_BOOKE
1347         {MSR_CE,        "CE"},
1348 #endif
1349         {MSR_EE,        "EE"},
1350         {MSR_PR,        "PR"},
1351         {MSR_FP,        "FP"},
1352         {MSR_ME,        "ME"},
1353 #ifdef CONFIG_BOOKE
1354         {MSR_DE,        "DE"},
1355 #else
1356         {MSR_SE,        "SE"},
1357         {MSR_BE,        "BE"},
1358 #endif
1359         {MSR_IR,        "IR"},
1360         {MSR_DR,        "DR"},
1361         {MSR_PMM,       "PMM"},
1362 #ifndef CONFIG_BOOKE
1363         {MSR_RI,        "RI"},
1364         {MSR_LE,        "LE"},
1365 #endif
1366         {0,             NULL}
1367 };
1368
1369 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1370 {
1371         const char *s = "";
1372
1373         for (; bits->bit; ++bits)
1374                 if (val & bits->bit) {
1375                         pr_cont("%s%s", s, bits->name);
1376                         s = sep;
1377                 }
1378 }
1379
1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381 static struct regbit msr_tm_bits[] = {
1382         {MSR_TS_T,      "T"},
1383         {MSR_TS_S,      "S"},
1384         {MSR_TM,        "E"},
1385         {0,             NULL}
1386 };
1387
1388 static void print_tm_bits(unsigned long val)
1389 {
1390 /*
1391  * This only prints something if at least one of the TM bit is set.
1392  * Inside the TM[], the output means:
1393  *   E: Enabled         (bit 32)
1394  *   S: Suspended       (bit 33)
1395  *   T: Transactional   (bit 34)
1396  */
1397         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1398                 pr_cont(",TM[");
1399                 print_bits(val, msr_tm_bits, "");
1400                 pr_cont("]");
1401         }
1402 }
1403 #else
1404 static void print_tm_bits(unsigned long val) {}
1405 #endif
1406
1407 static void print_msr_bits(unsigned long val)
1408 {
1409         pr_cont("<");
1410         print_bits(val, msr_bits, ",");
1411         print_tm_bits(val);
1412         pr_cont(">");
1413 }
1414
1415 #ifdef CONFIG_PPC64
1416 #define REG             "%016lx"
1417 #define REGS_PER_LINE   4
1418 #define LAST_VOLATILE   13
1419 #else
1420 #define REG             "%08lx"
1421 #define REGS_PER_LINE   8
1422 #define LAST_VOLATILE   12
1423 #endif
1424
1425 void show_regs(struct pt_regs * regs)
1426 {
1427         int i, trap;
1428
1429         show_regs_print_info(KERN_DEFAULT);
1430
1431         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1432                regs->nip, regs->link, regs->ctr);
1433         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1434                regs, regs->trap, print_tainted(), init_utsname()->release);
1435         printk("MSR:  "REG" ", regs->msr);
1436         print_msr_bits(regs->msr);
1437         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1438         trap = TRAP(regs);
1439         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1440                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1441         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1442 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1443                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1444 #else
1445                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1446 #endif
1447 #ifdef CONFIG_PPC64
1448         pr_cont("IRQMASK: %lx ", regs->softe);
1449 #endif
1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451         if (MSR_TM_ACTIVE(regs->msr))
1452                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1453 #endif
1454
1455         for (i = 0;  i < 32;  i++) {
1456                 if ((i % REGS_PER_LINE) == 0)
1457                         pr_cont("\nGPR%02d: ", i);
1458                 pr_cont(REG " ", regs->gpr[i]);
1459                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1460                         break;
1461         }
1462         pr_cont("\n");
1463 #ifdef CONFIG_KALLSYMS
1464         /*
1465          * Lookup NIP late so we have the best change of getting the
1466          * above info out without failing
1467          */
1468         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1469         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1470 #endif
1471         show_stack(current, (unsigned long *) regs->gpr[1]);
1472         if (!user_mode(regs))
1473                 show_instructions(regs);
1474 }
1475
1476 void flush_thread(void)
1477 {
1478 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1479         flush_ptrace_hw_breakpoint(current);
1480 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1481         set_debug_reg_defaults(&current->thread);
1482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1483 }
1484
1485 #ifdef CONFIG_PPC_BOOK3S_64
1486 void arch_setup_new_exec(void)
1487 {
1488         if (radix_enabled())
1489                 return;
1490         hash__setup_new_exec();
1491 }
1492 #endif
1493
1494 int set_thread_uses_vas(void)
1495 {
1496 #ifdef CONFIG_PPC_BOOK3S_64
1497         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1498                 return -EINVAL;
1499
1500         current->thread.used_vas = 1;
1501
1502         /*
1503          * Even a process that has no foreign real address mapping can use
1504          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1505          * to clear any pending COPY and prevent a covert channel.
1506          *
1507          * __switch_to() will issue CP_ABORT on future context switches.
1508          */
1509         asm volatile(PPC_CP_ABORT);
1510
1511 #endif /* CONFIG_PPC_BOOK3S_64 */
1512         return 0;
1513 }
1514
1515 #ifdef CONFIG_PPC64
1516 /**
1517  * Assign a TIDR (thread ID) for task @t and set it in the thread
1518  * structure. For now, we only support setting TIDR for 'current' task.
1519  *
1520  * Since the TID value is a truncated form of it PID, it is possible
1521  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1522  * that 2 threads share the same TID and are waiting, one of the following
1523  * cases will happen:
1524  *
1525  * 1. The correct thread is running, the wrong thread is not
1526  * In this situation, the correct thread is woken and proceeds to pass it's
1527  * condition check.
1528  *
1529  * 2. Neither threads are running
1530  * In this situation, neither thread will be woken. When scheduled, the waiting
1531  * threads will execute either a wait, which will return immediately, followed
1532  * by a condition check, which will pass for the correct thread and fail
1533  * for the wrong thread, or they will execute the condition check immediately.
1534  *
1535  * 3. The wrong thread is running, the correct thread is not
1536  * The wrong thread will be woken, but will fail it's condition check and
1537  * re-execute wait. The correct thread, when scheduled, will execute either
1538  * it's condition check (which will pass), or wait, which returns immediately
1539  * when called the first time after the thread is scheduled, followed by it's
1540  * condition check (which will pass).
1541  *
1542  * 4. Both threads are running
1543  * Both threads will be woken. The wrong thread will fail it's condition check
1544  * and execute another wait, while the correct thread will pass it's condition
1545  * check.
1546  *
1547  * @t: the task to set the thread ID for
1548  */
1549 int set_thread_tidr(struct task_struct *t)
1550 {
1551         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1552                 return -EINVAL;
1553
1554         if (t != current)
1555                 return -EINVAL;
1556
1557         if (t->thread.tidr)
1558                 return 0;
1559
1560         t->thread.tidr = (u16)task_pid_nr(t);
1561         mtspr(SPRN_TIDR, t->thread.tidr);
1562
1563         return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(set_thread_tidr);
1566
1567 #endif /* CONFIG_PPC64 */
1568
1569 void
1570 release_thread(struct task_struct *t)
1571 {
1572 }
1573
1574 /*
1575  * this gets called so that we can store coprocessor state into memory and
1576  * copy the current task into the new thread.
1577  */
1578 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1579 {
1580         flush_all_to_thread(src);
1581         /*
1582          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1583          * flush but it removes the checkpointed state from the current CPU and
1584          * transitions the CPU out of TM mode.  Hence we need to call
1585          * tm_recheckpoint_new_task() (on the same task) to restore the
1586          * checkpointed state back and the TM mode.
1587          *
1588          * Can't pass dst because it isn't ready. Doesn't matter, passing
1589          * dst is only important for __switch_to()
1590          */
1591         __switch_to_tm(src, src);
1592
1593         *dst = *src;
1594
1595         clear_task_ebb(dst);
1596
1597         return 0;
1598 }
1599
1600 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1601 {
1602 #ifdef CONFIG_PPC_BOOK3S_64
1603         unsigned long sp_vsid;
1604         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1605
1606         if (radix_enabled())
1607                 return;
1608
1609         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1610                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1611                         << SLB_VSID_SHIFT_1T;
1612         else
1613                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1614                         << SLB_VSID_SHIFT;
1615         sp_vsid |= SLB_VSID_KERNEL | llp;
1616         p->thread.ksp_vsid = sp_vsid;
1617 #endif
1618 }
1619
1620 /*
1621  * Copy a thread..
1622  */
1623
1624 /*
1625  * Copy architecture-specific thread state
1626  */
1627 int copy_thread(unsigned long clone_flags, unsigned long usp,
1628                 unsigned long kthread_arg, struct task_struct *p)
1629 {
1630         struct pt_regs *childregs, *kregs;
1631         extern void ret_from_fork(void);
1632         extern void ret_from_kernel_thread(void);
1633         void (*f)(void);
1634         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1635         struct thread_info *ti = task_thread_info(p);
1636
1637         klp_init_thread_info(ti);
1638
1639         /* Copy registers */
1640         sp -= sizeof(struct pt_regs);
1641         childregs = (struct pt_regs *) sp;
1642         if (unlikely(p->flags & PF_KTHREAD)) {
1643                 /* kernel thread */
1644                 memset(childregs, 0, sizeof(struct pt_regs));
1645                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1646                 /* function */
1647                 if (usp)
1648                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1649 #ifdef CONFIG_PPC64
1650                 clear_tsk_thread_flag(p, TIF_32BIT);
1651                 childregs->softe = IRQS_ENABLED;
1652 #endif
1653                 childregs->gpr[15] = kthread_arg;
1654                 p->thread.regs = NULL;  /* no user register state */
1655                 ti->flags |= _TIF_RESTOREALL;
1656                 f = ret_from_kernel_thread;
1657         } else {
1658                 /* user thread */
1659                 struct pt_regs *regs = current_pt_regs();
1660                 CHECK_FULL_REGS(regs);
1661                 *childregs = *regs;
1662                 if (usp)
1663                         childregs->gpr[1] = usp;
1664                 p->thread.regs = childregs;
1665                 childregs->gpr[3] = 0;  /* Result from fork() */
1666                 if (clone_flags & CLONE_SETTLS) {
1667 #ifdef CONFIG_PPC64
1668                         if (!is_32bit_task())
1669                                 childregs->gpr[13] = childregs->gpr[6];
1670                         else
1671 #endif
1672                                 childregs->gpr[2] = childregs->gpr[6];
1673                 }
1674
1675                 f = ret_from_fork;
1676         }
1677         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1678         sp -= STACK_FRAME_OVERHEAD;
1679
1680         /*
1681          * The way this works is that at some point in the future
1682          * some task will call _switch to switch to the new task.
1683          * That will pop off the stack frame created below and start
1684          * the new task running at ret_from_fork.  The new task will
1685          * do some house keeping and then return from the fork or clone
1686          * system call, using the stack frame created above.
1687          */
1688         ((unsigned long *)sp)[0] = 0;
1689         sp -= sizeof(struct pt_regs);
1690         kregs = (struct pt_regs *) sp;
1691         sp -= STACK_FRAME_OVERHEAD;
1692         p->thread.ksp = sp;
1693 #ifdef CONFIG_PPC32
1694         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1695                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1696 #endif
1697 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1698         p->thread.ptrace_bps[0] = NULL;
1699 #endif
1700
1701         p->thread.fp_save_area = NULL;
1702 #ifdef CONFIG_ALTIVEC
1703         p->thread.vr_save_area = NULL;
1704 #endif
1705
1706         setup_ksp_vsid(p, sp);
1707
1708 #ifdef CONFIG_PPC64 
1709         if (cpu_has_feature(CPU_FTR_DSCR)) {
1710                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1711                 p->thread.dscr = mfspr(SPRN_DSCR);
1712         }
1713         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1714                 childregs->ppr = DEFAULT_PPR;
1715
1716         p->thread.tidr = 0;
1717 #endif
1718         kregs->nip = ppc_function_entry(f);
1719         return 0;
1720 }
1721
1722 void preload_new_slb_context(unsigned long start, unsigned long sp);
1723
1724 /*
1725  * Set up a thread for executing a new program
1726  */
1727 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1728 {
1729 #ifdef CONFIG_PPC64
1730         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1731
1732 #ifdef CONFIG_PPC_BOOK3S_64
1733         preload_new_slb_context(start, sp);
1734 #endif
1735 #endif
1736
1737         /*
1738          * If we exec out of a kernel thread then thread.regs will not be
1739          * set.  Do it now.
1740          */
1741         if (!current->thread.regs) {
1742                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1743                 current->thread.regs = regs - 1;
1744         }
1745
1746 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1747         /*
1748          * Clear any transactional state, we're exec()ing. The cause is
1749          * not important as there will never be a recheckpoint so it's not
1750          * user visible.
1751          */
1752         if (MSR_TM_SUSPENDED(mfmsr()))
1753                 tm_reclaim_current(0);
1754 #endif
1755
1756         memset(regs->gpr, 0, sizeof(regs->gpr));
1757         regs->ctr = 0;
1758         regs->link = 0;
1759         regs->xer = 0;
1760         regs->ccr = 0;
1761         regs->gpr[1] = sp;
1762
1763         /*
1764          * We have just cleared all the nonvolatile GPRs, so make
1765          * FULL_REGS(regs) return true.  This is necessary to allow
1766          * ptrace to examine the thread immediately after exec.
1767          */
1768         regs->trap &= ~1UL;
1769
1770 #ifdef CONFIG_PPC32
1771         regs->mq = 0;
1772         regs->nip = start;
1773         regs->msr = MSR_USER;
1774 #else
1775         if (!is_32bit_task()) {
1776                 unsigned long entry;
1777
1778                 if (is_elf2_task()) {
1779                         /* Look ma, no function descriptors! */
1780                         entry = start;
1781
1782                         /*
1783                          * Ulrich says:
1784                          *   The latest iteration of the ABI requires that when
1785                          *   calling a function (at its global entry point),
1786                          *   the caller must ensure r12 holds the entry point
1787                          *   address (so that the function can quickly
1788                          *   establish addressability).
1789                          */
1790                         regs->gpr[12] = start;
1791                         /* Make sure that's restored on entry to userspace. */
1792                         set_thread_flag(TIF_RESTOREALL);
1793                 } else {
1794                         unsigned long toc;
1795
1796                         /* start is a relocated pointer to the function
1797                          * descriptor for the elf _start routine.  The first
1798                          * entry in the function descriptor is the entry
1799                          * address of _start and the second entry is the TOC
1800                          * value we need to use.
1801                          */
1802                         __get_user(entry, (unsigned long __user *)start);
1803                         __get_user(toc, (unsigned long __user *)start+1);
1804
1805                         /* Check whether the e_entry function descriptor entries
1806                          * need to be relocated before we can use them.
1807                          */
1808                         if (load_addr != 0) {
1809                                 entry += load_addr;
1810                                 toc   += load_addr;
1811                         }
1812                         regs->gpr[2] = toc;
1813                 }
1814                 regs->nip = entry;
1815                 regs->msr = MSR_USER64;
1816         } else {
1817                 regs->nip = start;
1818                 regs->gpr[2] = 0;
1819                 regs->msr = MSR_USER32;
1820         }
1821 #endif
1822 #ifdef CONFIG_VSX
1823         current->thread.used_vsr = 0;
1824 #endif
1825         current->thread.load_slb = 0;
1826         current->thread.load_fp = 0;
1827         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1828         current->thread.fp_save_area = NULL;
1829 #ifdef CONFIG_ALTIVEC
1830         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1831         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1832         current->thread.vr_save_area = NULL;
1833         current->thread.vrsave = 0;
1834         current->thread.used_vr = 0;
1835         current->thread.load_vec = 0;
1836 #endif /* CONFIG_ALTIVEC */
1837 #ifdef CONFIG_SPE
1838         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1839         current->thread.acc = 0;
1840         current->thread.spefscr = 0;
1841         current->thread.used_spe = 0;
1842 #endif /* CONFIG_SPE */
1843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844         current->thread.tm_tfhar = 0;
1845         current->thread.tm_texasr = 0;
1846         current->thread.tm_tfiar = 0;
1847         current->thread.load_tm = 0;
1848 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1849
1850         thread_pkey_regs_init(&current->thread);
1851 }
1852 EXPORT_SYMBOL(start_thread);
1853
1854 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1855                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1856
1857 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1858 {
1859         struct pt_regs *regs = tsk->thread.regs;
1860
1861         /* This is a bit hairy.  If we are an SPE enabled  processor
1862          * (have embedded fp) we store the IEEE exception enable flags in
1863          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1864          * mode (asyn, precise, disabled) for 'Classic' FP. */
1865         if (val & PR_FP_EXC_SW_ENABLE) {
1866 #ifdef CONFIG_SPE
1867                 if (cpu_has_feature(CPU_FTR_SPE)) {
1868                         /*
1869                          * When the sticky exception bits are set
1870                          * directly by userspace, it must call prctl
1871                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1872                          * in the existing prctl settings) or
1873                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1874                          * the bits being set).  <fenv.h> functions
1875                          * saving and restoring the whole
1876                          * floating-point environment need to do so
1877                          * anyway to restore the prctl settings from
1878                          * the saved environment.
1879                          */
1880                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1881                         tsk->thread.fpexc_mode = val &
1882                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1883                         return 0;
1884                 } else {
1885                         return -EINVAL;
1886                 }
1887 #else
1888                 return -EINVAL;
1889 #endif
1890         }
1891
1892         /* on a CONFIG_SPE this does not hurt us.  The bits that
1893          * __pack_fe01 use do not overlap with bits used for
1894          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1895          * on CONFIG_SPE implementations are reserved so writing to
1896          * them does not change anything */
1897         if (val > PR_FP_EXC_PRECISE)
1898                 return -EINVAL;
1899         tsk->thread.fpexc_mode = __pack_fe01(val);
1900         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1901                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1902                         | tsk->thread.fpexc_mode;
1903         return 0;
1904 }
1905
1906 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1907 {
1908         unsigned int val;
1909
1910         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1911 #ifdef CONFIG_SPE
1912                 if (cpu_has_feature(CPU_FTR_SPE)) {
1913                         /*
1914                          * When the sticky exception bits are set
1915                          * directly by userspace, it must call prctl
1916                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1917                          * in the existing prctl settings) or
1918                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1919                          * the bits being set).  <fenv.h> functions
1920                          * saving and restoring the whole
1921                          * floating-point environment need to do so
1922                          * anyway to restore the prctl settings from
1923                          * the saved environment.
1924                          */
1925                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1926                         val = tsk->thread.fpexc_mode;
1927                 } else
1928                         return -EINVAL;
1929 #else
1930                 return -EINVAL;
1931 #endif
1932         else
1933                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1934         return put_user(val, (unsigned int __user *) adr);
1935 }
1936
1937 int set_endian(struct task_struct *tsk, unsigned int val)
1938 {
1939         struct pt_regs *regs = tsk->thread.regs;
1940
1941         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1942             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1943                 return -EINVAL;
1944
1945         if (regs == NULL)
1946                 return -EINVAL;
1947
1948         if (val == PR_ENDIAN_BIG)
1949                 regs->msr &= ~MSR_LE;
1950         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1951                 regs->msr |= MSR_LE;
1952         else
1953                 return -EINVAL;
1954
1955         return 0;
1956 }
1957
1958 int get_endian(struct task_struct *tsk, unsigned long adr)
1959 {
1960         struct pt_regs *regs = tsk->thread.regs;
1961         unsigned int val;
1962
1963         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1964             !cpu_has_feature(CPU_FTR_REAL_LE))
1965                 return -EINVAL;
1966
1967         if (regs == NULL)
1968                 return -EINVAL;
1969
1970         if (regs->msr & MSR_LE) {
1971                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1972                         val = PR_ENDIAN_LITTLE;
1973                 else
1974                         val = PR_ENDIAN_PPC_LITTLE;
1975         } else
1976                 val = PR_ENDIAN_BIG;
1977
1978         return put_user(val, (unsigned int __user *)adr);
1979 }
1980
1981 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1982 {
1983         tsk->thread.align_ctl = val;
1984         return 0;
1985 }
1986
1987 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1988 {
1989         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1990 }
1991
1992 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1993                                   unsigned long nbytes)
1994 {
1995         unsigned long stack_page;
1996         unsigned long cpu = task_cpu(p);
1997
1998         /*
1999          * Avoid crashing if the stack has overflowed and corrupted
2000          * task_cpu(p), which is in the thread_info struct.
2001          */
2002         if (cpu < NR_CPUS && cpu_possible(cpu)) {
2003                 stack_page = (unsigned long) hardirq_ctx[cpu];
2004                 if (sp >= stack_page + sizeof(struct thread_struct)
2005                     && sp <= stack_page + THREAD_SIZE - nbytes)
2006                         return 1;
2007
2008                 stack_page = (unsigned long) softirq_ctx[cpu];
2009                 if (sp >= stack_page + sizeof(struct thread_struct)
2010                     && sp <= stack_page + THREAD_SIZE - nbytes)
2011                         return 1;
2012         }
2013         return 0;
2014 }
2015
2016 int validate_sp(unsigned long sp, struct task_struct *p,
2017                        unsigned long nbytes)
2018 {
2019         unsigned long stack_page = (unsigned long)task_stack_page(p);
2020
2021         if (sp >= stack_page + sizeof(struct thread_struct)
2022             && sp <= stack_page + THREAD_SIZE - nbytes)
2023                 return 1;
2024
2025         return valid_irq_stack(sp, p, nbytes);
2026 }
2027
2028 EXPORT_SYMBOL(validate_sp);
2029
2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032         unsigned long ip, sp;
2033         int count = 0;
2034
2035         if (!p || p == current || p->state == TASK_RUNNING)
2036                 return 0;
2037
2038         sp = p->thread.ksp;
2039         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2040                 return 0;
2041
2042         do {
2043                 sp = *(unsigned long *)sp;
2044                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2045                     p->state == TASK_RUNNING)
2046                         return 0;
2047                 if (count > 0) {
2048                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2049                         if (!in_sched_functions(ip))
2050                                 return ip;
2051                 }
2052         } while (count++ < 16);
2053         return 0;
2054 }
2055
2056 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2057
2058 void show_stack(struct task_struct *tsk, unsigned long *stack)
2059 {
2060         unsigned long sp, ip, lr, newsp;
2061         int count = 0;
2062         int firstframe = 1;
2063 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2064         int curr_frame = current->curr_ret_stack;
2065         extern void return_to_handler(void);
2066         unsigned long rth = (unsigned long)return_to_handler;
2067 #endif
2068
2069         sp = (unsigned long) stack;
2070         if (tsk == NULL)
2071                 tsk = current;
2072         if (sp == 0) {
2073                 if (tsk == current)
2074                         sp = current_stack_pointer();
2075                 else
2076                         sp = tsk->thread.ksp;
2077         }
2078
2079         lr = 0;
2080         printk("Call Trace:\n");
2081         do {
2082                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2083                         return;
2084
2085                 stack = (unsigned long *) sp;
2086                 newsp = stack[0];
2087                 ip = stack[STACK_FRAME_LR_SAVE];
2088                 if (!firstframe || ip != lr) {
2089                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2090 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2091                         if ((ip == rth) && curr_frame >= 0) {
2092                                 pr_cont(" (%pS)",
2093                                        (void *)current->ret_stack[curr_frame].ret);
2094                                 curr_frame--;
2095                         }
2096 #endif
2097                         if (firstframe)
2098                                 pr_cont(" (unreliable)");
2099                         pr_cont("\n");
2100                 }
2101                 firstframe = 0;
2102
2103                 /*
2104                  * See if this is an exception frame.
2105                  * We look for the "regshere" marker in the current frame.
2106                  */
2107                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2108                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2109                         struct pt_regs *regs = (struct pt_regs *)
2110                                 (sp + STACK_FRAME_OVERHEAD);
2111                         lr = regs->link;
2112                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2113                                regs->trap, (void *)regs->nip, (void *)lr);
2114                         firstframe = 1;
2115                 }
2116
2117                 sp = newsp;
2118         } while (count++ < kstack_depth_to_print);
2119 }
2120
2121 #ifdef CONFIG_PPC64
2122 /* Called with hard IRQs off */
2123 void notrace __ppc64_runlatch_on(void)
2124 {
2125         struct thread_info *ti = current_thread_info();
2126
2127         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2128                 /*
2129                  * Least significant bit (RUN) is the only writable bit of
2130                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2131                  * earliest ISA where this is the case, but it's convenient.
2132                  */
2133                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2134         } else {
2135                 unsigned long ctrl;
2136
2137                 /*
2138                  * Some architectures (e.g., Cell) have writable fields other
2139                  * than RUN, so do the read-modify-write.
2140                  */
2141                 ctrl = mfspr(SPRN_CTRLF);
2142                 ctrl |= CTRL_RUNLATCH;
2143                 mtspr(SPRN_CTRLT, ctrl);
2144         }
2145
2146         ti->local_flags |= _TLF_RUNLATCH;
2147 }
2148
2149 /* Called with hard IRQs off */
2150 void notrace __ppc64_runlatch_off(void)
2151 {
2152         struct thread_info *ti = current_thread_info();
2153
2154         ti->local_flags &= ~_TLF_RUNLATCH;
2155
2156         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2157                 mtspr(SPRN_CTRLT, 0);
2158         } else {
2159                 unsigned long ctrl;
2160
2161                 ctrl = mfspr(SPRN_CTRLF);
2162                 ctrl &= ~CTRL_RUNLATCH;
2163                 mtspr(SPRN_CTRLT, ctrl);
2164         }
2165 }
2166 #endif /* CONFIG_PPC64 */
2167
2168 unsigned long arch_align_stack(unsigned long sp)
2169 {
2170         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2171                 sp -= get_random_int() & ~PAGE_MASK;
2172         return sp & ~0xf;
2173 }
2174
2175 static inline unsigned long brk_rnd(void)
2176 {
2177         unsigned long rnd = 0;
2178
2179         /* 8MB for 32bit, 1GB for 64bit */
2180         if (is_32bit_task())
2181                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2182         else
2183                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2184
2185         return rnd << PAGE_SHIFT;
2186 }
2187
2188 unsigned long arch_randomize_brk(struct mm_struct *mm)
2189 {
2190         unsigned long base = mm->brk;
2191         unsigned long ret;
2192
2193 #ifdef CONFIG_PPC_BOOK3S_64
2194         /*
2195          * If we are using 1TB segments and we are allowed to randomise
2196          * the heap, we can put it above 1TB so it is backed by a 1TB
2197          * segment. Otherwise the heap will be in the bottom 1TB
2198          * which always uses 256MB segments and this may result in a
2199          * performance penalty. We don't need to worry about radix. For
2200          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2201          */
2202         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2203                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2204 #endif
2205
2206         ret = PAGE_ALIGN(base + brk_rnd());
2207
2208         if (ret < mm->brk)
2209                 return mm->brk;
2210
2211         return ret;
2212 }
2213