Merge tag 'pstore-v4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[sfrench/cifs-2.6.git] / arch / parisc / kernel / firmware.c
1 /*
2  * arch/parisc/kernel/firmware.c  - safe PDC access routines
3  *
4  *      PDC == Processor Dependent Code
5  *
6  * See http://www.parisc-linux.org/documentation/index.html
7  * for documentation describing the entry points and calling
8  * conventions defined below.
9  *
10  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15  *
16  *    This program is free software; you can redistribute it and/or modify
17  *    it under the terms of the GNU General Public License as published by
18  *    the Free Software Foundation; either version 2 of the License, or
19  *    (at your option) any later version.
20  *
21  */
22
23 /*      I think it would be in everyone's best interest to follow this
24  *      guidelines when writing PDC wrappers:
25  *
26  *       - the name of the pdc wrapper should match one of the macros
27  *         used for the first two arguments
28  *       - don't use caps for random parts of the name
29  *       - use the static PDC result buffers and "copyout" to structs
30  *         supplied by the caller to encapsulate alignment restrictions
31  *       - hold pdc_lock while in PDC or using static result buffers
32  *       - use __pa() to convert virtual (kernel) pointers to physical
33  *         ones.
34  *       - the name of the struct used for pdc return values should equal
35  *         one of the macros used for the first two arguments to the
36  *         corresponding PDC call
37  *       - keep the order of arguments
38  *       - don't be smart (setting trailing NUL bytes for strings, return
39  *         something useful even if the call failed) unless you are sure
40  *         it's not going to affect functionality or performance
41  *
42  *      Example:
43  *      int pdc_cache_info(struct pdc_cache_info *cache_info )
44  *      {
45  *              int retval;
46  *
47  *              spin_lock_irq(&pdc_lock);
48  *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49  *              convert_to_wide(pdc_result);
50  *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
51  *              spin_unlock_irq(&pdc_lock);
52  *
53  *              return retval;
54  *      }
55  *                                      prumpf  991016  
56  */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h>      /* for boot_cpu_data */
71
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79
80 /* Firmware needs to be initially set to narrow to determine the 
81  * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86  * and MEM_PDC calls are always the same width as the OS.
87  * Some PAT boxes may have 64-bit IODC I/O.
88  *
89  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91  * This allowed wide kernels to run on Cxxx boxes.
92  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94  */
95
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100
101 #ifdef CONFIG_64BIT
102 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108
109
110 /**
111  * f_extend - Convert PDC addresses to kernel addresses.
112  * @address: Address returned from PDC.
113  *
114  * This function is used to convert PDC addresses into kernel addresses
115  * when the PDC address size and kernel address size are different.
116  */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120         if(unlikely(parisc_narrow_firmware)) {
121                 if((address & 0xff000000) == 0xf0000000)
122                         return 0xf0f0f0f000000000UL | (u32)address;
123
124                 if((address & 0xf0000000) == 0xf0000000)
125                         return 0xffffffff00000000UL | (u32)address;
126         }
127 #endif
128         return address;
129 }
130
131 /**
132  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133  * @address: The return buffer from PDC.
134  *
135  * This function is used to convert the return buffer addresses retrieved from PDC
136  * into kernel addresses when the PDC address size and kernel address size are
137  * different.
138  */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142         int i;
143         unsigned int *p = (unsigned int *)addr;
144
145         if(unlikely(parisc_narrow_firmware)) {
146                 for(i = 31; i >= 0; --i)
147                         addr[i] = p[i];
148         }
149 #endif
150 }
151
152 #ifdef CONFIG_64BIT
153 void set_firmware_width_unlocked(void)
154 {
155         int ret;
156
157         ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158                 __pa(pdc_result), 0);
159         convert_to_wide(pdc_result);
160         if (pdc_result[0] != NARROW_FIRMWARE)
161                 parisc_narrow_firmware = 0;
162 }
163         
164 /**
165  * set_firmware_width - Determine if the firmware is wide or narrow.
166  * 
167  * This function must be called before any pdc_* function that uses the
168  * convert_to_wide function.
169  */
170 void set_firmware_width(void)
171 {
172         unsigned long flags;
173         spin_lock_irqsave(&pdc_lock, flags);
174         set_firmware_width_unlocked();
175         spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void set_firmware_width_unlocked(void)
179 {
180         return;
181 }
182
183 void set_firmware_width(void)
184 {
185         return;
186 }
187 #endif /*CONFIG_64BIT*/
188
189 /**
190  * pdc_emergency_unlock - Unlock the linux pdc lock
191  *
192  * This call unlocks the linux pdc lock in case we need some PDC functions
193  * (like pdc_add_valid) during kernel stack dump.
194  */
195 void pdc_emergency_unlock(void)
196 {
197         /* Spinlock DEBUG code freaks out if we unconditionally unlock */
198         if (spin_is_locked(&pdc_lock))
199                 spin_unlock(&pdc_lock);
200 }
201
202
203 /**
204  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205  * @address: Address to be verified.
206  *
207  * This PDC call attempts to read from the specified address and verifies
208  * if the address is valid.
209  * 
210  * The return value is PDC_OK (0) in case accessing this address is valid.
211  */
212 int pdc_add_valid(unsigned long address)
213 {
214         int retval;
215         unsigned long flags;
216
217         spin_lock_irqsave(&pdc_lock, flags);
218         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219         spin_unlock_irqrestore(&pdc_lock, flags);
220
221         return retval;
222 }
223 EXPORT_SYMBOL(pdc_add_valid);
224
225 /**
226  * pdc_chassis_info - Return chassis information.
227  * @result: The return buffer.
228  * @chassis_info: The memory buffer address.
229  * @len: The size of the memory buffer address.
230  *
231  * An HVERSION dependent call for returning the chassis information.
232  */
233 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234 {
235         int retval;
236         unsigned long flags;
237
238         spin_lock_irqsave(&pdc_lock, flags);
239         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240         memcpy(&pdc_result2, led_info, len);
241         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242                               __pa(pdc_result), __pa(pdc_result2), len);
243         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244         memcpy(led_info, pdc_result2, len);
245         spin_unlock_irqrestore(&pdc_lock, flags);
246
247         return retval;
248 }
249
250 /**
251  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252  * @retval: -1 on error, 0 on success. Other value are PDC errors
253  * 
254  * Must be correctly formatted or expect system crash
255  */
256 #ifdef CONFIG_64BIT
257 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258 {
259         int retval = 0;
260         unsigned long flags;
261         
262         if (!is_pdc_pat())
263                 return -1;
264
265         spin_lock_irqsave(&pdc_lock, flags);
266         retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267         spin_unlock_irqrestore(&pdc_lock, flags);
268
269         return retval;
270 }
271 #endif
272
273 /**
274  * pdc_chassis_disp - Updates chassis code
275  * @retval: -1 on error, 0 on success
276  */
277 int pdc_chassis_disp(unsigned long disp)
278 {
279         int retval = 0;
280         unsigned long flags;
281
282         spin_lock_irqsave(&pdc_lock, flags);
283         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284         spin_unlock_irqrestore(&pdc_lock, flags);
285
286         return retval;
287 }
288
289 /**
290  * pdc_chassis_warn - Fetches chassis warnings
291  * @retval: -1 on error, 0 on success
292  */
293 int pdc_chassis_warn(unsigned long *warn)
294 {
295         int retval = 0;
296         unsigned long flags;
297
298         spin_lock_irqsave(&pdc_lock, flags);
299         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300         *warn = pdc_result[0];
301         spin_unlock_irqrestore(&pdc_lock, flags);
302
303         return retval;
304 }
305
306 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307 {
308         int ret;
309
310         ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311         convert_to_wide(pdc_result);
312         pdc_coproc_info->ccr_functional = pdc_result[0];
313         pdc_coproc_info->ccr_present = pdc_result[1];
314         pdc_coproc_info->revision = pdc_result[17];
315         pdc_coproc_info->model = pdc_result[18];
316
317         return ret;
318 }
319
320 /**
321  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322  * @pdc_coproc_info: Return buffer address.
323  *
324  * This PDC call returns the presence and status of all the coprocessors
325  * attached to the processor.
326  */
327 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328 {
329         int ret;
330         unsigned long flags;
331
332         spin_lock_irqsave(&pdc_lock, flags);
333         ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334         spin_unlock_irqrestore(&pdc_lock, flags);
335
336         return ret;
337 }
338
339 /**
340  * pdc_iodc_read - Read data from the modules IODC.
341  * @actcnt: The actual number of bytes.
342  * @hpa: The HPA of the module for the iodc read.
343  * @index: The iodc entry point.
344  * @iodc_data: A buffer memory for the iodc options.
345  * @iodc_data_size: Size of the memory buffer.
346  *
347  * This PDC call reads from the IODC of the module specified by the hpa
348  * argument.
349  */
350 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351                   void *iodc_data, unsigned int iodc_data_size)
352 {
353         int retval;
354         unsigned long flags;
355
356         spin_lock_irqsave(&pdc_lock, flags);
357         retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
358                               index, __pa(pdc_result2), iodc_data_size);
359         convert_to_wide(pdc_result);
360         *actcnt = pdc_result[0];
361         memcpy(iodc_data, pdc_result2, iodc_data_size);
362         spin_unlock_irqrestore(&pdc_lock, flags);
363
364         return retval;
365 }
366 EXPORT_SYMBOL(pdc_iodc_read);
367
368 /**
369  * pdc_system_map_find_mods - Locate unarchitected modules.
370  * @pdc_mod_info: Return buffer address.
371  * @mod_path: pointer to dev path structure.
372  * @mod_index: fixed address module index.
373  *
374  * To locate and identify modules which reside at fixed I/O addresses, which
375  * do not self-identify via architected bus walks.
376  */
377 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378                              struct pdc_module_path *mod_path, long mod_index)
379 {
380         int retval;
381         unsigned long flags;
382
383         spin_lock_irqsave(&pdc_lock, flags);
384         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
385                               __pa(pdc_result2), mod_index);
386         convert_to_wide(pdc_result);
387         memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388         memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389         spin_unlock_irqrestore(&pdc_lock, flags);
390
391         pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392         return retval;
393 }
394
395 /**
396  * pdc_system_map_find_addrs - Retrieve additional address ranges.
397  * @pdc_addr_info: Return buffer address.
398  * @mod_index: Fixed address module index.
399  * @addr_index: Address range index.
400  * 
401  * Retrieve additional information about subsequent address ranges for modules
402  * with multiple address ranges.  
403  */
404 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
405                               long mod_index, long addr_index)
406 {
407         int retval;
408         unsigned long flags;
409
410         spin_lock_irqsave(&pdc_lock, flags);
411         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412                               mod_index, addr_index);
413         convert_to_wide(pdc_result);
414         memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415         spin_unlock_irqrestore(&pdc_lock, flags);
416
417         pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418         return retval;
419 }
420
421 /**
422  * pdc_model_info - Return model information about the processor.
423  * @model: The return buffer.
424  *
425  * Returns the version numbers, identifiers, and capabilities from the processor module.
426  */
427 int pdc_model_info(struct pdc_model *model) 
428 {
429         int retval;
430         unsigned long flags;
431
432         spin_lock_irqsave(&pdc_lock, flags);
433         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434         convert_to_wide(pdc_result);
435         memcpy(model, pdc_result, sizeof(*model));
436         spin_unlock_irqrestore(&pdc_lock, flags);
437
438         return retval;
439 }
440
441 /**
442  * pdc_model_sysmodel - Get the system model name.
443  * @name: A char array of at least 81 characters.
444  *
445  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447  * on HP/UX.
448  */
449 int pdc_model_sysmodel(char *name)
450 {
451         int retval;
452         unsigned long flags;
453
454         spin_lock_irqsave(&pdc_lock, flags);
455         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456                               OS_ID_HPUX, __pa(name));
457         convert_to_wide(pdc_result);
458
459         if (retval == PDC_OK) {
460                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461         } else {
462                 name[0] = 0;
463         }
464         spin_unlock_irqrestore(&pdc_lock, flags);
465
466         return retval;
467 }
468
469 /**
470  * pdc_model_versions - Identify the version number of each processor.
471  * @cpu_id: The return buffer.
472  * @id: The id of the processor to check.
473  *
474  * Returns the version number for each processor component.
475  *
476  * This comment was here before, but I do not know what it means :( -RB
477  * id: 0 = cpu revision, 1 = boot-rom-version
478  */
479 int pdc_model_versions(unsigned long *versions, int id)
480 {
481         int retval;
482         unsigned long flags;
483
484         spin_lock_irqsave(&pdc_lock, flags);
485         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486         convert_to_wide(pdc_result);
487         *versions = pdc_result[0];
488         spin_unlock_irqrestore(&pdc_lock, flags);
489
490         return retval;
491 }
492
493 /**
494  * pdc_model_cpuid - Returns the CPU_ID.
495  * @cpu_id: The return buffer.
496  *
497  * Returns the CPU_ID value which uniquely identifies the cpu portion of
498  * the processor module.
499  */
500 int pdc_model_cpuid(unsigned long *cpu_id)
501 {
502         int retval;
503         unsigned long flags;
504
505         spin_lock_irqsave(&pdc_lock, flags);
506         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508         convert_to_wide(pdc_result);
509         *cpu_id = pdc_result[0];
510         spin_unlock_irqrestore(&pdc_lock, flags);
511
512         return retval;
513 }
514
515 /**
516  * pdc_model_capabilities - Returns the platform capabilities.
517  * @capabilities: The return buffer.
518  *
519  * Returns information about platform support for 32- and/or 64-bit
520  * OSes, IO-PDIR coherency, and virtual aliasing.
521  */
522 int pdc_model_capabilities(unsigned long *capabilities)
523 {
524         int retval;
525         unsigned long flags;
526
527         spin_lock_irqsave(&pdc_lock, flags);
528         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530         convert_to_wide(pdc_result);
531         if (retval == PDC_OK) {
532                 *capabilities = pdc_result[0];
533         } else {
534                 *capabilities = PDC_MODEL_OS32;
535         }
536         spin_unlock_irqrestore(&pdc_lock, flags);
537
538         return retval;
539 }
540
541 /**
542  * pdc_cache_info - Return cache and TLB information.
543  * @cache_info: The return buffer.
544  *
545  * Returns information about the processor's cache and TLB.
546  */
547 int pdc_cache_info(struct pdc_cache_info *cache_info)
548 {
549         int retval;
550         unsigned long flags;
551
552         spin_lock_irqsave(&pdc_lock, flags);
553         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554         convert_to_wide(pdc_result);
555         memcpy(cache_info, pdc_result, sizeof(*cache_info));
556         spin_unlock_irqrestore(&pdc_lock, flags);
557
558         return retval;
559 }
560
561 /**
562  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563  * @space_bits: Should be 0, if not, bad mojo!
564  *
565  * Returns information about Space ID hashing.
566  */
567 int pdc_spaceid_bits(unsigned long *space_bits)
568 {
569         int retval;
570         unsigned long flags;
571
572         spin_lock_irqsave(&pdc_lock, flags);
573         pdc_result[0] = 0;
574         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575         convert_to_wide(pdc_result);
576         *space_bits = pdc_result[0];
577         spin_unlock_irqrestore(&pdc_lock, flags);
578
579         return retval;
580 }
581
582 #ifndef CONFIG_PA20
583 /**
584  * pdc_btlb_info - Return block TLB information.
585  * @btlb: The return buffer.
586  *
587  * Returns information about the hardware Block TLB.
588  */
589 int pdc_btlb_info(struct pdc_btlb_info *btlb) 
590 {
591         int retval;
592         unsigned long flags;
593
594         spin_lock_irqsave(&pdc_lock, flags);
595         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596         memcpy(btlb, pdc_result, sizeof(*btlb));
597         spin_unlock_irqrestore(&pdc_lock, flags);
598
599         if(retval < 0) {
600                 btlb->max_size = 0;
601         }
602         return retval;
603 }
604
605 /**
606  * pdc_mem_map_hpa - Find fixed module information.  
607  * @address: The return buffer
608  * @mod_path: pointer to dev path structure.
609  *
610  * This call was developed for S700 workstations to allow the kernel to find
611  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613  * call.
614  *
615  * This call is supported by all existing S700 workstations (up to  Gecko).
616  */
617 int pdc_mem_map_hpa(struct pdc_memory_map *address,
618                 struct pdc_module_path *mod_path)
619 {
620         int retval;
621         unsigned long flags;
622
623         spin_lock_irqsave(&pdc_lock, flags);
624         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626                                 __pa(pdc_result2));
627         memcpy(address, pdc_result, sizeof(*address));
628         spin_unlock_irqrestore(&pdc_lock, flags);
629
630         return retval;
631 }
632 #endif  /* !CONFIG_PA20 */
633
634 /**
635  * pdc_lan_station_id - Get the LAN address.
636  * @lan_addr: The return buffer.
637  * @hpa: The network device HPA.
638  *
639  * Get the LAN station address when it is not directly available from the LAN hardware.
640  */
641 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642 {
643         int retval;
644         unsigned long flags;
645
646         spin_lock_irqsave(&pdc_lock, flags);
647         retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648                         __pa(pdc_result), hpa);
649         if (retval < 0) {
650                 /* FIXME: else read MAC from NVRAM */
651                 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652         } else {
653                 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654         }
655         spin_unlock_irqrestore(&pdc_lock, flags);
656
657         return retval;
658 }
659 EXPORT_SYMBOL(pdc_lan_station_id);
660
661 /**
662  * pdc_stable_read - Read data from Stable Storage.
663  * @staddr: Stable Storage address to access.
664  * @memaddr: The memory address where Stable Storage data shall be copied.
665  * @count: number of bytes to transfer. count is multiple of 4.
666  *
667  * This PDC call reads from the Stable Storage address supplied in staddr
668  * and copies count bytes to the memory address memaddr.
669  * The call will fail if staddr+count > PDC_STABLE size.
670  */
671 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672 {
673        int retval;
674         unsigned long flags;
675
676        spin_lock_irqsave(&pdc_lock, flags);
677        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678                __pa(pdc_result), count);
679        convert_to_wide(pdc_result);
680        memcpy(memaddr, pdc_result, count);
681        spin_unlock_irqrestore(&pdc_lock, flags);
682
683        return retval;
684 }
685 EXPORT_SYMBOL(pdc_stable_read);
686
687 /**
688  * pdc_stable_write - Write data to Stable Storage.
689  * @staddr: Stable Storage address to access.
690  * @memaddr: The memory address where Stable Storage data shall be read from.
691  * @count: number of bytes to transfer. count is multiple of 4.
692  *
693  * This PDC call reads count bytes from the supplied memaddr address,
694  * and copies count bytes to the Stable Storage address staddr.
695  * The call will fail if staddr+count > PDC_STABLE size.
696  */
697 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698 {
699        int retval;
700         unsigned long flags;
701
702        spin_lock_irqsave(&pdc_lock, flags);
703        memcpy(pdc_result, memaddr, count);
704        convert_to_wide(pdc_result);
705        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706                __pa(pdc_result), count);
707        spin_unlock_irqrestore(&pdc_lock, flags);
708
709        return retval;
710 }
711 EXPORT_SYMBOL(pdc_stable_write);
712
713 /**
714  * pdc_stable_get_size - Get Stable Storage size in bytes.
715  * @size: pointer where the size will be stored.
716  *
717  * This PDC call returns the number of bytes in the processor's Stable
718  * Storage, which is the number of contiguous bytes implemented in Stable
719  * Storage starting from staddr=0. size in an unsigned 64-bit integer
720  * which is a multiple of four.
721  */
722 int pdc_stable_get_size(unsigned long *size)
723 {
724        int retval;
725         unsigned long flags;
726
727        spin_lock_irqsave(&pdc_lock, flags);
728        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729        *size = pdc_result[0];
730        spin_unlock_irqrestore(&pdc_lock, flags);
731
732        return retval;
733 }
734 EXPORT_SYMBOL(pdc_stable_get_size);
735
736 /**
737  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738  *
739  * This PDC call is meant to be used to check the integrity of the current
740  * contents of Stable Storage.
741  */
742 int pdc_stable_verify_contents(void)
743 {
744        int retval;
745         unsigned long flags;
746
747        spin_lock_irqsave(&pdc_lock, flags);
748        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749        spin_unlock_irqrestore(&pdc_lock, flags);
750
751        return retval;
752 }
753 EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755 /**
756  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757  * the validity indicator.
758  *
759  * This PDC call will erase all contents of Stable Storage. Use with care!
760  */
761 int pdc_stable_initialize(void)
762 {
763        int retval;
764         unsigned long flags;
765
766        spin_lock_irqsave(&pdc_lock, flags);
767        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768        spin_unlock_irqrestore(&pdc_lock, flags);
769
770        return retval;
771 }
772 EXPORT_SYMBOL(pdc_stable_initialize);
773
774 /**
775  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776  * @hwpath: fully bc.mod style path to the device.
777  * @initiator: the array to return the result into
778  *
779  * Get the SCSI operational parameters from PDC.
780  * Needed since HPUX never used BIOS or symbios card NVRAM.
781  * Most ncr/sym cards won't have an entry and just use whatever
782  * capabilities of the card are (eg Ultra, LVD). But there are
783  * several cases where it's useful:
784  *    o set SCSI id for Multi-initiator clusters,
785  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
786  *    o bus width exported is less than what the interface chip supports.
787  */
788 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789 {
790         int retval;
791         unsigned long flags;
792
793         spin_lock_irqsave(&pdc_lock, flags);
794
795 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797         strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799         retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
800                               __pa(pdc_result), __pa(hwpath));
801         if (retval < PDC_OK)
802                 goto out;
803
804         if (pdc_result[0] < 16) {
805                 initiator->host_id = pdc_result[0];
806         } else {
807                 initiator->host_id = -1;
808         }
809
810         /*
811          * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
812          * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813          */
814         switch (pdc_result[1]) {
815                 case  1: initiator->factor = 50; break;
816                 case  2: initiator->factor = 25; break;
817                 case  5: initiator->factor = 12; break;
818                 case 25: initiator->factor = 10; break;
819                 case 20: initiator->factor = 12; break;
820                 case 40: initiator->factor = 10; break;
821                 default: initiator->factor = -1; break;
822         }
823
824         if (IS_SPROCKETS()) {
825                 initiator->width = pdc_result[4];
826                 initiator->mode = pdc_result[5];
827         } else {
828                 initiator->width = -1;
829                 initiator->mode = -1;
830         }
831
832  out:
833         spin_unlock_irqrestore(&pdc_lock, flags);
834
835         return (retval >= PDC_OK);
836 }
837 EXPORT_SYMBOL(pdc_get_initiator);
838
839
840 /**
841  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842  * @num_entries: The return value.
843  * @hpa: The HPA for the device.
844  *
845  * This PDC function returns the number of entries in the specified cell's
846  * interrupt table.
847  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848  */ 
849 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850 {
851         int retval;
852         unsigned long flags;
853
854         spin_lock_irqsave(&pdc_lock, flags);
855         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
856                               __pa(pdc_result), hpa);
857         convert_to_wide(pdc_result);
858         *num_entries = pdc_result[0];
859         spin_unlock_irqrestore(&pdc_lock, flags);
860
861         return retval;
862 }
863
864 /** 
865  * pdc_pci_irt - Get the PCI interrupt routing table.
866  * @num_entries: The number of entries in the table.
867  * @hpa: The Hard Physical Address of the device.
868  * @tbl: 
869  *
870  * Get the PCI interrupt routing table for the device at the given HPA.
871  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872  */
873 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874 {
875         int retval;
876         unsigned long flags;
877
878         BUG_ON((unsigned long)tbl & 0x7);
879
880         spin_lock_irqsave(&pdc_lock, flags);
881         pdc_result[0] = num_entries;
882         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
883                               __pa(pdc_result), hpa, __pa(tbl));
884         spin_unlock_irqrestore(&pdc_lock, flags);
885
886         return retval;
887 }
888
889
890 #if 0   /* UNTEST CODE - left here in case someone needs it */
891
892 /** 
893  * pdc_pci_config_read - read PCI config space.
894  * @hpa         token from PDC to indicate which PCI device
895  * @pci_addr    configuration space address to read from
896  *
897  * Read PCI Configuration space *before* linux PCI subsystem is running.
898  */
899 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900 {
901         int retval;
902         unsigned long flags;
903
904         spin_lock_irqsave(&pdc_lock, flags);
905         pdc_result[0] = 0;
906         pdc_result[1] = 0;
907         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
908                               __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909         spin_unlock_irqrestore(&pdc_lock, flags);
910
911         return retval ? ~0 : (unsigned int) pdc_result[0];
912 }
913
914
915 /** 
916  * pdc_pci_config_write - read PCI config space.
917  * @hpa         token from PDC to indicate which PCI device
918  * @pci_addr    configuration space address to write
919  * @val         value we want in the 32-bit register
920  *
921  * Write PCI Configuration space *before* linux PCI subsystem is running.
922  */
923 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924 {
925         int retval;
926         unsigned long flags;
927
928         spin_lock_irqsave(&pdc_lock, flags);
929         pdc_result[0] = 0;
930         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
931                               __pa(pdc_result), hpa,
932                               cfg_addr&~3UL, 4UL, (unsigned long) val);
933         spin_unlock_irqrestore(&pdc_lock, flags);
934
935         return retval;
936 }
937 #endif /* UNTESTED CODE */
938
939 /**
940  * pdc_tod_read - Read the Time-Of-Day clock.
941  * @tod: The return buffer:
942  *
943  * Read the Time-Of-Day clock
944  */
945 int pdc_tod_read(struct pdc_tod *tod)
946 {
947         int retval;
948         unsigned long flags;
949
950         spin_lock_irqsave(&pdc_lock, flags);
951         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952         convert_to_wide(pdc_result);
953         memcpy(tod, pdc_result, sizeof(*tod));
954         spin_unlock_irqrestore(&pdc_lock, flags);
955
956         return retval;
957 }
958 EXPORT_SYMBOL(pdc_tod_read);
959
960 /**
961  * pdc_tod_set - Set the Time-Of-Day clock.
962  * @sec: The number of seconds since epoch.
963  * @usec: The number of micro seconds.
964  *
965  * Set the Time-Of-Day clock.
966  */ 
967 int pdc_tod_set(unsigned long sec, unsigned long usec)
968 {
969         int retval;
970         unsigned long flags;
971
972         spin_lock_irqsave(&pdc_lock, flags);
973         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974         spin_unlock_irqrestore(&pdc_lock, flags);
975
976         return retval;
977 }
978 EXPORT_SYMBOL(pdc_tod_set);
979
980 #ifdef CONFIG_64BIT
981 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982                 struct pdc_memory_table *tbl, unsigned long entries)
983 {
984         int retval;
985         unsigned long flags;
986
987         spin_lock_irqsave(&pdc_lock, flags);
988         retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989         convert_to_wide(pdc_result);
990         memcpy(r_addr, pdc_result, sizeof(*r_addr));
991         memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992         spin_unlock_irqrestore(&pdc_lock, flags);
993
994         return retval;
995 }
996 #endif /* CONFIG_64BIT */
997
998 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
999  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000  * it later. :)
1001  */
1002 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003 {
1004         int retval;
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&pdc_lock, flags);
1008         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010         spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012         return retval;
1013 }
1014
1015 /*
1016  * pdc_do_reset - Reset the system.
1017  *
1018  * Reset the system.
1019  */
1020 int pdc_do_reset(void)
1021 {
1022         int retval;
1023         unsigned long flags;
1024
1025         spin_lock_irqsave(&pdc_lock, flags);
1026         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027         spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029         return retval;
1030 }
1031
1032 /*
1033  * pdc_soft_power_info - Enable soft power switch.
1034  * @power_reg: address of soft power register
1035  *
1036  * Return the absolute address of the soft power switch register
1037  */
1038 int __init pdc_soft_power_info(unsigned long *power_reg)
1039 {
1040         int retval;
1041         unsigned long flags;
1042
1043         *power_reg = (unsigned long) (-1);
1044         
1045         spin_lock_irqsave(&pdc_lock, flags);
1046         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047         if (retval == PDC_OK) {
1048                 convert_to_wide(pdc_result);
1049                 *power_reg = f_extend(pdc_result[0]);
1050         }
1051         spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053         return retval;
1054 }
1055
1056 /*
1057  * pdc_soft_power_button - Control the soft power button behaviour
1058  * @sw_control: 0 for hardware control, 1 for software control 
1059  *
1060  *
1061  * This PDC function places the soft power button under software or
1062  * hardware control.
1063  * Under software control the OS may control to when to allow to shut 
1064  * down the system. Under hardware control pressing the power button 
1065  * powers off the system immediately.
1066  */
1067 int pdc_soft_power_button(int sw_control)
1068 {
1069         int retval;
1070         unsigned long flags;
1071
1072         spin_lock_irqsave(&pdc_lock, flags);
1073         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074         spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076         return retval;
1077 }
1078
1079 /*
1080  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082  * who knows what other platform firmware might do with this OS "hook".
1083  */
1084 void pdc_io_reset(void)
1085 {
1086         unsigned long flags;
1087
1088         spin_lock_irqsave(&pdc_lock, flags);
1089         mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090         spin_unlock_irqrestore(&pdc_lock, flags);
1091 }
1092
1093 /*
1094  * pdc_io_reset_devices - Hack to Stop USB controller
1095  *
1096  * If PDC used the usb controller, the usb controller
1097  * is still running and will crash the machines during iommu 
1098  * setup, because of still running DMA. This PDC call
1099  * stops the USB controller.
1100  * Normally called after calling pdc_io_reset().
1101  */
1102 void pdc_io_reset_devices(void)
1103 {
1104         unsigned long flags;
1105
1106         spin_lock_irqsave(&pdc_lock, flags);
1107         mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108         spin_unlock_irqrestore(&pdc_lock, flags);
1109 }
1110
1111 /* locked by pdc_console_lock */
1112 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115 /**
1116  * pdc_iodc_print - Console print using IODC.
1117  * @str: the string to output.
1118  * @count: length of str
1119  *
1120  * Note that only these special chars are architected for console IODC io:
1121  * BEL, BS, CR, and LF. Others are passed through.
1122  * Since the HP console requires CR+LF to perform a 'newline', we translate
1123  * "\n" to "\r\n".
1124  */
1125 int pdc_iodc_print(const unsigned char *str, unsigned count)
1126 {
1127         unsigned int i;
1128         unsigned long flags;
1129
1130         for (i = 0; i < count;) {
1131                 switch(str[i]) {
1132                 case '\n':
1133                         iodc_dbuf[i+0] = '\r';
1134                         iodc_dbuf[i+1] = '\n';
1135                         i += 2;
1136                         goto print;
1137                 default:
1138                         iodc_dbuf[i] = str[i];
1139                         i++;
1140                         break;
1141                 }
1142         }
1143
1144 print:
1145         spin_lock_irqsave(&pdc_lock, flags);
1146         real32_call(PAGE0->mem_cons.iodc_io,
1147                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150         spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152         return i;
1153 }
1154
1155 /**
1156  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157  *
1158  * Read a character (non-blocking) from the PDC console, returns -1 if
1159  * key is not present.
1160  */
1161 int pdc_iodc_getc(void)
1162 {
1163         int ch;
1164         int status;
1165         unsigned long flags;
1166
1167         /* Bail if no console input device. */
1168         if (!PAGE0->mem_kbd.iodc_io)
1169                 return 0;
1170         
1171         /* wait for a keyboard (rs232)-input */
1172         spin_lock_irqsave(&pdc_lock, flags);
1173         real32_call(PAGE0->mem_kbd.iodc_io,
1174                     (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175                     PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178         ch = *iodc_dbuf;
1179         status = *iodc_retbuf;
1180         spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182         if (status == 0)
1183             return -1;
1184         
1185         return ch;
1186 }
1187
1188 int pdc_sti_call(unsigned long func, unsigned long flags,
1189                  unsigned long inptr, unsigned long outputr,
1190                  unsigned long glob_cfg)
1191 {
1192         int retval;
1193         unsigned long irqflags;
1194
1195         spin_lock_irqsave(&pdc_lock, irqflags);  
1196         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197         spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199         return retval;
1200 }
1201 EXPORT_SYMBOL(pdc_sti_call);
1202
1203 #ifdef CONFIG_64BIT
1204 /**
1205  * pdc_pat_cell_get_number - Returns the cell number.
1206  * @cell_info: The return buffer.
1207  *
1208  * This PDC call returns the cell number of the cell from which the call
1209  * is made.
1210  */
1211 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212 {
1213         int retval;
1214         unsigned long flags;
1215
1216         spin_lock_irqsave(&pdc_lock, flags);
1217         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218         memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219         spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221         return retval;
1222 }
1223
1224 /**
1225  * pdc_pat_cell_module - Retrieve the cell's module information.
1226  * @actcnt: The number of bytes written to mem_addr.
1227  * @ploc: The physical location.
1228  * @mod: The module index.
1229  * @view_type: The view of the address type.
1230  * @mem_addr: The return buffer.
1231  *
1232  * This PDC call returns information about each module attached to the cell
1233  * at the specified location.
1234  */
1235 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236                         unsigned long view_type, void *mem_addr)
1237 {
1238         int retval;
1239         unsigned long flags;
1240         static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242         spin_lock_irqsave(&pdc_lock, flags);
1243         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244                               ploc, mod, view_type, __pa(&result));
1245         if(!retval) {
1246                 *actcnt = pdc_result[0];
1247                 memcpy(mem_addr, &result, *actcnt);
1248         }
1249         spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251         return retval;
1252 }
1253
1254 /**
1255  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256  * @cpu_info: The return buffer.
1257  * @hpa: The Hard Physical Address of the CPU.
1258  *
1259  * Retrieve the cpu number for the cpu at the specified HPA.
1260  */
1261 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262 {
1263         int retval;
1264         unsigned long flags;
1265
1266         spin_lock_irqsave(&pdc_lock, flags);
1267         retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268                               __pa(&pdc_result), hpa);
1269         memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270         spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272         return retval;
1273 }
1274
1275 /**
1276  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277  * @num_entries: The return value.
1278  * @cell_num: The target cell.
1279  *
1280  * This PDC function returns the number of entries in the specified cell's
1281  * interrupt table.
1282  */
1283 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284 {
1285         int retval;
1286         unsigned long flags;
1287
1288         spin_lock_irqsave(&pdc_lock, flags);
1289         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290                               __pa(pdc_result), cell_num);
1291         *num_entries = pdc_result[0];
1292         spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294         return retval;
1295 }
1296
1297 /**
1298  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299  * @r_addr: The return buffer.
1300  * @cell_num: The target cell.
1301  *
1302  * This PDC function returns the actual interrupt table for the specified cell.
1303  */
1304 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305 {
1306         int retval;
1307         unsigned long flags;
1308
1309         spin_lock_irqsave(&pdc_lock, flags);
1310         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311                               __pa(r_addr), cell_num);
1312         spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314         return retval;
1315 }
1316
1317 /**
1318  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319  * @actlen: The return buffer.
1320  * @mem_addr: Pointer to the memory buffer.
1321  * @count: The number of bytes to read from the buffer.
1322  * @offset: The offset with respect to the beginning of the buffer.
1323  *
1324  */
1325 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326                             unsigned long count, unsigned long offset)
1327 {
1328         int retval;
1329         unsigned long flags;
1330
1331         spin_lock_irqsave(&pdc_lock, flags);
1332         retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333                               __pa(pdc_result2), count, offset);
1334         *actual_len = pdc_result[0];
1335         memcpy(mem_addr, pdc_result2, *actual_len);
1336         spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338         return retval;
1339 }
1340
1341 /**
1342  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343  * @pci_addr: PCI configuration space address for which the read request is being made.
1344  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345  * @mem_addr: Pointer to return memory buffer.
1346  *
1347  */
1348 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349 {
1350         int retval;
1351         unsigned long flags;
1352
1353         spin_lock_irqsave(&pdc_lock, flags);
1354         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355                                         __pa(pdc_result), pci_addr, pci_size);
1356         switch(pci_size) {
1357                 case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1358                 case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1359                 case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1360         }
1361         spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363         return retval;
1364 }
1365
1366 /**
1367  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368  * @pci_addr: PCI configuration space address for which the write  request is being made.
1369  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371  *         written to PCI Config space.
1372  *
1373  */
1374 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375 {
1376         int retval;
1377         unsigned long flags;
1378
1379         spin_lock_irqsave(&pdc_lock, flags);
1380         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381                                 pci_addr, pci_size, val);
1382         spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384         return retval;
1385 }
1386 #endif /* CONFIG_64BIT */
1387
1388
1389 /***************** 32-bit real-mode calls ***********/
1390 /* The struct below is used
1391  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392  * real32_call_asm() then uses this stack in narrow real mode
1393  */
1394
1395 struct narrow_stack {
1396         /* use int, not long which is 64 bits */
1397         unsigned int arg13;
1398         unsigned int arg12;
1399         unsigned int arg11;
1400         unsigned int arg10;
1401         unsigned int arg9;
1402         unsigned int arg8;
1403         unsigned int arg7;
1404         unsigned int arg6;
1405         unsigned int arg5;
1406         unsigned int arg4;
1407         unsigned int arg3;
1408         unsigned int arg2;
1409         unsigned int arg1;
1410         unsigned int arg0;
1411         unsigned int frame_marker[8];
1412         unsigned int sp;
1413         /* in reality, there's nearly 8k of stack after this */
1414 };
1415
1416 long real32_call(unsigned long fn, ...)
1417 {
1418         va_list args;
1419         extern struct narrow_stack real_stack;
1420         extern unsigned long real32_call_asm(unsigned int *,
1421                                              unsigned int *, 
1422                                              unsigned int);
1423         
1424         va_start(args, fn);
1425         real_stack.arg0 = va_arg(args, unsigned int);
1426         real_stack.arg1 = va_arg(args, unsigned int);
1427         real_stack.arg2 = va_arg(args, unsigned int);
1428         real_stack.arg3 = va_arg(args, unsigned int);
1429         real_stack.arg4 = va_arg(args, unsigned int);
1430         real_stack.arg5 = va_arg(args, unsigned int);
1431         real_stack.arg6 = va_arg(args, unsigned int);
1432         real_stack.arg7 = va_arg(args, unsigned int);
1433         real_stack.arg8 = va_arg(args, unsigned int);
1434         real_stack.arg9 = va_arg(args, unsigned int);
1435         real_stack.arg10 = va_arg(args, unsigned int);
1436         real_stack.arg11 = va_arg(args, unsigned int);
1437         real_stack.arg12 = va_arg(args, unsigned int);
1438         real_stack.arg13 = va_arg(args, unsigned int);
1439         va_end(args);
1440         
1441         return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442 }
1443
1444 #ifdef CONFIG_64BIT
1445 /***************** 64-bit real-mode calls ***********/
1446
1447 struct wide_stack {
1448         unsigned long arg0;
1449         unsigned long arg1;
1450         unsigned long arg2;
1451         unsigned long arg3;
1452         unsigned long arg4;
1453         unsigned long arg5;
1454         unsigned long arg6;
1455         unsigned long arg7;
1456         unsigned long arg8;
1457         unsigned long arg9;
1458         unsigned long arg10;
1459         unsigned long arg11;
1460         unsigned long arg12;
1461         unsigned long arg13;
1462         unsigned long frame_marker[2];  /* rp, previous sp */
1463         unsigned long sp;
1464         /* in reality, there's nearly 8k of stack after this */
1465 };
1466
1467 long real64_call(unsigned long fn, ...)
1468 {
1469         va_list args;
1470         extern struct wide_stack real64_stack;
1471         extern unsigned long real64_call_asm(unsigned long *,
1472                                              unsigned long *, 
1473                                              unsigned long);
1474     
1475         va_start(args, fn);
1476         real64_stack.arg0 = va_arg(args, unsigned long);
1477         real64_stack.arg1 = va_arg(args, unsigned long);
1478         real64_stack.arg2 = va_arg(args, unsigned long);
1479         real64_stack.arg3 = va_arg(args, unsigned long);
1480         real64_stack.arg4 = va_arg(args, unsigned long);
1481         real64_stack.arg5 = va_arg(args, unsigned long);
1482         real64_stack.arg6 = va_arg(args, unsigned long);
1483         real64_stack.arg7 = va_arg(args, unsigned long);
1484         real64_stack.arg8 = va_arg(args, unsigned long);
1485         real64_stack.arg9 = va_arg(args, unsigned long);
1486         real64_stack.arg10 = va_arg(args, unsigned long);
1487         real64_stack.arg11 = va_arg(args, unsigned long);
1488         real64_stack.arg12 = va_arg(args, unsigned long);
1489         real64_stack.arg13 = va_arg(args, unsigned long);
1490         va_end(args);
1491         
1492         return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493 }
1494
1495 #endif /* CONFIG_64BIT */
1496