Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 static inline bool msr_tm_active(unsigned long msr)
104 {
105         return MSR_TM_ACTIVE(msr);
106 }
107
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110         return msr_tm_active(tsk->thread.regs->msr) &&
111                 (tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116         return msr_tm_active(tsk->thread.regs->msr) &&
117                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline bool msr_tm_active(unsigned long msr) { return false; }
121 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
122 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
123 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
124 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
125
126 bool strict_msr_control;
127 EXPORT_SYMBOL(strict_msr_control);
128
129 static int __init enable_strict_msr_control(char *str)
130 {
131         strict_msr_control = true;
132         pr_info("Enabling strict facility control\n");
133
134         return 0;
135 }
136 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
137
138 unsigned long msr_check_and_set(unsigned long bits)
139 {
140         unsigned long oldmsr = mfmsr();
141         unsigned long newmsr;
142
143         newmsr = oldmsr | bits;
144
145 #ifdef CONFIG_VSX
146         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147                 newmsr |= MSR_VSX;
148 #endif
149
150         if (oldmsr != newmsr)
151                 mtmsr_isync(newmsr);
152
153         return newmsr;
154 }
155
156 void __msr_check_and_clear(unsigned long bits)
157 {
158         unsigned long oldmsr = mfmsr();
159         unsigned long newmsr;
160
161         newmsr = oldmsr & ~bits;
162
163 #ifdef CONFIG_VSX
164         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
165                 newmsr &= ~MSR_VSX;
166 #endif
167
168         if (oldmsr != newmsr)
169                 mtmsr_isync(newmsr);
170 }
171 EXPORT_SYMBOL(__msr_check_and_clear);
172
173 #ifdef CONFIG_PPC_FPU
174 void __giveup_fpu(struct task_struct *tsk)
175 {
176         unsigned long msr;
177
178         save_fpu(tsk);
179         msr = tsk->thread.regs->msr;
180         msr &= ~MSR_FP;
181 #ifdef CONFIG_VSX
182         if (cpu_has_feature(CPU_FTR_VSX))
183                 msr &= ~MSR_VSX;
184 #endif
185         tsk->thread.regs->msr = msr;
186 }
187
188 void giveup_fpu(struct task_struct *tsk)
189 {
190         check_if_tm_restore_required(tsk);
191
192         msr_check_and_set(MSR_FP);
193         __giveup_fpu(tsk);
194         msr_check_and_clear(MSR_FP);
195 }
196 EXPORT_SYMBOL(giveup_fpu);
197
198 /*
199  * Make sure the floating-point register state in the
200  * the thread_struct is up to date for task tsk.
201  */
202 void flush_fp_to_thread(struct task_struct *tsk)
203 {
204         if (tsk->thread.regs) {
205                 /*
206                  * We need to disable preemption here because if we didn't,
207                  * another process could get scheduled after the regs->msr
208                  * test but before we have finished saving the FP registers
209                  * to the thread_struct.  That process could take over the
210                  * FPU, and then when we get scheduled again we would store
211                  * bogus values for the remaining FP registers.
212                  */
213                 preempt_disable();
214                 if (tsk->thread.regs->msr & MSR_FP) {
215                         /*
216                          * This should only ever be called for current or
217                          * for a stopped child process.  Since we save away
218                          * the FP register state on context switch,
219                          * there is something wrong if a stopped child appears
220                          * to still have its FP state in the CPU registers.
221                          */
222                         BUG_ON(tsk != current);
223                         giveup_fpu(tsk);
224                 }
225                 preempt_enable();
226         }
227 }
228 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229
230 void enable_kernel_fp(void)
231 {
232         unsigned long cpumsr;
233
234         WARN_ON(preemptible());
235
236         cpumsr = msr_check_and_set(MSR_FP);
237
238         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
239                 check_if_tm_restore_required(current);
240                 /*
241                  * If a thread has already been reclaimed then the
242                  * checkpointed registers are on the CPU but have definitely
243                  * been saved by the reclaim code. Don't need to and *cannot*
244                  * giveup as this would save  to the 'live' structure not the
245                  * checkpointed structure.
246                  */
247                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
248                         return;
249                 __giveup_fpu(current);
250         }
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253
254 static int restore_fp(struct task_struct *tsk)
255 {
256         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257                 load_fp_state(&current->thread.fp_state);
258                 current->thread.load_fp++;
259                 return 1;
260         }
261         return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272         unsigned long msr;
273
274         save_altivec(tsk);
275         msr = tsk->thread.regs->msr;
276         msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278         if (cpu_has_feature(CPU_FTR_VSX))
279                 msr &= ~MSR_VSX;
280 #endif
281         tsk->thread.regs->msr = msr;
282 }
283
284 void giveup_altivec(struct task_struct *tsk)
285 {
286         check_if_tm_restore_required(tsk);
287
288         msr_check_and_set(MSR_VEC);
289         __giveup_altivec(tsk);
290         msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293
294 void enable_kernel_altivec(void)
295 {
296         unsigned long cpumsr;
297
298         WARN_ON(preemptible());
299
300         cpumsr = msr_check_and_set(MSR_VEC);
301
302         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303                 check_if_tm_restore_required(current);
304                 /*
305                  * If a thread has already been reclaimed then the
306                  * checkpointed registers are on the CPU but have definitely
307                  * been saved by the reclaim code. Don't need to and *cannot*
308                  * giveup as this would save  to the 'live' structure not the
309                  * checkpointed structure.
310                  */
311                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
312                         return;
313                 __giveup_altivec(current);
314         }
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324         if (tsk->thread.regs) {
325                 preempt_disable();
326                 if (tsk->thread.regs->msr & MSR_VEC) {
327                         BUG_ON(tsk != current);
328                         giveup_altivec(tsk);
329                 }
330                 preempt_enable();
331         }
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334
335 static int restore_altivec(struct task_struct *tsk)
336 {
337         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339                 load_vr_state(&tsk->thread.vr_state);
340                 tsk->thread.used_vr = 1;
341                 tsk->thread.load_vec++;
342
343                 return 1;
344         }
345         return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355         unsigned long msr = tsk->thread.regs->msr;
356
357         /*
358          * We should never be ssetting MSR_VSX without also setting
359          * MSR_FP and MSR_VEC
360          */
361         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363         /* __giveup_fpu will clear MSR_VSX */
364         if (msr & MSR_FP)
365                 __giveup_fpu(tsk);
366         if (msr & MSR_VEC)
367                 __giveup_altivec(tsk);
368 }
369
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372         check_if_tm_restore_required(tsk);
373
374         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375         __giveup_vsx(tsk);
376         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378
379 void enable_kernel_vsx(void)
380 {
381         unsigned long cpumsr;
382
383         WARN_ON(preemptible());
384
385         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386
387         if (current->thread.regs &&
388             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389                 check_if_tm_restore_required(current);
390                 /*
391                  * If a thread has already been reclaimed then the
392                  * checkpointed registers are on the CPU but have definitely
393                  * been saved by the reclaim code. Don't need to and *cannot*
394                  * giveup as this would save  to the 'live' structure not the
395                  * checkpointed structure.
396                  */
397                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
398                         return;
399                 __giveup_vsx(current);
400         }
401 }
402 EXPORT_SYMBOL(enable_kernel_vsx);
403
404 void flush_vsx_to_thread(struct task_struct *tsk)
405 {
406         if (tsk->thread.regs) {
407                 preempt_disable();
408                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
409                         BUG_ON(tsk != current);
410                         giveup_vsx(tsk);
411                 }
412                 preempt_enable();
413         }
414 }
415 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
416
417 static int restore_vsx(struct task_struct *tsk)
418 {
419         if (cpu_has_feature(CPU_FTR_VSX)) {
420                 tsk->thread.used_vsr = 1;
421                 return 1;
422         }
423
424         return 0;
425 }
426 #else
427 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
428 #endif /* CONFIG_VSX */
429
430 #ifdef CONFIG_SPE
431 void giveup_spe(struct task_struct *tsk)
432 {
433         check_if_tm_restore_required(tsk);
434
435         msr_check_and_set(MSR_SPE);
436         __giveup_spe(tsk);
437         msr_check_and_clear(MSR_SPE);
438 }
439 EXPORT_SYMBOL(giveup_spe);
440
441 void enable_kernel_spe(void)
442 {
443         WARN_ON(preemptible());
444
445         msr_check_and_set(MSR_SPE);
446
447         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
448                 check_if_tm_restore_required(current);
449                 __giveup_spe(current);
450         }
451 }
452 EXPORT_SYMBOL(enable_kernel_spe);
453
454 void flush_spe_to_thread(struct task_struct *tsk)
455 {
456         if (tsk->thread.regs) {
457                 preempt_disable();
458                 if (tsk->thread.regs->msr & MSR_SPE) {
459                         BUG_ON(tsk != current);
460                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
461                         giveup_spe(tsk);
462                 }
463                 preempt_enable();
464         }
465 }
466 #endif /* CONFIG_SPE */
467
468 static unsigned long msr_all_available;
469
470 static int __init init_msr_all_available(void)
471 {
472 #ifdef CONFIG_PPC_FPU
473         msr_all_available |= MSR_FP;
474 #endif
475 #ifdef CONFIG_ALTIVEC
476         if (cpu_has_feature(CPU_FTR_ALTIVEC))
477                 msr_all_available |= MSR_VEC;
478 #endif
479 #ifdef CONFIG_VSX
480         if (cpu_has_feature(CPU_FTR_VSX))
481                 msr_all_available |= MSR_VSX;
482 #endif
483 #ifdef CONFIG_SPE
484         if (cpu_has_feature(CPU_FTR_SPE))
485                 msr_all_available |= MSR_SPE;
486 #endif
487
488         return 0;
489 }
490 early_initcall(init_msr_all_available);
491
492 void giveup_all(struct task_struct *tsk)
493 {
494         unsigned long usermsr;
495
496         if (!tsk->thread.regs)
497                 return;
498
499         usermsr = tsk->thread.regs->msr;
500
501         if ((usermsr & msr_all_available) == 0)
502                 return;
503
504         msr_check_and_set(msr_all_available);
505         check_if_tm_restore_required(tsk);
506
507         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
508
509 #ifdef CONFIG_PPC_FPU
510         if (usermsr & MSR_FP)
511                 __giveup_fpu(tsk);
512 #endif
513 #ifdef CONFIG_ALTIVEC
514         if (usermsr & MSR_VEC)
515                 __giveup_altivec(tsk);
516 #endif
517 #ifdef CONFIG_SPE
518         if (usermsr & MSR_SPE)
519                 __giveup_spe(tsk);
520 #endif
521
522         msr_check_and_clear(msr_all_available);
523 }
524 EXPORT_SYMBOL(giveup_all);
525
526 void restore_math(struct pt_regs *regs)
527 {
528         unsigned long msr;
529
530         if (!msr_tm_active(regs->msr) &&
531                 !current->thread.load_fp && !loadvec(current->thread))
532                 return;
533
534         msr = regs->msr;
535         msr_check_and_set(msr_all_available);
536
537         /*
538          * Only reload if the bit is not set in the user MSR, the bit BEING set
539          * indicates that the registers are hot
540          */
541         if ((!(msr & MSR_FP)) && restore_fp(current))
542                 msr |= MSR_FP | current->thread.fpexc_mode;
543
544         if ((!(msr & MSR_VEC)) && restore_altivec(current))
545                 msr |= MSR_VEC;
546
547         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
548                         restore_vsx(current)) {
549                 msr |= MSR_VSX;
550         }
551
552         msr_check_and_clear(msr_all_available);
553
554         regs->msr = msr;
555 }
556
557 void save_all(struct task_struct *tsk)
558 {
559         unsigned long usermsr;
560
561         if (!tsk->thread.regs)
562                 return;
563
564         usermsr = tsk->thread.regs->msr;
565
566         if ((usermsr & msr_all_available) == 0)
567                 return;
568
569         msr_check_and_set(msr_all_available);
570
571         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
572
573         if (usermsr & MSR_FP)
574                 save_fpu(tsk);
575
576         if (usermsr & MSR_VEC)
577                 save_altivec(tsk);
578
579         if (usermsr & MSR_SPE)
580                 __giveup_spe(tsk);
581
582         msr_check_and_clear(msr_all_available);
583 }
584
585 void flush_all_to_thread(struct task_struct *tsk)
586 {
587         if (tsk->thread.regs) {
588                 preempt_disable();
589                 BUG_ON(tsk != current);
590                 save_all(tsk);
591
592 #ifdef CONFIG_SPE
593                 if (tsk->thread.regs->msr & MSR_SPE)
594                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
595 #endif
596
597                 preempt_enable();
598         }
599 }
600 EXPORT_SYMBOL(flush_all_to_thread);
601
602 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
603 void do_send_trap(struct pt_regs *regs, unsigned long address,
604                   unsigned long error_code, int signal_code, int breakpt)
605 {
606         siginfo_t info;
607
608         current->thread.trap_nr = signal_code;
609         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610                         11, SIGSEGV) == NOTIFY_STOP)
611                 return;
612
613         /* Deliver the signal to userspace */
614         info.si_signo = SIGTRAP;
615         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
616         info.si_code = signal_code;
617         info.si_addr = (void __user *)address;
618         force_sig_info(SIGTRAP, &info, current);
619 }
620 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
621 void do_break (struct pt_regs *regs, unsigned long address,
622                     unsigned long error_code)
623 {
624         siginfo_t info;
625
626         current->thread.trap_nr = TRAP_HWBKPT;
627         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
628                         11, SIGSEGV) == NOTIFY_STOP)
629                 return;
630
631         if (debugger_break_match(regs))
632                 return;
633
634         /* Clear the breakpoint */
635         hw_breakpoint_disable();
636
637         /* Deliver the signal to userspace */
638         info.si_signo = SIGTRAP;
639         info.si_errno = 0;
640         info.si_code = TRAP_HWBKPT;
641         info.si_addr = (void __user *)address;
642         force_sig_info(SIGTRAP, &info, current);
643 }
644 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654         thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656         thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658         thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660         thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662         thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664         /*
665          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666          */
667         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668                         DBCR1_IAC3US | DBCR1_IAC4US;
669         /*
670          * Force Data Address Compare User/Supervisor bits to be User-only
671          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672          */
673         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675         thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681         /*
682          * We could have inherited MSR_DE from userspace, since
683          * it doesn't get cleared on exception entry.  Make sure
684          * MSR_DE is clear before we enable any debug events.
685          */
686         mtmsr(mfmsr() & ~MSR_DE);
687
688         mtspr(SPRN_IAC1, debug->iac1);
689         mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691         mtspr(SPRN_IAC3, debug->iac3);
692         mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694         mtspr(SPRN_DAC1, debug->dac1);
695         mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697         mtspr(SPRN_DVC1, debug->dvc1);
698         mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700         mtspr(SPRN_DBCR0, debug->dbcr0);
701         mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703         mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714                 || (new_debug->dbcr0 & DBCR0_IDM))
715                         prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_debug_reg_defaults(struct thread_struct *thread)
721 {
722         thread->hw_brk.address = 0;
723         thread->hw_brk.type = 0;
724         set_breakpoint(&thread->hw_brk);
725 }
726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
727 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
728
729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731 {
732         mtspr(SPRN_DAC1, dabr);
733 #ifdef CONFIG_PPC_47x
734         isync();
735 #endif
736         return 0;
737 }
738 #elif defined(CONFIG_PPC_BOOK3S)
739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
740 {
741         mtspr(SPRN_DABR, dabr);
742         if (cpu_has_feature(CPU_FTR_DABRX))
743                 mtspr(SPRN_DABRX, dabrx);
744         return 0;
745 }
746 #elif defined(CONFIG_PPC_8xx)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
750         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
751         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
752
753         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
754                 lctrl1 |= 0xa0000;
755         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
756                 lctrl1 |= 0xf0000;
757         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
758                 lctrl2 = 0;
759
760         mtspr(SPRN_LCTRL2, 0);
761         mtspr(SPRN_CMPE, addr);
762         mtspr(SPRN_CMPF, addr + 4);
763         mtspr(SPRN_LCTRL1, lctrl1);
764         mtspr(SPRN_LCTRL2, lctrl2);
765
766         return 0;
767 }
768 #else
769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
770 {
771         return -EINVAL;
772 }
773 #endif
774
775 static inline int set_dabr(struct arch_hw_breakpoint *brk)
776 {
777         unsigned long dabr, dabrx;
778
779         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
780         dabrx = ((brk->type >> 3) & 0x7);
781
782         if (ppc_md.set_dabr)
783                 return ppc_md.set_dabr(dabr, dabrx);
784
785         return __set_dabr(dabr, dabrx);
786 }
787
788 static inline int set_dawr(struct arch_hw_breakpoint *brk)
789 {
790         unsigned long dawr, dawrx, mrd;
791
792         dawr = brk->address;
793
794         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
795                                    << (63 - 58); //* read/write bits */
796         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
797                                    << (63 - 59); //* translate */
798         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
799                                    >> 3; //* PRIM bits */
800         /* dawr length is stored in field MDR bits 48:53.  Matches range in
801            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
802            0b111111=64DW.
803            brk->len is in bytes.
804            This aligns up to double word size, shifts and does the bias.
805         */
806         mrd = ((brk->len + 7) >> 3) - 1;
807         dawrx |= (mrd & 0x3f) << (63 - 53);
808
809         if (ppc_md.set_dawr)
810                 return ppc_md.set_dawr(dawr, dawrx);
811         mtspr(SPRN_DAWR, dawr);
812         mtspr(SPRN_DAWRX, dawrx);
813         return 0;
814 }
815
816 void __set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
819
820         if (cpu_has_feature(CPU_FTR_DAWR))
821                 set_dawr(brk);
822         else
823                 set_dabr(brk);
824 }
825
826 void set_breakpoint(struct arch_hw_breakpoint *brk)
827 {
828         preempt_disable();
829         __set_breakpoint(brk);
830         preempt_enable();
831 }
832
833 #ifdef CONFIG_PPC64
834 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
835 #endif
836
837 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
838                               struct arch_hw_breakpoint *b)
839 {
840         if (a->address != b->address)
841                 return false;
842         if (a->type != b->type)
843                 return false;
844         if (a->len != b->len)
845                 return false;
846         return true;
847 }
848
849 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
850
851 static inline bool tm_enabled(struct task_struct *tsk)
852 {
853         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
854 }
855
856 static void tm_reclaim_thread(struct thread_struct *thr,
857                               struct thread_info *ti, uint8_t cause)
858 {
859         /*
860          * Use the current MSR TM suspended bit to track if we have
861          * checkpointed state outstanding.
862          * On signal delivery, we'd normally reclaim the checkpointed
863          * state to obtain stack pointer (see:get_tm_stackpointer()).
864          * This will then directly return to userspace without going
865          * through __switch_to(). However, if the stack frame is bad,
866          * we need to exit this thread which calls __switch_to() which
867          * will again attempt to reclaim the already saved tm state.
868          * Hence we need to check that we've not already reclaimed
869          * this state.
870          * We do this using the current MSR, rather tracking it in
871          * some specific thread_struct bit, as it has the additional
872          * benefit of checking for a potential TM bad thing exception.
873          */
874         if (!MSR_TM_SUSPENDED(mfmsr()))
875                 return;
876
877         giveup_all(container_of(thr, struct task_struct, thread));
878
879         tm_reclaim(thr, cause);
880
881         /*
882          * If we are in a transaction and FP is off then we can't have
883          * used FP inside that transaction. Hence the checkpointed
884          * state is the same as the live state. We need to copy the
885          * live state to the checkpointed state so that when the
886          * transaction is restored, the checkpointed state is correct
887          * and the aborted transaction sees the correct state. We use
888          * ckpt_regs.msr here as that's what tm_reclaim will use to
889          * determine if it's going to write the checkpointed state or
890          * not. So either this will write the checkpointed registers,
891          * or reclaim will. Similarly for VMX.
892          */
893         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
894                 memcpy(&thr->ckfp_state, &thr->fp_state,
895                        sizeof(struct thread_fp_state));
896         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
897                 memcpy(&thr->ckvr_state, &thr->vr_state,
898                        sizeof(struct thread_vr_state));
899 }
900
901 void tm_reclaim_current(uint8_t cause)
902 {
903         tm_enable();
904         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
905 }
906
907 static inline void tm_reclaim_task(struct task_struct *tsk)
908 {
909         /* We have to work out if we're switching from/to a task that's in the
910          * middle of a transaction.
911          *
912          * In switching we need to maintain a 2nd register state as
913          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
914          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
915          * ckvr_state
916          *
917          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
918          */
919         struct thread_struct *thr = &tsk->thread;
920
921         if (!thr->regs)
922                 return;
923
924         if (!MSR_TM_ACTIVE(thr->regs->msr))
925                 goto out_and_saveregs;
926
927         WARN_ON(tm_suspend_disabled);
928
929         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
930                  "ccr=%lx, msr=%lx, trap=%lx)\n",
931                  tsk->pid, thr->regs->nip,
932                  thr->regs->ccr, thr->regs->msr,
933                  thr->regs->trap);
934
935         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
936
937         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
938                  tsk->pid);
939
940 out_and_saveregs:
941         /* Always save the regs here, even if a transaction's not active.
942          * This context-switches a thread's TM info SPRs.  We do it here to
943          * be consistent with the restore path (in recheckpoint) which
944          * cannot happen later in _switch().
945          */
946         tm_save_sprs(thr);
947 }
948
949 extern void __tm_recheckpoint(struct thread_struct *thread);
950
951 void tm_recheckpoint(struct thread_struct *thread)
952 {
953         unsigned long flags;
954
955         if (!(thread->regs->msr & MSR_TM))
956                 return;
957
958         /* We really can't be interrupted here as the TEXASR registers can't
959          * change and later in the trecheckpoint code, we have a userspace R1.
960          * So let's hard disable over this region.
961          */
962         local_irq_save(flags);
963         hard_irq_disable();
964
965         /* The TM SPRs are restored here, so that TEXASR.FS can be set
966          * before the trecheckpoint and no explosion occurs.
967          */
968         tm_restore_sprs(thread);
969
970         __tm_recheckpoint(thread);
971
972         local_irq_restore(flags);
973 }
974
975 static inline void tm_recheckpoint_new_task(struct task_struct *new)
976 {
977         if (!cpu_has_feature(CPU_FTR_TM))
978                 return;
979
980         /* Recheckpoint the registers of the thread we're about to switch to.
981          *
982          * If the task was using FP, we non-lazily reload both the original and
983          * the speculative FP register states.  This is because the kernel
984          * doesn't see if/when a TM rollback occurs, so if we take an FP
985          * unavailable later, we are unable to determine which set of FP regs
986          * need to be restored.
987          */
988         if (!tm_enabled(new))
989                 return;
990
991         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
992                 tm_restore_sprs(&new->thread);
993                 return;
994         }
995         /* Recheckpoint to restore original checkpointed register state. */
996         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
997                  new->pid, new->thread.regs->msr);
998
999         tm_recheckpoint(&new->thread);
1000
1001         /*
1002          * The checkpointed state has been restored but the live state has
1003          * not, ensure all the math functionality is turned off to trigger
1004          * restore_math() to reload.
1005          */
1006         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1007
1008         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1009                  "(kernel msr 0x%lx)\n",
1010                  new->pid, mfmsr());
1011 }
1012
1013 static inline void __switch_to_tm(struct task_struct *prev,
1014                 struct task_struct *new)
1015 {
1016         if (cpu_has_feature(CPU_FTR_TM)) {
1017                 if (tm_enabled(prev) || tm_enabled(new))
1018                         tm_enable();
1019
1020                 if (tm_enabled(prev)) {
1021                         prev->thread.load_tm++;
1022                         tm_reclaim_task(prev);
1023                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1024                                 prev->thread.regs->msr &= ~MSR_TM;
1025                 }
1026
1027                 tm_recheckpoint_new_task(new);
1028         }
1029 }
1030
1031 /*
1032  * This is called if we are on the way out to userspace and the
1033  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1034  * FP and/or vector state and does so if necessary.
1035  * If userspace is inside a transaction (whether active or
1036  * suspended) and FP/VMX/VSX instructions have ever been enabled
1037  * inside that transaction, then we have to keep them enabled
1038  * and keep the FP/VMX/VSX state loaded while ever the transaction
1039  * continues.  The reason is that if we didn't, and subsequently
1040  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1041  * we don't know whether it's the same transaction, and thus we
1042  * don't know which of the checkpointed state and the transactional
1043  * state to use.
1044  */
1045 void restore_tm_state(struct pt_regs *regs)
1046 {
1047         unsigned long msr_diff;
1048
1049         /*
1050          * This is the only moment we should clear TIF_RESTORE_TM as
1051          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1052          * again, anything else could lead to an incorrect ckpt_msr being
1053          * saved and therefore incorrect signal contexts.
1054          */
1055         clear_thread_flag(TIF_RESTORE_TM);
1056         if (!MSR_TM_ACTIVE(regs->msr))
1057                 return;
1058
1059         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1060         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1061
1062         /* Ensure that restore_math() will restore */
1063         if (msr_diff & MSR_FP)
1064                 current->thread.load_fp = 1;
1065 #ifdef CONFIG_ALTIVEC
1066         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1067                 current->thread.load_vec = 1;
1068 #endif
1069         restore_math(regs);
1070
1071         regs->msr |= msr_diff;
1072 }
1073
1074 #else
1075 #define tm_recheckpoint_new_task(new)
1076 #define __switch_to_tm(prev, new)
1077 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1078
1079 static inline void save_sprs(struct thread_struct *t)
1080 {
1081 #ifdef CONFIG_ALTIVEC
1082         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1083                 t->vrsave = mfspr(SPRN_VRSAVE);
1084 #endif
1085 #ifdef CONFIG_PPC_BOOK3S_64
1086         if (cpu_has_feature(CPU_FTR_DSCR))
1087                 t->dscr = mfspr(SPRN_DSCR);
1088
1089         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1090                 t->bescr = mfspr(SPRN_BESCR);
1091                 t->ebbhr = mfspr(SPRN_EBBHR);
1092                 t->ebbrr = mfspr(SPRN_EBBRR);
1093
1094                 t->fscr = mfspr(SPRN_FSCR);
1095
1096                 /*
1097                  * Note that the TAR is not available for use in the kernel.
1098                  * (To provide this, the TAR should be backed up/restored on
1099                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1100                  * this should be in pt_regs anyway (for debug).)
1101                  */
1102                 t->tar = mfspr(SPRN_TAR);
1103         }
1104 #endif
1105 }
1106
1107 static inline void restore_sprs(struct thread_struct *old_thread,
1108                                 struct thread_struct *new_thread)
1109 {
1110 #ifdef CONFIG_ALTIVEC
1111         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1112             old_thread->vrsave != new_thread->vrsave)
1113                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1114 #endif
1115 #ifdef CONFIG_PPC_BOOK3S_64
1116         if (cpu_has_feature(CPU_FTR_DSCR)) {
1117                 u64 dscr = get_paca()->dscr_default;
1118                 if (new_thread->dscr_inherit)
1119                         dscr = new_thread->dscr;
1120
1121                 if (old_thread->dscr != dscr)
1122                         mtspr(SPRN_DSCR, dscr);
1123         }
1124
1125         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1126                 if (old_thread->bescr != new_thread->bescr)
1127                         mtspr(SPRN_BESCR, new_thread->bescr);
1128                 if (old_thread->ebbhr != new_thread->ebbhr)
1129                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1130                 if (old_thread->ebbrr != new_thread->ebbrr)
1131                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1132
1133                 if (old_thread->fscr != new_thread->fscr)
1134                         mtspr(SPRN_FSCR, new_thread->fscr);
1135
1136                 if (old_thread->tar != new_thread->tar)
1137                         mtspr(SPRN_TAR, new_thread->tar);
1138         }
1139
1140         if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1141             old_thread->tidr != new_thread->tidr)
1142                 mtspr(SPRN_TIDR, new_thread->tidr);
1143 #endif
1144 }
1145
1146 #ifdef CONFIG_PPC_BOOK3S_64
1147 #define CP_SIZE 128
1148 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1149 #endif
1150
1151 struct task_struct *__switch_to(struct task_struct *prev,
1152         struct task_struct *new)
1153 {
1154         struct thread_struct *new_thread, *old_thread;
1155         struct task_struct *last;
1156 #ifdef CONFIG_PPC_BOOK3S_64
1157         struct ppc64_tlb_batch *batch;
1158 #endif
1159
1160         new_thread = &new->thread;
1161         old_thread = &current->thread;
1162
1163         WARN_ON(!irqs_disabled());
1164
1165 #ifdef CONFIG_PPC64
1166         /*
1167          * Collect processor utilization data per process
1168          */
1169         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1170                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1171                 long unsigned start_tb, current_tb;
1172                 start_tb = old_thread->start_tb;
1173                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1174                 old_thread->accum_tb += (current_tb - start_tb);
1175                 new_thread->start_tb = current_tb;
1176         }
1177 #endif /* CONFIG_PPC64 */
1178
1179 #ifdef CONFIG_PPC_BOOK3S_64
1180         batch = this_cpu_ptr(&ppc64_tlb_batch);
1181         if (batch->active) {
1182                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1183                 if (batch->index)
1184                         __flush_tlb_pending(batch);
1185                 batch->active = 0;
1186         }
1187 #endif /* CONFIG_PPC_BOOK3S_64 */
1188
1189 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1190         switch_booke_debug_regs(&new->thread.debug);
1191 #else
1192 /*
1193  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1194  * schedule DABR
1195  */
1196 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1197         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1198                 __set_breakpoint(&new->thread.hw_brk);
1199 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1200 #endif
1201
1202         /*
1203          * We need to save SPRs before treclaim/trecheckpoint as these will
1204          * change a number of them.
1205          */
1206         save_sprs(&prev->thread);
1207
1208         /* Save FPU, Altivec, VSX and SPE state */
1209         giveup_all(prev);
1210
1211         __switch_to_tm(prev, new);
1212
1213         if (!radix_enabled()) {
1214                 /*
1215                  * We can't take a PMU exception inside _switch() since there
1216                  * is a window where the kernel stack SLB and the kernel stack
1217                  * are out of sync. Hard disable here.
1218                  */
1219                 hard_irq_disable();
1220         }
1221
1222         /*
1223          * Call restore_sprs() before calling _switch(). If we move it after
1224          * _switch() then we miss out on calling it for new tasks. The reason
1225          * for this is we manually create a stack frame for new tasks that
1226          * directly returns through ret_from_fork() or
1227          * ret_from_kernel_thread(). See copy_thread() for details.
1228          */
1229         restore_sprs(old_thread, new_thread);
1230
1231         last = _switch(old_thread, new_thread);
1232
1233 #ifdef CONFIG_PPC_BOOK3S_64
1234         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1235                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1236                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1237                 batch->active = 1;
1238         }
1239
1240         if (current_thread_info()->task->thread.regs) {
1241                 restore_math(current_thread_info()->task->thread.regs);
1242
1243                 /*
1244                  * The copy-paste buffer can only store into foreign real
1245                  * addresses, so unprivileged processes can not see the
1246                  * data or use it in any way unless they have foreign real
1247                  * mappings. If the new process has the foreign real address
1248                  * mappings, we must issue a cp_abort to clear any state and
1249                  * prevent snooping, corruption or a covert channel.
1250                  *
1251                  * DD1 allows paste into normal system memory so we do an
1252                  * unpaired copy, rather than cp_abort, to clear the buffer,
1253                  * since cp_abort is quite expensive.
1254                  */
1255                 if (current_thread_info()->task->thread.used_vas) {
1256                         asm volatile(PPC_CP_ABORT);
1257                 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1258                         asm volatile(PPC_COPY(%0, %1)
1259                                         : : "r"(dummy_copy_buffer), "r"(0));
1260                 }
1261         }
1262 #endif /* CONFIG_PPC_BOOK3S_64 */
1263
1264         return last;
1265 }
1266
1267 static int instructions_to_print = 16;
1268
1269 static void show_instructions(struct pt_regs *regs)
1270 {
1271         int i;
1272         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1273                         sizeof(int));
1274
1275         printk("Instruction dump:");
1276
1277         for (i = 0; i < instructions_to_print; i++) {
1278                 int instr;
1279
1280                 if (!(i % 8))
1281                         pr_cont("\n");
1282
1283 #if !defined(CONFIG_BOOKE)
1284                 /* If executing with the IMMU off, adjust pc rather
1285                  * than print XXXXXXXX.
1286                  */
1287                 if (!(regs->msr & MSR_IR))
1288                         pc = (unsigned long)phys_to_virt(pc);
1289 #endif
1290
1291                 if (!__kernel_text_address(pc) ||
1292                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1293                         pr_cont("XXXXXXXX ");
1294                 } else {
1295                         if (regs->nip == pc)
1296                                 pr_cont("<%08x> ", instr);
1297                         else
1298                                 pr_cont("%08x ", instr);
1299                 }
1300
1301                 pc += sizeof(int);
1302         }
1303
1304         pr_cont("\n");
1305 }
1306
1307 struct regbit {
1308         unsigned long bit;
1309         const char *name;
1310 };
1311
1312 static struct regbit msr_bits[] = {
1313 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1314         {MSR_SF,        "SF"},
1315         {MSR_HV,        "HV"},
1316 #endif
1317         {MSR_VEC,       "VEC"},
1318         {MSR_VSX,       "VSX"},
1319 #ifdef CONFIG_BOOKE
1320         {MSR_CE,        "CE"},
1321 #endif
1322         {MSR_EE,        "EE"},
1323         {MSR_PR,        "PR"},
1324         {MSR_FP,        "FP"},
1325         {MSR_ME,        "ME"},
1326 #ifdef CONFIG_BOOKE
1327         {MSR_DE,        "DE"},
1328 #else
1329         {MSR_SE,        "SE"},
1330         {MSR_BE,        "BE"},
1331 #endif
1332         {MSR_IR,        "IR"},
1333         {MSR_DR,        "DR"},
1334         {MSR_PMM,       "PMM"},
1335 #ifndef CONFIG_BOOKE
1336         {MSR_RI,        "RI"},
1337         {MSR_LE,        "LE"},
1338 #endif
1339         {0,             NULL}
1340 };
1341
1342 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1343 {
1344         const char *s = "";
1345
1346         for (; bits->bit; ++bits)
1347                 if (val & bits->bit) {
1348                         pr_cont("%s%s", s, bits->name);
1349                         s = sep;
1350                 }
1351 }
1352
1353 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1354 static struct regbit msr_tm_bits[] = {
1355         {MSR_TS_T,      "T"},
1356         {MSR_TS_S,      "S"},
1357         {MSR_TM,        "E"},
1358         {0,             NULL}
1359 };
1360
1361 static void print_tm_bits(unsigned long val)
1362 {
1363 /*
1364  * This only prints something if at least one of the TM bit is set.
1365  * Inside the TM[], the output means:
1366  *   E: Enabled         (bit 32)
1367  *   S: Suspended       (bit 33)
1368  *   T: Transactional   (bit 34)
1369  */
1370         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1371                 pr_cont(",TM[");
1372                 print_bits(val, msr_tm_bits, "");
1373                 pr_cont("]");
1374         }
1375 }
1376 #else
1377 static void print_tm_bits(unsigned long val) {}
1378 #endif
1379
1380 static void print_msr_bits(unsigned long val)
1381 {
1382         pr_cont("<");
1383         print_bits(val, msr_bits, ",");
1384         print_tm_bits(val);
1385         pr_cont(">");
1386 }
1387
1388 #ifdef CONFIG_PPC64
1389 #define REG             "%016lx"
1390 #define REGS_PER_LINE   4
1391 #define LAST_VOLATILE   13
1392 #else
1393 #define REG             "%08lx"
1394 #define REGS_PER_LINE   8
1395 #define LAST_VOLATILE   12
1396 #endif
1397
1398 void show_regs(struct pt_regs * regs)
1399 {
1400         int i, trap;
1401
1402         show_regs_print_info(KERN_DEFAULT);
1403
1404         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1405                regs->nip, regs->link, regs->ctr);
1406         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1407                regs, regs->trap, print_tainted(), init_utsname()->release);
1408         printk("MSR:  "REG" ", regs->msr);
1409         print_msr_bits(regs->msr);
1410         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1411         trap = TRAP(regs);
1412         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1413                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1414         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1415 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1416                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1417 #else
1418                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1419 #endif
1420 #ifdef CONFIG_PPC64
1421         pr_cont("SOFTE: %ld ", regs->softe);
1422 #endif
1423 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1424         if (MSR_TM_ACTIVE(regs->msr))
1425                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1426 #endif
1427
1428         for (i = 0;  i < 32;  i++) {
1429                 if ((i % REGS_PER_LINE) == 0)
1430                         pr_cont("\nGPR%02d: ", i);
1431                 pr_cont(REG " ", regs->gpr[i]);
1432                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1433                         break;
1434         }
1435         pr_cont("\n");
1436 #ifdef CONFIG_KALLSYMS
1437         /*
1438          * Lookup NIP late so we have the best change of getting the
1439          * above info out without failing
1440          */
1441         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1442         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1443 #endif
1444         show_stack(current, (unsigned long *) regs->gpr[1]);
1445         if (!user_mode(regs))
1446                 show_instructions(regs);
1447 }
1448
1449 void flush_thread(void)
1450 {
1451 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1452         flush_ptrace_hw_breakpoint(current);
1453 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1454         set_debug_reg_defaults(&current->thread);
1455 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1456 }
1457
1458 int set_thread_uses_vas(void)
1459 {
1460 #ifdef CONFIG_PPC_BOOK3S_64
1461         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1462                 return -EINVAL;
1463
1464         current->thread.used_vas = 1;
1465
1466         /*
1467          * Even a process that has no foreign real address mapping can use
1468          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1469          * to clear any pending COPY and prevent a covert channel.
1470          *
1471          * __switch_to() will issue CP_ABORT on future context switches.
1472          */
1473         asm volatile(PPC_CP_ABORT);
1474
1475 #endif /* CONFIG_PPC_BOOK3S_64 */
1476         return 0;
1477 }
1478
1479 #ifdef CONFIG_PPC64
1480 static DEFINE_SPINLOCK(vas_thread_id_lock);
1481 static DEFINE_IDA(vas_thread_ida);
1482
1483 /*
1484  * We need to assign a unique thread id to each thread in a process.
1485  *
1486  * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1487  * is intended to be used to direct an ASB_Notify from the hardware to the
1488  * thread, when a suitable event occurs in the system.
1489  *
1490  * One such event is a "paste" instruction in the context of Fast Thread
1491  * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1492  * (VAS) in POWER9.
1493  *
1494  * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1495  * the problem is that task_pid_nr() is not yet available copy_thread() is
1496  * called. Fixing that would require changing more intrusive arch-neutral
1497  * code in code path in copy_process()?.
1498  *
1499  * Further, to assign unique TIDRs within each process, we need an atomic
1500  * field (or an IDR) in task_struct, which again intrudes into the arch-
1501  * neutral code. So try to assign globally unique TIDRs for now.
1502  *
1503  * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1504  *       For now, only threads that expect to be notified by the VAS
1505  *       hardware need a TIDR value and we assign values > 0 for those.
1506  */
1507 #define MAX_THREAD_CONTEXT      ((1 << 16) - 1)
1508 static int assign_thread_tidr(void)
1509 {
1510         int index;
1511         int err;
1512
1513 again:
1514         if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1515                 return -ENOMEM;
1516
1517         spin_lock(&vas_thread_id_lock);
1518         err = ida_get_new_above(&vas_thread_ida, 1, &index);
1519         spin_unlock(&vas_thread_id_lock);
1520
1521         if (err == -EAGAIN)
1522                 goto again;
1523         else if (err)
1524                 return err;
1525
1526         if (index > MAX_THREAD_CONTEXT) {
1527                 spin_lock(&vas_thread_id_lock);
1528                 ida_remove(&vas_thread_ida, index);
1529                 spin_unlock(&vas_thread_id_lock);
1530                 return -ENOMEM;
1531         }
1532
1533         return index;
1534 }
1535
1536 static void free_thread_tidr(int id)
1537 {
1538         spin_lock(&vas_thread_id_lock);
1539         ida_remove(&vas_thread_ida, id);
1540         spin_unlock(&vas_thread_id_lock);
1541 }
1542
1543 /*
1544  * Clear any TIDR value assigned to this thread.
1545  */
1546 void clear_thread_tidr(struct task_struct *t)
1547 {
1548         if (!t->thread.tidr)
1549                 return;
1550
1551         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1552                 WARN_ON_ONCE(1);
1553                 return;
1554         }
1555
1556         mtspr(SPRN_TIDR, 0);
1557         free_thread_tidr(t->thread.tidr);
1558         t->thread.tidr = 0;
1559 }
1560
1561 void arch_release_task_struct(struct task_struct *t)
1562 {
1563         clear_thread_tidr(t);
1564 }
1565
1566 /*
1567  * Assign a unique TIDR (thread id) for task @t and set it in the thread
1568  * structure. For now, we only support setting TIDR for 'current' task.
1569  */
1570 int set_thread_tidr(struct task_struct *t)
1571 {
1572         int rc;
1573
1574         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1575                 return -EINVAL;
1576
1577         if (t != current)
1578                 return -EINVAL;
1579
1580         if (t->thread.tidr)
1581                 return 0;
1582
1583         rc = assign_thread_tidr();
1584         if (rc < 0)
1585                 return rc;
1586
1587         t->thread.tidr = rc;
1588         mtspr(SPRN_TIDR, t->thread.tidr);
1589
1590         return 0;
1591 }
1592
1593 #endif /* CONFIG_PPC64 */
1594
1595 void
1596 release_thread(struct task_struct *t)
1597 {
1598 }
1599
1600 /*
1601  * this gets called so that we can store coprocessor state into memory and
1602  * copy the current task into the new thread.
1603  */
1604 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1605 {
1606         flush_all_to_thread(src);
1607         /*
1608          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1609          * flush but it removes the checkpointed state from the current CPU and
1610          * transitions the CPU out of TM mode.  Hence we need to call
1611          * tm_recheckpoint_new_task() (on the same task) to restore the
1612          * checkpointed state back and the TM mode.
1613          *
1614          * Can't pass dst because it isn't ready. Doesn't matter, passing
1615          * dst is only important for __switch_to()
1616          */
1617         __switch_to_tm(src, src);
1618
1619         *dst = *src;
1620
1621         clear_task_ebb(dst);
1622
1623         return 0;
1624 }
1625
1626 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1627 {
1628 #ifdef CONFIG_PPC_BOOK3S_64
1629         unsigned long sp_vsid;
1630         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1631
1632         if (radix_enabled())
1633                 return;
1634
1635         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1636                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1637                         << SLB_VSID_SHIFT_1T;
1638         else
1639                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1640                         << SLB_VSID_SHIFT;
1641         sp_vsid |= SLB_VSID_KERNEL | llp;
1642         p->thread.ksp_vsid = sp_vsid;
1643 #endif
1644 }
1645
1646 /*
1647  * Copy a thread..
1648  */
1649
1650 /*
1651  * Copy architecture-specific thread state
1652  */
1653 int copy_thread(unsigned long clone_flags, unsigned long usp,
1654                 unsigned long kthread_arg, struct task_struct *p)
1655 {
1656         struct pt_regs *childregs, *kregs;
1657         extern void ret_from_fork(void);
1658         extern void ret_from_kernel_thread(void);
1659         void (*f)(void);
1660         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1661         struct thread_info *ti = task_thread_info(p);
1662
1663         klp_init_thread_info(ti);
1664
1665         /* Copy registers */
1666         sp -= sizeof(struct pt_regs);
1667         childregs = (struct pt_regs *) sp;
1668         if (unlikely(p->flags & PF_KTHREAD)) {
1669                 /* kernel thread */
1670                 memset(childregs, 0, sizeof(struct pt_regs));
1671                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1672                 /* function */
1673                 if (usp)
1674                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1675 #ifdef CONFIG_PPC64
1676                 clear_tsk_thread_flag(p, TIF_32BIT);
1677                 childregs->softe = 1;
1678 #endif
1679                 childregs->gpr[15] = kthread_arg;
1680                 p->thread.regs = NULL;  /* no user register state */
1681                 ti->flags |= _TIF_RESTOREALL;
1682                 f = ret_from_kernel_thread;
1683         } else {
1684                 /* user thread */
1685                 struct pt_regs *regs = current_pt_regs();
1686                 CHECK_FULL_REGS(regs);
1687                 *childregs = *regs;
1688                 if (usp)
1689                         childregs->gpr[1] = usp;
1690                 p->thread.regs = childregs;
1691                 childregs->gpr[3] = 0;  /* Result from fork() */
1692                 if (clone_flags & CLONE_SETTLS) {
1693 #ifdef CONFIG_PPC64
1694                         if (!is_32bit_task())
1695                                 childregs->gpr[13] = childregs->gpr[6];
1696                         else
1697 #endif
1698                                 childregs->gpr[2] = childregs->gpr[6];
1699                 }
1700
1701                 f = ret_from_fork;
1702         }
1703         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1704         sp -= STACK_FRAME_OVERHEAD;
1705
1706         /*
1707          * The way this works is that at some point in the future
1708          * some task will call _switch to switch to the new task.
1709          * That will pop off the stack frame created below and start
1710          * the new task running at ret_from_fork.  The new task will
1711          * do some house keeping and then return from the fork or clone
1712          * system call, using the stack frame created above.
1713          */
1714         ((unsigned long *)sp)[0] = 0;
1715         sp -= sizeof(struct pt_regs);
1716         kregs = (struct pt_regs *) sp;
1717         sp -= STACK_FRAME_OVERHEAD;
1718         p->thread.ksp = sp;
1719 #ifdef CONFIG_PPC32
1720         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1721                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1722 #endif
1723 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1724         p->thread.ptrace_bps[0] = NULL;
1725 #endif
1726
1727         p->thread.fp_save_area = NULL;
1728 #ifdef CONFIG_ALTIVEC
1729         p->thread.vr_save_area = NULL;
1730 #endif
1731
1732         setup_ksp_vsid(p, sp);
1733
1734 #ifdef CONFIG_PPC64 
1735         if (cpu_has_feature(CPU_FTR_DSCR)) {
1736                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1737                 p->thread.dscr = mfspr(SPRN_DSCR);
1738         }
1739         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1740                 p->thread.ppr = INIT_PPR;
1741
1742         p->thread.tidr = 0;
1743 #endif
1744         kregs->nip = ppc_function_entry(f);
1745         return 0;
1746 }
1747
1748 /*
1749  * Set up a thread for executing a new program
1750  */
1751 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1752 {
1753 #ifdef CONFIG_PPC64
1754         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1755 #endif
1756
1757         /*
1758          * If we exec out of a kernel thread then thread.regs will not be
1759          * set.  Do it now.
1760          */
1761         if (!current->thread.regs) {
1762                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1763                 current->thread.regs = regs - 1;
1764         }
1765
1766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1767         /*
1768          * Clear any transactional state, we're exec()ing. The cause is
1769          * not important as there will never be a recheckpoint so it's not
1770          * user visible.
1771          */
1772         if (MSR_TM_SUSPENDED(mfmsr()))
1773                 tm_reclaim_current(0);
1774 #endif
1775
1776         memset(regs->gpr, 0, sizeof(regs->gpr));
1777         regs->ctr = 0;
1778         regs->link = 0;
1779         regs->xer = 0;
1780         regs->ccr = 0;
1781         regs->gpr[1] = sp;
1782
1783         /*
1784          * We have just cleared all the nonvolatile GPRs, so make
1785          * FULL_REGS(regs) return true.  This is necessary to allow
1786          * ptrace to examine the thread immediately after exec.
1787          */
1788         regs->trap &= ~1UL;
1789
1790 #ifdef CONFIG_PPC32
1791         regs->mq = 0;
1792         regs->nip = start;
1793         regs->msr = MSR_USER;
1794 #else
1795         if (!is_32bit_task()) {
1796                 unsigned long entry;
1797
1798                 if (is_elf2_task()) {
1799                         /* Look ma, no function descriptors! */
1800                         entry = start;
1801
1802                         /*
1803                          * Ulrich says:
1804                          *   The latest iteration of the ABI requires that when
1805                          *   calling a function (at its global entry point),
1806                          *   the caller must ensure r12 holds the entry point
1807                          *   address (so that the function can quickly
1808                          *   establish addressability).
1809                          */
1810                         regs->gpr[12] = start;
1811                         /* Make sure that's restored on entry to userspace. */
1812                         set_thread_flag(TIF_RESTOREALL);
1813                 } else {
1814                         unsigned long toc;
1815
1816                         /* start is a relocated pointer to the function
1817                          * descriptor for the elf _start routine.  The first
1818                          * entry in the function descriptor is the entry
1819                          * address of _start and the second entry is the TOC
1820                          * value we need to use.
1821                          */
1822                         __get_user(entry, (unsigned long __user *)start);
1823                         __get_user(toc, (unsigned long __user *)start+1);
1824
1825                         /* Check whether the e_entry function descriptor entries
1826                          * need to be relocated before we can use them.
1827                          */
1828                         if (load_addr != 0) {
1829                                 entry += load_addr;
1830                                 toc   += load_addr;
1831                         }
1832                         regs->gpr[2] = toc;
1833                 }
1834                 regs->nip = entry;
1835                 regs->msr = MSR_USER64;
1836         } else {
1837                 regs->nip = start;
1838                 regs->gpr[2] = 0;
1839                 regs->msr = MSR_USER32;
1840         }
1841 #endif
1842 #ifdef CONFIG_VSX
1843         current->thread.used_vsr = 0;
1844 #endif
1845         current->thread.load_fp = 0;
1846         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1847         current->thread.fp_save_area = NULL;
1848 #ifdef CONFIG_ALTIVEC
1849         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1850         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1851         current->thread.vr_save_area = NULL;
1852         current->thread.vrsave = 0;
1853         current->thread.used_vr = 0;
1854         current->thread.load_vec = 0;
1855 #endif /* CONFIG_ALTIVEC */
1856 #ifdef CONFIG_SPE
1857         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1858         current->thread.acc = 0;
1859         current->thread.spefscr = 0;
1860         current->thread.used_spe = 0;
1861 #endif /* CONFIG_SPE */
1862 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1863         current->thread.tm_tfhar = 0;
1864         current->thread.tm_texasr = 0;
1865         current->thread.tm_tfiar = 0;
1866         current->thread.load_tm = 0;
1867 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1868 }
1869 EXPORT_SYMBOL(start_thread);
1870
1871 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1872                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1873
1874 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1875 {
1876         struct pt_regs *regs = tsk->thread.regs;
1877
1878         /* This is a bit hairy.  If we are an SPE enabled  processor
1879          * (have embedded fp) we store the IEEE exception enable flags in
1880          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1881          * mode (asyn, precise, disabled) for 'Classic' FP. */
1882         if (val & PR_FP_EXC_SW_ENABLE) {
1883 #ifdef CONFIG_SPE
1884                 if (cpu_has_feature(CPU_FTR_SPE)) {
1885                         /*
1886                          * When the sticky exception bits are set
1887                          * directly by userspace, it must call prctl
1888                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1889                          * in the existing prctl settings) or
1890                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1891                          * the bits being set).  <fenv.h> functions
1892                          * saving and restoring the whole
1893                          * floating-point environment need to do so
1894                          * anyway to restore the prctl settings from
1895                          * the saved environment.
1896                          */
1897                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1898                         tsk->thread.fpexc_mode = val &
1899                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1900                         return 0;
1901                 } else {
1902                         return -EINVAL;
1903                 }
1904 #else
1905                 return -EINVAL;
1906 #endif
1907         }
1908
1909         /* on a CONFIG_SPE this does not hurt us.  The bits that
1910          * __pack_fe01 use do not overlap with bits used for
1911          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1912          * on CONFIG_SPE implementations are reserved so writing to
1913          * them does not change anything */
1914         if (val > PR_FP_EXC_PRECISE)
1915                 return -EINVAL;
1916         tsk->thread.fpexc_mode = __pack_fe01(val);
1917         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1918                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1919                         | tsk->thread.fpexc_mode;
1920         return 0;
1921 }
1922
1923 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1924 {
1925         unsigned int val;
1926
1927         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1928 #ifdef CONFIG_SPE
1929                 if (cpu_has_feature(CPU_FTR_SPE)) {
1930                         /*
1931                          * When the sticky exception bits are set
1932                          * directly by userspace, it must call prctl
1933                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1934                          * in the existing prctl settings) or
1935                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1936                          * the bits being set).  <fenv.h> functions
1937                          * saving and restoring the whole
1938                          * floating-point environment need to do so
1939                          * anyway to restore the prctl settings from
1940                          * the saved environment.
1941                          */
1942                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1943                         val = tsk->thread.fpexc_mode;
1944                 } else
1945                         return -EINVAL;
1946 #else
1947                 return -EINVAL;
1948 #endif
1949         else
1950                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1951         return put_user(val, (unsigned int __user *) adr);
1952 }
1953
1954 int set_endian(struct task_struct *tsk, unsigned int val)
1955 {
1956         struct pt_regs *regs = tsk->thread.regs;
1957
1958         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1959             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1960                 return -EINVAL;
1961
1962         if (regs == NULL)
1963                 return -EINVAL;
1964
1965         if (val == PR_ENDIAN_BIG)
1966                 regs->msr &= ~MSR_LE;
1967         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1968                 regs->msr |= MSR_LE;
1969         else
1970                 return -EINVAL;
1971
1972         return 0;
1973 }
1974
1975 int get_endian(struct task_struct *tsk, unsigned long adr)
1976 {
1977         struct pt_regs *regs = tsk->thread.regs;
1978         unsigned int val;
1979
1980         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1981             !cpu_has_feature(CPU_FTR_REAL_LE))
1982                 return -EINVAL;
1983
1984         if (regs == NULL)
1985                 return -EINVAL;
1986
1987         if (regs->msr & MSR_LE) {
1988                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1989                         val = PR_ENDIAN_LITTLE;
1990                 else
1991                         val = PR_ENDIAN_PPC_LITTLE;
1992         } else
1993                 val = PR_ENDIAN_BIG;
1994
1995         return put_user(val, (unsigned int __user *)adr);
1996 }
1997
1998 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1999 {
2000         tsk->thread.align_ctl = val;
2001         return 0;
2002 }
2003
2004 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2005 {
2006         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2007 }
2008
2009 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2010                                   unsigned long nbytes)
2011 {
2012         unsigned long stack_page;
2013         unsigned long cpu = task_cpu(p);
2014
2015         /*
2016          * Avoid crashing if the stack has overflowed and corrupted
2017          * task_cpu(p), which is in the thread_info struct.
2018          */
2019         if (cpu < NR_CPUS && cpu_possible(cpu)) {
2020                 stack_page = (unsigned long) hardirq_ctx[cpu];
2021                 if (sp >= stack_page + sizeof(struct thread_struct)
2022                     && sp <= stack_page + THREAD_SIZE - nbytes)
2023                         return 1;
2024
2025                 stack_page = (unsigned long) softirq_ctx[cpu];
2026                 if (sp >= stack_page + sizeof(struct thread_struct)
2027                     && sp <= stack_page + THREAD_SIZE - nbytes)
2028                         return 1;
2029         }
2030         return 0;
2031 }
2032
2033 int validate_sp(unsigned long sp, struct task_struct *p,
2034                        unsigned long nbytes)
2035 {
2036         unsigned long stack_page = (unsigned long)task_stack_page(p);
2037
2038         if (sp >= stack_page + sizeof(struct thread_struct)
2039             && sp <= stack_page + THREAD_SIZE - nbytes)
2040                 return 1;
2041
2042         return valid_irq_stack(sp, p, nbytes);
2043 }
2044
2045 EXPORT_SYMBOL(validate_sp);
2046
2047 unsigned long get_wchan(struct task_struct *p)
2048 {
2049         unsigned long ip, sp;
2050         int count = 0;
2051
2052         if (!p || p == current || p->state == TASK_RUNNING)
2053                 return 0;
2054
2055         sp = p->thread.ksp;
2056         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2057                 return 0;
2058
2059         do {
2060                 sp = *(unsigned long *)sp;
2061                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2062                     p->state == TASK_RUNNING)
2063                         return 0;
2064                 if (count > 0) {
2065                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2066                         if (!in_sched_functions(ip))
2067                                 return ip;
2068                 }
2069         } while (count++ < 16);
2070         return 0;
2071 }
2072
2073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2074
2075 void show_stack(struct task_struct *tsk, unsigned long *stack)
2076 {
2077         unsigned long sp, ip, lr, newsp;
2078         int count = 0;
2079         int firstframe = 1;
2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081         int curr_frame = current->curr_ret_stack;
2082         extern void return_to_handler(void);
2083         unsigned long rth = (unsigned long)return_to_handler;
2084 #endif
2085
2086         sp = (unsigned long) stack;
2087         if (tsk == NULL)
2088                 tsk = current;
2089         if (sp == 0) {
2090                 if (tsk == current)
2091                         sp = current_stack_pointer();
2092                 else
2093                         sp = tsk->thread.ksp;
2094         }
2095
2096         lr = 0;
2097         printk("Call Trace:\n");
2098         do {
2099                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2100                         return;
2101
2102                 stack = (unsigned long *) sp;
2103                 newsp = stack[0];
2104                 ip = stack[STACK_FRAME_LR_SAVE];
2105                 if (!firstframe || ip != lr) {
2106                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2107 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2108                         if ((ip == rth) && curr_frame >= 0) {
2109                                 pr_cont(" (%pS)",
2110                                        (void *)current->ret_stack[curr_frame].ret);
2111                                 curr_frame--;
2112                         }
2113 #endif
2114                         if (firstframe)
2115                                 pr_cont(" (unreliable)");
2116                         pr_cont("\n");
2117                 }
2118                 firstframe = 0;
2119
2120                 /*
2121                  * See if this is an exception frame.
2122                  * We look for the "regshere" marker in the current frame.
2123                  */
2124                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2125                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2126                         struct pt_regs *regs = (struct pt_regs *)
2127                                 (sp + STACK_FRAME_OVERHEAD);
2128                         lr = regs->link;
2129                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2130                                regs->trap, (void *)regs->nip, (void *)lr);
2131                         firstframe = 1;
2132                 }
2133
2134                 sp = newsp;
2135         } while (count++ < kstack_depth_to_print);
2136 }
2137
2138 #ifdef CONFIG_PPC64
2139 /* Called with hard IRQs off */
2140 void notrace __ppc64_runlatch_on(void)
2141 {
2142         struct thread_info *ti = current_thread_info();
2143
2144         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2145                 /*
2146                  * Least significant bit (RUN) is the only writable bit of
2147                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2148                  * earliest ISA where this is the case, but it's convenient.
2149                  */
2150                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2151         } else {
2152                 unsigned long ctrl;
2153
2154                 /*
2155                  * Some architectures (e.g., Cell) have writable fields other
2156                  * than RUN, so do the read-modify-write.
2157                  */
2158                 ctrl = mfspr(SPRN_CTRLF);
2159                 ctrl |= CTRL_RUNLATCH;
2160                 mtspr(SPRN_CTRLT, ctrl);
2161         }
2162
2163         ti->local_flags |= _TLF_RUNLATCH;
2164 }
2165
2166 /* Called with hard IRQs off */
2167 void notrace __ppc64_runlatch_off(void)
2168 {
2169         struct thread_info *ti = current_thread_info();
2170
2171         ti->local_flags &= ~_TLF_RUNLATCH;
2172
2173         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2174                 mtspr(SPRN_CTRLT, 0);
2175         } else {
2176                 unsigned long ctrl;
2177
2178                 ctrl = mfspr(SPRN_CTRLF);
2179                 ctrl &= ~CTRL_RUNLATCH;
2180                 mtspr(SPRN_CTRLT, ctrl);
2181         }
2182 }
2183 #endif /* CONFIG_PPC64 */
2184
2185 unsigned long arch_align_stack(unsigned long sp)
2186 {
2187         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2188                 sp -= get_random_int() & ~PAGE_MASK;
2189         return sp & ~0xf;
2190 }
2191
2192 static inline unsigned long brk_rnd(void)
2193 {
2194         unsigned long rnd = 0;
2195
2196         /* 8MB for 32bit, 1GB for 64bit */
2197         if (is_32bit_task())
2198                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2199         else
2200                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2201
2202         return rnd << PAGE_SHIFT;
2203 }
2204
2205 unsigned long arch_randomize_brk(struct mm_struct *mm)
2206 {
2207         unsigned long base = mm->brk;
2208         unsigned long ret;
2209
2210 #ifdef CONFIG_PPC_BOOK3S_64
2211         /*
2212          * If we are using 1TB segments and we are allowed to randomise
2213          * the heap, we can put it above 1TB so it is backed by a 1TB
2214          * segment. Otherwise the heap will be in the bottom 1TB
2215          * which always uses 256MB segments and this may result in a
2216          * performance penalty. We don't need to worry about radix. For
2217          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2218          */
2219         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2220                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2221 #endif
2222
2223         ret = PAGE_ALIGN(base + brk_rnd());
2224
2225         if (ret < mm->brk)
2226                 return mm->brk;
2227
2228         return ret;
2229 }
2230