Merge branch 'nvme-4.18' of git://git.infradead.org/nvme into for-linus
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/seq_file.h>
34 #include <linux/crash_dump.h>
35 #include <linux/kobject.h>
36 #include <linux/sysfs.h>
37
38 #include <asm/debugfs.h>
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/setup.h>
44
45 static struct fw_dump fw_dump;
46 static struct fadump_mem_struct fdm;
47 static const struct fadump_mem_struct *fdm_active;
48
49 static DEFINE_MUTEX(fadump_mutex);
50 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
51 int crash_mem_ranges;
52
53 /* Scan the Firmware Assisted dump configuration details. */
54 int __init early_init_dt_scan_fw_dump(unsigned long node,
55                         const char *uname, int depth, void *data)
56 {
57         const __be32 *sections;
58         int i, num_sections;
59         int size;
60         const __be32 *token;
61
62         if (depth != 1 || strcmp(uname, "rtas") != 0)
63                 return 0;
64
65         /*
66          * Check if Firmware Assisted dump is supported. if yes, check
67          * if dump has been initiated on last reboot.
68          */
69         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
70         if (!token)
71                 return 1;
72
73         fw_dump.fadump_supported = 1;
74         fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
75
76         /*
77          * The 'ibm,kernel-dump' rtas node is present only if there is
78          * dump data waiting for us.
79          */
80         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
81         if (fdm_active)
82                 fw_dump.dump_active = 1;
83
84         /* Get the sizes required to store dump data for the firmware provided
85          * dump sections.
86          * For each dump section type supported, a 32bit cell which defines
87          * the ID of a supported section followed by two 32 bit cells which
88          * gives teh size of the section in bytes.
89          */
90         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
91                                         &size);
92
93         if (!sections)
94                 return 1;
95
96         num_sections = size / (3 * sizeof(u32));
97
98         for (i = 0; i < num_sections; i++, sections += 3) {
99                 u32 type = (u32)of_read_number(sections, 1);
100
101                 switch (type) {
102                 case FADUMP_CPU_STATE_DATA:
103                         fw_dump.cpu_state_data_size =
104                                         of_read_ulong(&sections[1], 2);
105                         break;
106                 case FADUMP_HPTE_REGION:
107                         fw_dump.hpte_region_size =
108                                         of_read_ulong(&sections[1], 2);
109                         break;
110                 }
111         }
112
113         return 1;
114 }
115
116 /*
117  * If fadump is registered, check if the memory provided
118  * falls within boot memory area.
119  */
120 int is_fadump_boot_memory_area(u64 addr, ulong size)
121 {
122         if (!fw_dump.dump_registered)
123                 return 0;
124
125         return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
126 }
127
128 int should_fadump_crash(void)
129 {
130         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
131                 return 0;
132         return 1;
133 }
134
135 int is_fadump_active(void)
136 {
137         return fw_dump.dump_active;
138 }
139
140 /*
141  * Returns 1, if there are no holes in boot memory area,
142  * 0 otherwise.
143  */
144 static int is_boot_memory_area_contiguous(void)
145 {
146         struct memblock_region *reg;
147         unsigned long tstart, tend;
148         unsigned long start_pfn = PHYS_PFN(RMA_START);
149         unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
150         unsigned int ret = 0;
151
152         for_each_memblock(memory, reg) {
153                 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
154                 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
155                 if (tstart < tend) {
156                         /* Memory hole from start_pfn to tstart */
157                         if (tstart > start_pfn)
158                                 break;
159
160                         if (tend == end_pfn) {
161                                 ret = 1;
162                                 break;
163                         }
164
165                         start_pfn = tend + 1;
166                 }
167         }
168
169         return ret;
170 }
171
172 /* Print firmware assisted dump configurations for debugging purpose. */
173 static void fadump_show_config(void)
174 {
175         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
176                         (fw_dump.fadump_supported ? "present" : "no support"));
177
178         if (!fw_dump.fadump_supported)
179                 return;
180
181         pr_debug("Fadump enabled    : %s\n",
182                                 (fw_dump.fadump_enabled ? "yes" : "no"));
183         pr_debug("Dump Active       : %s\n",
184                                 (fw_dump.dump_active ? "yes" : "no"));
185         pr_debug("Dump section sizes:\n");
186         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
187         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
188         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
189 }
190
191 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
192                                 unsigned long addr)
193 {
194         if (!fdm)
195                 return 0;
196
197         memset(fdm, 0, sizeof(struct fadump_mem_struct));
198         addr = addr & PAGE_MASK;
199
200         fdm->header.dump_format_version = cpu_to_be32(0x00000001);
201         fdm->header.dump_num_sections = cpu_to_be16(3);
202         fdm->header.dump_status_flag = 0;
203         fdm->header.offset_first_dump_section =
204                 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
205
206         /*
207          * Fields for disk dump option.
208          * We are not using disk dump option, hence set these fields to 0.
209          */
210         fdm->header.dd_block_size = 0;
211         fdm->header.dd_block_offset = 0;
212         fdm->header.dd_num_blocks = 0;
213         fdm->header.dd_offset_disk_path = 0;
214
215         /* set 0 to disable an automatic dump-reboot. */
216         fdm->header.max_time_auto = 0;
217
218         /* Kernel dump sections */
219         /* cpu state data section. */
220         fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
221         fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
222         fdm->cpu_state_data.source_address = 0;
223         fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
224         fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
225         addr += fw_dump.cpu_state_data_size;
226
227         /* hpte region section */
228         fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
229         fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
230         fdm->hpte_region.source_address = 0;
231         fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
232         fdm->hpte_region.destination_address = cpu_to_be64(addr);
233         addr += fw_dump.hpte_region_size;
234
235         /* RMA region section */
236         fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
237         fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
238         fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
239         fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
240         fdm->rmr_region.destination_address = cpu_to_be64(addr);
241         addr += fw_dump.boot_memory_size;
242
243         return addr;
244 }
245
246 /**
247  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
248  *
249  * Function to find the largest memory size we need to reserve during early
250  * boot process. This will be the size of the memory that is required for a
251  * kernel to boot successfully.
252  *
253  * This function has been taken from phyp-assisted dump feature implementation.
254  *
255  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
256  *
257  * TODO: Come up with better approach to find out more accurate memory size
258  * that is required for a kernel to boot successfully.
259  *
260  */
261 static inline unsigned long fadump_calculate_reserve_size(void)
262 {
263         int ret;
264         unsigned long long base, size;
265
266         if (fw_dump.reserve_bootvar)
267                 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
268
269         /*
270          * Check if the size is specified through crashkernel= cmdline
271          * option. If yes, then use that but ignore base as fadump reserves
272          * memory at a predefined offset.
273          */
274         ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
275                                 &size, &base);
276         if (ret == 0 && size > 0) {
277                 unsigned long max_size;
278
279                 if (fw_dump.reserve_bootvar)
280                         pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
281
282                 fw_dump.reserve_bootvar = (unsigned long)size;
283
284                 /*
285                  * Adjust if the boot memory size specified is above
286                  * the upper limit.
287                  */
288                 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
289                 if (fw_dump.reserve_bootvar > max_size) {
290                         fw_dump.reserve_bootvar = max_size;
291                         pr_info("Adjusted boot memory size to %luMB\n",
292                                 (fw_dump.reserve_bootvar >> 20));
293                 }
294
295                 return fw_dump.reserve_bootvar;
296         } else if (fw_dump.reserve_bootvar) {
297                 /*
298                  * 'fadump_reserve_mem=' is being used to reserve memory
299                  * for firmware-assisted dump.
300                  */
301                 return fw_dump.reserve_bootvar;
302         }
303
304         /* divide by 20 to get 5% of value */
305         size = memblock_phys_mem_size() / 20;
306
307         /* round it down in multiples of 256 */
308         size = size & ~0x0FFFFFFFUL;
309
310         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
311         if (memory_limit && size > memory_limit)
312                 size = memory_limit;
313
314         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
315 }
316
317 /*
318  * Calculate the total memory size required to be reserved for
319  * firmware-assisted dump registration.
320  */
321 static unsigned long get_fadump_area_size(void)
322 {
323         unsigned long size = 0;
324
325         size += fw_dump.cpu_state_data_size;
326         size += fw_dump.hpte_region_size;
327         size += fw_dump.boot_memory_size;
328         size += sizeof(struct fadump_crash_info_header);
329         size += sizeof(struct elfhdr); /* ELF core header.*/
330         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
331         /* Program headers for crash memory regions. */
332         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
333
334         size = PAGE_ALIGN(size);
335         return size;
336 }
337
338 static void __init fadump_reserve_crash_area(unsigned long base,
339                                              unsigned long size)
340 {
341         struct memblock_region *reg;
342         unsigned long mstart, mend, msize;
343
344         for_each_memblock(memory, reg) {
345                 mstart = max_t(unsigned long, base, reg->base);
346                 mend = reg->base + reg->size;
347                 mend = min(base + size, mend);
348
349                 if (mstart < mend) {
350                         msize = mend - mstart;
351                         memblock_reserve(mstart, msize);
352                         pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
353                                 (msize >> 20), mstart);
354                 }
355         }
356 }
357
358 int __init fadump_reserve_mem(void)
359 {
360         unsigned long base, size, memory_boundary;
361
362         if (!fw_dump.fadump_enabled)
363                 return 0;
364
365         if (!fw_dump.fadump_supported) {
366                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
367                                 " this hardware\n");
368                 fw_dump.fadump_enabled = 0;
369                 return 0;
370         }
371         /*
372          * Initialize boot memory size
373          * If dump is active then we have already calculated the size during
374          * first kernel.
375          */
376         if (fdm_active)
377                 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
378         else
379                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
380
381         /*
382          * Calculate the memory boundary.
383          * If memory_limit is less than actual memory boundary then reserve
384          * the memory for fadump beyond the memory_limit and adjust the
385          * memory_limit accordingly, so that the running kernel can run with
386          * specified memory_limit.
387          */
388         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
389                 size = get_fadump_area_size();
390                 if ((memory_limit + size) < memblock_end_of_DRAM())
391                         memory_limit += size;
392                 else
393                         memory_limit = memblock_end_of_DRAM();
394                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
395                                 " dump, now %#016llx\n", memory_limit);
396         }
397         if (memory_limit)
398                 memory_boundary = memory_limit;
399         else
400                 memory_boundary = memblock_end_of_DRAM();
401
402         if (fw_dump.dump_active) {
403                 pr_info("Firmware-assisted dump is active.\n");
404
405 #ifdef CONFIG_HUGETLB_PAGE
406                 /*
407                  * FADump capture kernel doesn't care much about hugepages.
408                  * In fact, handling hugepages in capture kernel is asking for
409                  * trouble. So, disable HugeTLB support when fadump is active.
410                  */
411                 hugetlb_disabled = true;
412 #endif
413                 /*
414                  * If last boot has crashed then reserve all the memory
415                  * above boot_memory_size so that we don't touch it until
416                  * dump is written to disk by userspace tool. This memory
417                  * will be released for general use once the dump is saved.
418                  */
419                 base = fw_dump.boot_memory_size;
420                 size = memory_boundary - base;
421                 fadump_reserve_crash_area(base, size);
422
423                 fw_dump.fadumphdr_addr =
424                                 be64_to_cpu(fdm_active->rmr_region.destination_address) +
425                                 be64_to_cpu(fdm_active->rmr_region.source_len);
426                 pr_debug("fadumphdr_addr = %p\n",
427                                 (void *) fw_dump.fadumphdr_addr);
428         } else {
429                 size = get_fadump_area_size();
430
431                 /*
432                  * Reserve memory at an offset closer to bottom of the RAM to
433                  * minimize the impact of memory hot-remove operation. We can't
434                  * use memblock_find_in_range() here since it doesn't allocate
435                  * from bottom to top.
436                  */
437                 for (base = fw_dump.boot_memory_size;
438                      base <= (memory_boundary - size);
439                      base += size) {
440                         if (memblock_is_region_memory(base, size) &&
441                             !memblock_is_region_reserved(base, size))
442                                 break;
443                 }
444                 if ((base > (memory_boundary - size)) ||
445                     memblock_reserve(base, size)) {
446                         pr_err("Failed to reserve memory\n");
447                         return 0;
448                 }
449
450                 pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
451                         "assisted dump (System RAM: %ldMB)\n",
452                         (unsigned long)(size >> 20),
453                         (unsigned long)(base >> 20),
454                         (unsigned long)(memblock_phys_mem_size() >> 20));
455         }
456
457         fw_dump.reserve_dump_area_start = base;
458         fw_dump.reserve_dump_area_size = size;
459         return 1;
460 }
461
462 unsigned long __init arch_reserved_kernel_pages(void)
463 {
464         return memblock_reserved_size() / PAGE_SIZE;
465 }
466
467 /* Look for fadump= cmdline option. */
468 static int __init early_fadump_param(char *p)
469 {
470         if (!p)
471                 return 1;
472
473         if (strncmp(p, "on", 2) == 0)
474                 fw_dump.fadump_enabled = 1;
475         else if (strncmp(p, "off", 3) == 0)
476                 fw_dump.fadump_enabled = 0;
477
478         return 0;
479 }
480 early_param("fadump", early_fadump_param);
481
482 /*
483  * Look for fadump_reserve_mem= cmdline option
484  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
485  *       the sooner 'crashkernel=' parameter is accustomed to.
486  */
487 static int __init early_fadump_reserve_mem(char *p)
488 {
489         if (p)
490                 fw_dump.reserve_bootvar = memparse(p, &p);
491         return 0;
492 }
493 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
494
495 static int register_fw_dump(struct fadump_mem_struct *fdm)
496 {
497         int rc, err;
498         unsigned int wait_time;
499
500         pr_debug("Registering for firmware-assisted kernel dump...\n");
501
502         /* TODO: Add upper time limit for the delay */
503         do {
504                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
505                         FADUMP_REGISTER, fdm,
506                         sizeof(struct fadump_mem_struct));
507
508                 wait_time = rtas_busy_delay_time(rc);
509                 if (wait_time)
510                         mdelay(wait_time);
511
512         } while (wait_time);
513
514         err = -EIO;
515         switch (rc) {
516         default:
517                 pr_err("Failed to register. Unknown Error(%d).\n", rc);
518                 break;
519         case -1:
520                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
521                         " dump. Hardware Error(%d).\n", rc);
522                 break;
523         case -3:
524                 if (!is_boot_memory_area_contiguous())
525                         pr_err("Can't have holes in boot memory area while "
526                                "registering fadump\n");
527
528                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
529                         " dump. Parameter Error(%d).\n", rc);
530                 err = -EINVAL;
531                 break;
532         case -9:
533                 printk(KERN_ERR "firmware-assisted kernel dump is already "
534                         " registered.");
535                 fw_dump.dump_registered = 1;
536                 err = -EEXIST;
537                 break;
538         case 0:
539                 printk(KERN_INFO "firmware-assisted kernel dump registration"
540                         " is successful\n");
541                 fw_dump.dump_registered = 1;
542                 err = 0;
543                 break;
544         }
545         return err;
546 }
547
548 void crash_fadump(struct pt_regs *regs, const char *str)
549 {
550         struct fadump_crash_info_header *fdh = NULL;
551         int old_cpu, this_cpu;
552
553         if (!should_fadump_crash())
554                 return;
555
556         /*
557          * old_cpu == -1 means this is the first CPU which has come here,
558          * go ahead and trigger fadump.
559          *
560          * old_cpu != -1 means some other CPU has already on it's way
561          * to trigger fadump, just keep looping here.
562          */
563         this_cpu = smp_processor_id();
564         old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
565
566         if (old_cpu != -1) {
567                 /*
568                  * We can't loop here indefinitely. Wait as long as fadump
569                  * is in force. If we race with fadump un-registration this
570                  * loop will break and then we go down to normal panic path
571                  * and reboot. If fadump is in force the first crashing
572                  * cpu will definitely trigger fadump.
573                  */
574                 while (fw_dump.dump_registered)
575                         cpu_relax();
576                 return;
577         }
578
579         fdh = __va(fw_dump.fadumphdr_addr);
580         fdh->crashing_cpu = crashing_cpu;
581         crash_save_vmcoreinfo();
582
583         if (regs)
584                 fdh->regs = *regs;
585         else
586                 ppc_save_regs(&fdh->regs);
587
588         fdh->online_mask = *cpu_online_mask;
589
590         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
591         rtas_os_term((char *)str);
592 }
593
594 #define GPR_MASK        0xffffff0000000000
595 static inline int fadump_gpr_index(u64 id)
596 {
597         int i = -1;
598         char str[3];
599
600         if ((id & GPR_MASK) == REG_ID("GPR")) {
601                 /* get the digits at the end */
602                 id &= ~GPR_MASK;
603                 id >>= 24;
604                 str[2] = '\0';
605                 str[1] = id & 0xff;
606                 str[0] = (id >> 8) & 0xff;
607                 sscanf(str, "%d", &i);
608                 if (i > 31)
609                         i = -1;
610         }
611         return i;
612 }
613
614 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
615                                                                 u64 reg_val)
616 {
617         int i;
618
619         i = fadump_gpr_index(reg_id);
620         if (i >= 0)
621                 regs->gpr[i] = (unsigned long)reg_val;
622         else if (reg_id == REG_ID("NIA"))
623                 regs->nip = (unsigned long)reg_val;
624         else if (reg_id == REG_ID("MSR"))
625                 regs->msr = (unsigned long)reg_val;
626         else if (reg_id == REG_ID("CTR"))
627                 regs->ctr = (unsigned long)reg_val;
628         else if (reg_id == REG_ID("LR"))
629                 regs->link = (unsigned long)reg_val;
630         else if (reg_id == REG_ID("XER"))
631                 regs->xer = (unsigned long)reg_val;
632         else if (reg_id == REG_ID("CR"))
633                 regs->ccr = (unsigned long)reg_val;
634         else if (reg_id == REG_ID("DAR"))
635                 regs->dar = (unsigned long)reg_val;
636         else if (reg_id == REG_ID("DSISR"))
637                 regs->dsisr = (unsigned long)reg_val;
638 }
639
640 static struct fadump_reg_entry*
641 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
642 {
643         memset(regs, 0, sizeof(struct pt_regs));
644
645         while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
646                 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
647                                         be64_to_cpu(reg_entry->reg_value));
648                 reg_entry++;
649         }
650         reg_entry++;
651         return reg_entry;
652 }
653
654 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
655 {
656         struct elf_prstatus prstatus;
657
658         memset(&prstatus, 0, sizeof(prstatus));
659         /*
660          * FIXME: How do i get PID? Do I really need it?
661          * prstatus.pr_pid = ????
662          */
663         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
664         buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
665                               &prstatus, sizeof(prstatus));
666         return buf;
667 }
668
669 static void fadump_update_elfcore_header(char *bufp)
670 {
671         struct elfhdr *elf;
672         struct elf_phdr *phdr;
673
674         elf = (struct elfhdr *)bufp;
675         bufp += sizeof(struct elfhdr);
676
677         /* First note is a place holder for cpu notes info. */
678         phdr = (struct elf_phdr *)bufp;
679
680         if (phdr->p_type == PT_NOTE) {
681                 phdr->p_paddr = fw_dump.cpu_notes_buf;
682                 phdr->p_offset  = phdr->p_paddr;
683                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
684                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
685         }
686         return;
687 }
688
689 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
690 {
691         void *vaddr;
692         struct page *page;
693         unsigned long order, count, i;
694
695         order = get_order(size);
696         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
697         if (!vaddr)
698                 return NULL;
699
700         count = 1 << order;
701         page = virt_to_page(vaddr);
702         for (i = 0; i < count; i++)
703                 SetPageReserved(page + i);
704         return vaddr;
705 }
706
707 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
708 {
709         struct page *page;
710         unsigned long order, count, i;
711
712         order = get_order(size);
713         count = 1 << order;
714         page = virt_to_page(vaddr);
715         for (i = 0; i < count; i++)
716                 ClearPageReserved(page + i);
717         __free_pages(page, order);
718 }
719
720 /*
721  * Read CPU state dump data and convert it into ELF notes.
722  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
723  * used to access the data to allow for additional fields to be added without
724  * affecting compatibility. Each list of registers for a CPU starts with
725  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
726  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
727  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
728  * of register value. For more details refer to PAPR document.
729  *
730  * Only for the crashing cpu we ignore the CPU dump data and get exact
731  * state from fadump crash info structure populated by first kernel at the
732  * time of crash.
733  */
734 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
735 {
736         struct fadump_reg_save_area_header *reg_header;
737         struct fadump_reg_entry *reg_entry;
738         struct fadump_crash_info_header *fdh = NULL;
739         void *vaddr;
740         unsigned long addr;
741         u32 num_cpus, *note_buf;
742         struct pt_regs regs;
743         int i, rc = 0, cpu = 0;
744
745         if (!fdm->cpu_state_data.bytes_dumped)
746                 return -EINVAL;
747
748         addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
749         vaddr = __va(addr);
750
751         reg_header = vaddr;
752         if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
753                 printk(KERN_ERR "Unable to read register save area.\n");
754                 return -ENOENT;
755         }
756         pr_debug("--------CPU State Data------------\n");
757         pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
758         pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
759
760         vaddr += be32_to_cpu(reg_header->num_cpu_offset);
761         num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
762         pr_debug("NumCpus     : %u\n", num_cpus);
763         vaddr += sizeof(u32);
764         reg_entry = (struct fadump_reg_entry *)vaddr;
765
766         /* Allocate buffer to hold cpu crash notes. */
767         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
768         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
769         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
770         if (!note_buf) {
771                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
772                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
773                 return -ENOMEM;
774         }
775         fw_dump.cpu_notes_buf = __pa(note_buf);
776
777         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
778                         (num_cpus * sizeof(note_buf_t)), note_buf);
779
780         if (fw_dump.fadumphdr_addr)
781                 fdh = __va(fw_dump.fadumphdr_addr);
782
783         for (i = 0; i < num_cpus; i++) {
784                 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
785                         printk(KERN_ERR "Unable to read CPU state data\n");
786                         rc = -ENOENT;
787                         goto error_out;
788                 }
789                 /* Lower 4 bytes of reg_value contains logical cpu id */
790                 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
791                 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
792                         SKIP_TO_NEXT_CPU(reg_entry);
793                         continue;
794                 }
795                 pr_debug("Reading register data for cpu %d...\n", cpu);
796                 if (fdh && fdh->crashing_cpu == cpu) {
797                         regs = fdh->regs;
798                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
799                         SKIP_TO_NEXT_CPU(reg_entry);
800                 } else {
801                         reg_entry++;
802                         reg_entry = fadump_read_registers(reg_entry, &regs);
803                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
804                 }
805         }
806         final_note(note_buf);
807
808         if (fdh) {
809                 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
810                                                         fdh->elfcorehdr_addr);
811                 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
812         }
813         return 0;
814
815 error_out:
816         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
817                                         fw_dump.cpu_notes_buf_size);
818         fw_dump.cpu_notes_buf = 0;
819         fw_dump.cpu_notes_buf_size = 0;
820         return rc;
821
822 }
823
824 /*
825  * Validate and process the dump data stored by firmware before exporting
826  * it through '/proc/vmcore'.
827  */
828 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
829 {
830         struct fadump_crash_info_header *fdh;
831         int rc = 0;
832
833         if (!fdm_active || !fw_dump.fadumphdr_addr)
834                 return -EINVAL;
835
836         /* Check if the dump data is valid. */
837         if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
838                         (fdm_active->cpu_state_data.error_flags != 0) ||
839                         (fdm_active->rmr_region.error_flags != 0)) {
840                 printk(KERN_ERR "Dump taken by platform is not valid\n");
841                 return -EINVAL;
842         }
843         if ((fdm_active->rmr_region.bytes_dumped !=
844                         fdm_active->rmr_region.source_len) ||
845                         !fdm_active->cpu_state_data.bytes_dumped) {
846                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
847                 return -EINVAL;
848         }
849
850         /* Validate the fadump crash info header */
851         fdh = __va(fw_dump.fadumphdr_addr);
852         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
853                 printk(KERN_ERR "Crash info header is not valid.\n");
854                 return -EINVAL;
855         }
856
857         rc = fadump_build_cpu_notes(fdm_active);
858         if (rc)
859                 return rc;
860
861         /*
862          * We are done validating dump info and elfcore header is now ready
863          * to be exported. set elfcorehdr_addr so that vmcore module will
864          * export the elfcore header through '/proc/vmcore'.
865          */
866         elfcorehdr_addr = fdh->elfcorehdr_addr;
867
868         return 0;
869 }
870
871 static inline void fadump_add_crash_memory(unsigned long long base,
872                                         unsigned long long end)
873 {
874         if (base == end)
875                 return;
876
877         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
878                 crash_mem_ranges, base, end - 1, (end - base));
879         crash_memory_ranges[crash_mem_ranges].base = base;
880         crash_memory_ranges[crash_mem_ranges].size = end - base;
881         crash_mem_ranges++;
882 }
883
884 static void fadump_exclude_reserved_area(unsigned long long start,
885                                         unsigned long long end)
886 {
887         unsigned long long ra_start, ra_end;
888
889         ra_start = fw_dump.reserve_dump_area_start;
890         ra_end = ra_start + fw_dump.reserve_dump_area_size;
891
892         if ((ra_start < end) && (ra_end > start)) {
893                 if ((start < ra_start) && (end > ra_end)) {
894                         fadump_add_crash_memory(start, ra_start);
895                         fadump_add_crash_memory(ra_end, end);
896                 } else if (start < ra_start) {
897                         fadump_add_crash_memory(start, ra_start);
898                 } else if (ra_end < end) {
899                         fadump_add_crash_memory(ra_end, end);
900                 }
901         } else
902                 fadump_add_crash_memory(start, end);
903 }
904
905 static int fadump_init_elfcore_header(char *bufp)
906 {
907         struct elfhdr *elf;
908
909         elf = (struct elfhdr *) bufp;
910         bufp += sizeof(struct elfhdr);
911         memcpy(elf->e_ident, ELFMAG, SELFMAG);
912         elf->e_ident[EI_CLASS] = ELF_CLASS;
913         elf->e_ident[EI_DATA] = ELF_DATA;
914         elf->e_ident[EI_VERSION] = EV_CURRENT;
915         elf->e_ident[EI_OSABI] = ELF_OSABI;
916         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
917         elf->e_type = ET_CORE;
918         elf->e_machine = ELF_ARCH;
919         elf->e_version = EV_CURRENT;
920         elf->e_entry = 0;
921         elf->e_phoff = sizeof(struct elfhdr);
922         elf->e_shoff = 0;
923 #if defined(_CALL_ELF)
924         elf->e_flags = _CALL_ELF;
925 #else
926         elf->e_flags = 0;
927 #endif
928         elf->e_ehsize = sizeof(struct elfhdr);
929         elf->e_phentsize = sizeof(struct elf_phdr);
930         elf->e_phnum = 0;
931         elf->e_shentsize = 0;
932         elf->e_shnum = 0;
933         elf->e_shstrndx = 0;
934
935         return 0;
936 }
937
938 /*
939  * Traverse through memblock structure and setup crash memory ranges. These
940  * ranges will be used create PT_LOAD program headers in elfcore header.
941  */
942 static void fadump_setup_crash_memory_ranges(void)
943 {
944         struct memblock_region *reg;
945         unsigned long long start, end;
946
947         pr_debug("Setup crash memory ranges.\n");
948         crash_mem_ranges = 0;
949         /*
950          * add the first memory chunk (RMA_START through boot_memory_size) as
951          * a separate memory chunk. The reason is, at the time crash firmware
952          * will move the content of this memory chunk to different location
953          * specified during fadump registration. We need to create a separate
954          * program header for this chunk with the correct offset.
955          */
956         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
957
958         for_each_memblock(memory, reg) {
959                 start = (unsigned long long)reg->base;
960                 end = start + (unsigned long long)reg->size;
961
962                 /*
963                  * skip the first memory chunk that is already added (RMA_START
964                  * through boot_memory_size). This logic needs a relook if and
965                  * when RMA_START changes to a non-zero value.
966                  */
967                 BUILD_BUG_ON(RMA_START != 0);
968                 if (start < fw_dump.boot_memory_size) {
969                         if (end > fw_dump.boot_memory_size)
970                                 start = fw_dump.boot_memory_size;
971                         else
972                                 continue;
973                 }
974
975                 /* add this range excluding the reserved dump area. */
976                 fadump_exclude_reserved_area(start, end);
977         }
978 }
979
980 /*
981  * If the given physical address falls within the boot memory region then
982  * return the relocated address that points to the dump region reserved
983  * for saving initial boot memory contents.
984  */
985 static inline unsigned long fadump_relocate(unsigned long paddr)
986 {
987         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
988                 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
989         else
990                 return paddr;
991 }
992
993 static int fadump_create_elfcore_headers(char *bufp)
994 {
995         struct elfhdr *elf;
996         struct elf_phdr *phdr;
997         int i;
998
999         fadump_init_elfcore_header(bufp);
1000         elf = (struct elfhdr *)bufp;
1001         bufp += sizeof(struct elfhdr);
1002
1003         /*
1004          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1005          * will be populated during second kernel boot after crash. Hence
1006          * this PT_NOTE will always be the first elf note.
1007          *
1008          * NOTE: Any new ELF note addition should be placed after this note.
1009          */
1010         phdr = (struct elf_phdr *)bufp;
1011         bufp += sizeof(struct elf_phdr);
1012         phdr->p_type = PT_NOTE;
1013         phdr->p_flags = 0;
1014         phdr->p_vaddr = 0;
1015         phdr->p_align = 0;
1016
1017         phdr->p_offset = 0;
1018         phdr->p_paddr = 0;
1019         phdr->p_filesz = 0;
1020         phdr->p_memsz = 0;
1021
1022         (elf->e_phnum)++;
1023
1024         /* setup ELF PT_NOTE for vmcoreinfo */
1025         phdr = (struct elf_phdr *)bufp;
1026         bufp += sizeof(struct elf_phdr);
1027         phdr->p_type    = PT_NOTE;
1028         phdr->p_flags   = 0;
1029         phdr->p_vaddr   = 0;
1030         phdr->p_align   = 0;
1031
1032         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
1033         phdr->p_offset  = phdr->p_paddr;
1034         phdr->p_memsz   = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1035
1036         /* Increment number of program headers. */
1037         (elf->e_phnum)++;
1038
1039         /* setup PT_LOAD sections. */
1040
1041         for (i = 0; i < crash_mem_ranges; i++) {
1042                 unsigned long long mbase, msize;
1043                 mbase = crash_memory_ranges[i].base;
1044                 msize = crash_memory_ranges[i].size;
1045
1046                 if (!msize)
1047                         continue;
1048
1049                 phdr = (struct elf_phdr *)bufp;
1050                 bufp += sizeof(struct elf_phdr);
1051                 phdr->p_type    = PT_LOAD;
1052                 phdr->p_flags   = PF_R|PF_W|PF_X;
1053                 phdr->p_offset  = mbase;
1054
1055                 if (mbase == RMA_START) {
1056                         /*
1057                          * The entire RMA region will be moved by firmware
1058                          * to the specified destination_address. Hence set
1059                          * the correct offset.
1060                          */
1061                         phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1062                 }
1063
1064                 phdr->p_paddr = mbase;
1065                 phdr->p_vaddr = (unsigned long)__va(mbase);
1066                 phdr->p_filesz = msize;
1067                 phdr->p_memsz = msize;
1068                 phdr->p_align = 0;
1069
1070                 /* Increment number of program headers. */
1071                 (elf->e_phnum)++;
1072         }
1073         return 0;
1074 }
1075
1076 static unsigned long init_fadump_header(unsigned long addr)
1077 {
1078         struct fadump_crash_info_header *fdh;
1079
1080         if (!addr)
1081                 return 0;
1082
1083         fw_dump.fadumphdr_addr = addr;
1084         fdh = __va(addr);
1085         addr += sizeof(struct fadump_crash_info_header);
1086
1087         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1088         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1089         fdh->elfcorehdr_addr = addr;
1090         /* We will set the crashing cpu id in crash_fadump() during crash. */
1091         fdh->crashing_cpu = CPU_UNKNOWN;
1092
1093         return addr;
1094 }
1095
1096 static int register_fadump(void)
1097 {
1098         unsigned long addr;
1099         void *vaddr;
1100
1101         /*
1102          * If no memory is reserved then we can not register for firmware-
1103          * assisted dump.
1104          */
1105         if (!fw_dump.reserve_dump_area_size)
1106                 return -ENODEV;
1107
1108         fadump_setup_crash_memory_ranges();
1109
1110         addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1111         /* Initialize fadump crash info header. */
1112         addr = init_fadump_header(addr);
1113         vaddr = __va(addr);
1114
1115         pr_debug("Creating ELF core headers at %#016lx\n", addr);
1116         fadump_create_elfcore_headers(vaddr);
1117
1118         /* register the future kernel dump with firmware. */
1119         return register_fw_dump(&fdm);
1120 }
1121
1122 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1123 {
1124         int rc = 0;
1125         unsigned int wait_time;
1126
1127         pr_debug("Un-register firmware-assisted dump\n");
1128
1129         /* TODO: Add upper time limit for the delay */
1130         do {
1131                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1132                         FADUMP_UNREGISTER, fdm,
1133                         sizeof(struct fadump_mem_struct));
1134
1135                 wait_time = rtas_busy_delay_time(rc);
1136                 if (wait_time)
1137                         mdelay(wait_time);
1138         } while (wait_time);
1139
1140         if (rc) {
1141                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1142                         " unexpected error(%d).\n", rc);
1143                 return rc;
1144         }
1145         fw_dump.dump_registered = 0;
1146         return 0;
1147 }
1148
1149 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1150 {
1151         int rc = 0;
1152         unsigned int wait_time;
1153
1154         pr_debug("Invalidating firmware-assisted dump registration\n");
1155
1156         /* TODO: Add upper time limit for the delay */
1157         do {
1158                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1159                         FADUMP_INVALIDATE, fdm,
1160                         sizeof(struct fadump_mem_struct));
1161
1162                 wait_time = rtas_busy_delay_time(rc);
1163                 if (wait_time)
1164                         mdelay(wait_time);
1165         } while (wait_time);
1166
1167         if (rc) {
1168                 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1169                 return rc;
1170         }
1171         fw_dump.dump_active = 0;
1172         fdm_active = NULL;
1173         return 0;
1174 }
1175
1176 void fadump_cleanup(void)
1177 {
1178         /* Invalidate the registration only if dump is active. */
1179         if (fw_dump.dump_active) {
1180                 init_fadump_mem_struct(&fdm,
1181                         be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1182                 fadump_invalidate_dump(&fdm);
1183         } else if (fw_dump.dump_registered) {
1184                 /* Un-register Firmware-assisted dump if it was registered. */
1185                 fadump_unregister_dump(&fdm);
1186         }
1187 }
1188
1189 static void fadump_free_reserved_memory(unsigned long start_pfn,
1190                                         unsigned long end_pfn)
1191 {
1192         unsigned long pfn;
1193         unsigned long time_limit = jiffies + HZ;
1194
1195         pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1196                 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1197
1198         for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1199                 free_reserved_page(pfn_to_page(pfn));
1200
1201                 if (time_after(jiffies, time_limit)) {
1202                         cond_resched();
1203                         time_limit = jiffies + HZ;
1204                 }
1205         }
1206 }
1207
1208 /*
1209  * Skip memory holes and free memory that was actually reserved.
1210  */
1211 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1212 {
1213         struct memblock_region *reg;
1214         unsigned long tstart, tend;
1215         unsigned long start_pfn = PHYS_PFN(start);
1216         unsigned long end_pfn = PHYS_PFN(end);
1217
1218         for_each_memblock(memory, reg) {
1219                 tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1220                 tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1221                 if (tstart < tend) {
1222                         fadump_free_reserved_memory(tstart, tend);
1223
1224                         if (tend == end_pfn)
1225                                 break;
1226
1227                         start_pfn = tend + 1;
1228                 }
1229         }
1230 }
1231
1232 /*
1233  * Release the memory that was reserved in early boot to preserve the memory
1234  * contents. The released memory will be available for general use.
1235  */
1236 static void fadump_release_memory(unsigned long begin, unsigned long end)
1237 {
1238         unsigned long ra_start, ra_end;
1239
1240         ra_start = fw_dump.reserve_dump_area_start;
1241         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1242
1243         /*
1244          * exclude the dump reserve area. Will reuse it for next
1245          * fadump registration.
1246          */
1247         if (begin < ra_end && end > ra_start) {
1248                 if (begin < ra_start)
1249                         fadump_release_reserved_area(begin, ra_start);
1250                 if (end > ra_end)
1251                         fadump_release_reserved_area(ra_end, end);
1252         } else
1253                 fadump_release_reserved_area(begin, end);
1254 }
1255
1256 static void fadump_invalidate_release_mem(void)
1257 {
1258         unsigned long reserved_area_start, reserved_area_end;
1259         unsigned long destination_address;
1260
1261         mutex_lock(&fadump_mutex);
1262         if (!fw_dump.dump_active) {
1263                 mutex_unlock(&fadump_mutex);
1264                 return;
1265         }
1266
1267         destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1268         fadump_cleanup();
1269         mutex_unlock(&fadump_mutex);
1270
1271         /*
1272          * Save the current reserved memory bounds we will require them
1273          * later for releasing the memory for general use.
1274          */
1275         reserved_area_start = fw_dump.reserve_dump_area_start;
1276         reserved_area_end = reserved_area_start +
1277                         fw_dump.reserve_dump_area_size;
1278         /*
1279          * Setup reserve_dump_area_start and its size so that we can
1280          * reuse this reserved memory for Re-registration.
1281          */
1282         fw_dump.reserve_dump_area_start = destination_address;
1283         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1284
1285         fadump_release_memory(reserved_area_start, reserved_area_end);
1286         if (fw_dump.cpu_notes_buf) {
1287                 fadump_cpu_notes_buf_free(
1288                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1289                                 fw_dump.cpu_notes_buf_size);
1290                 fw_dump.cpu_notes_buf = 0;
1291                 fw_dump.cpu_notes_buf_size = 0;
1292         }
1293         /* Initialize the kernel dump memory structure for FAD registration. */
1294         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1295 }
1296
1297 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1298                                         struct kobj_attribute *attr,
1299                                         const char *buf, size_t count)
1300 {
1301         int input = -1;
1302
1303         if (!fw_dump.dump_active)
1304                 return -EPERM;
1305
1306         if (kstrtoint(buf, 0, &input))
1307                 return -EINVAL;
1308
1309         if (input == 1) {
1310                 /*
1311                  * Take away the '/proc/vmcore'. We are releasing the dump
1312                  * memory, hence it will not be valid anymore.
1313                  */
1314 #ifdef CONFIG_PROC_VMCORE
1315                 vmcore_cleanup();
1316 #endif
1317                 fadump_invalidate_release_mem();
1318
1319         } else
1320                 return -EINVAL;
1321         return count;
1322 }
1323
1324 static ssize_t fadump_enabled_show(struct kobject *kobj,
1325                                         struct kobj_attribute *attr,
1326                                         char *buf)
1327 {
1328         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1329 }
1330
1331 static ssize_t fadump_register_show(struct kobject *kobj,
1332                                         struct kobj_attribute *attr,
1333                                         char *buf)
1334 {
1335         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1336 }
1337
1338 static ssize_t fadump_register_store(struct kobject *kobj,
1339                                         struct kobj_attribute *attr,
1340                                         const char *buf, size_t count)
1341 {
1342         int ret = 0;
1343         int input = -1;
1344
1345         if (!fw_dump.fadump_enabled || fdm_active)
1346                 return -EPERM;
1347
1348         if (kstrtoint(buf, 0, &input))
1349                 return -EINVAL;
1350
1351         mutex_lock(&fadump_mutex);
1352
1353         switch (input) {
1354         case 0:
1355                 if (fw_dump.dump_registered == 0) {
1356                         goto unlock_out;
1357                 }
1358                 /* Un-register Firmware-assisted dump */
1359                 fadump_unregister_dump(&fdm);
1360                 break;
1361         case 1:
1362                 if (fw_dump.dump_registered == 1) {
1363                         ret = -EEXIST;
1364                         goto unlock_out;
1365                 }
1366                 /* Register Firmware-assisted dump */
1367                 ret = register_fadump();
1368                 break;
1369         default:
1370                 ret = -EINVAL;
1371                 break;
1372         }
1373
1374 unlock_out:
1375         mutex_unlock(&fadump_mutex);
1376         return ret < 0 ? ret : count;
1377 }
1378
1379 static int fadump_region_show(struct seq_file *m, void *private)
1380 {
1381         const struct fadump_mem_struct *fdm_ptr;
1382
1383         if (!fw_dump.fadump_enabled)
1384                 return 0;
1385
1386         mutex_lock(&fadump_mutex);
1387         if (fdm_active)
1388                 fdm_ptr = fdm_active;
1389         else {
1390                 mutex_unlock(&fadump_mutex);
1391                 fdm_ptr = &fdm;
1392         }
1393
1394         seq_printf(m,
1395                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1396                         "Dumped: %#llx\n",
1397                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1398                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1399                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1400                         be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1401                         be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1402         seq_printf(m,
1403                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1404                         "Dumped: %#llx\n",
1405                         be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1406                         be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1407                         be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1408                         be64_to_cpu(fdm_ptr->hpte_region.source_len),
1409                         be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1410         seq_printf(m,
1411                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1412                         "Dumped: %#llx\n",
1413                         be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1414                         be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1415                         be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1416                         be64_to_cpu(fdm_ptr->rmr_region.source_len),
1417                         be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1418
1419         if (!fdm_active ||
1420                 (fw_dump.reserve_dump_area_start ==
1421                 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1422                 goto out;
1423
1424         /* Dump is active. Show reserved memory region. */
1425         seq_printf(m,
1426                         "    : [%#016llx-%#016llx] %#llx bytes, "
1427                         "Dumped: %#llx\n",
1428                         (unsigned long long)fw_dump.reserve_dump_area_start,
1429                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1430                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1431                         fw_dump.reserve_dump_area_start,
1432                         be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1433                         fw_dump.reserve_dump_area_start);
1434 out:
1435         if (fdm_active)
1436                 mutex_unlock(&fadump_mutex);
1437         return 0;
1438 }
1439
1440 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1441                                                 0200, NULL,
1442                                                 fadump_release_memory_store);
1443 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1444                                                 0444, fadump_enabled_show,
1445                                                 NULL);
1446 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1447                                                 0644, fadump_register_show,
1448                                                 fadump_register_store);
1449
1450 static int fadump_region_open(struct inode *inode, struct file *file)
1451 {
1452         return single_open(file, fadump_region_show, inode->i_private);
1453 }
1454
1455 static const struct file_operations fadump_region_fops = {
1456         .open    = fadump_region_open,
1457         .read    = seq_read,
1458         .llseek  = seq_lseek,
1459         .release = single_release,
1460 };
1461
1462 static void fadump_init_files(void)
1463 {
1464         struct dentry *debugfs_file;
1465         int rc = 0;
1466
1467         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1468         if (rc)
1469                 printk(KERN_ERR "fadump: unable to create sysfs file"
1470                         " fadump_enabled (%d)\n", rc);
1471
1472         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1473         if (rc)
1474                 printk(KERN_ERR "fadump: unable to create sysfs file"
1475                         " fadump_registered (%d)\n", rc);
1476
1477         debugfs_file = debugfs_create_file("fadump_region", 0444,
1478                                         powerpc_debugfs_root, NULL,
1479                                         &fadump_region_fops);
1480         if (!debugfs_file)
1481                 printk(KERN_ERR "fadump: unable to create debugfs file"
1482                                 " fadump_region\n");
1483
1484         if (fw_dump.dump_active) {
1485                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1486                 if (rc)
1487                         printk(KERN_ERR "fadump: unable to create sysfs file"
1488                                 " fadump_release_mem (%d)\n", rc);
1489         }
1490         return;
1491 }
1492
1493 /*
1494  * Prepare for firmware-assisted dump.
1495  */
1496 int __init setup_fadump(void)
1497 {
1498         if (!fw_dump.fadump_enabled)
1499                 return 0;
1500
1501         if (!fw_dump.fadump_supported) {
1502                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1503                         " this hardware\n");
1504                 return 0;
1505         }
1506
1507         fadump_show_config();
1508         /*
1509          * If dump data is available then see if it is valid and prepare for
1510          * saving it to the disk.
1511          */
1512         if (fw_dump.dump_active) {
1513                 /*
1514                  * if dump process fails then invalidate the registration
1515                  * and release memory before proceeding for re-registration.
1516                  */
1517                 if (process_fadump(fdm_active) < 0)
1518                         fadump_invalidate_release_mem();
1519         }
1520         /* Initialize the kernel dump memory structure for FAD registration. */
1521         else if (fw_dump.reserve_dump_area_size)
1522                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1523         fadump_init_files();
1524
1525         return 1;
1526 }
1527 subsys_initcall(setup_fadump);